
Codes for Deletion and Insertion Channels with
Segmented Errors

Zhenming Liu
Division of Engineering and Applied Sciences

Harvard University
lzhenming@gmail.com

Michael Mitzenmacher
Division of Engineering and Applied Sciences

Harvard University
michaelm@eecs.harvard.edu

Abstract— We consider deletion channels and insertion chan-
nels under an additional segmentation assumption: the input
consists of disjoint segments ofb consecutive bits, with at most
one error per segment. Under this assumption, we demonstrate
simple and computationally efficient deterministic encoding and
decoding schemes that achieve a high provable rate even under
worst-case errors. We also consider more complex schemes that
experimentally achieve higher rates under random error.

I. INTRODUCTION

Channels that allow deletions and insertions are remarkably
challenging. For example, the capacity of the binary i.i.d.
deletion channel, where n bits are sent and each bit is deleted
with probability d, remains unknown, despite substantial re-
cent progress [4], [5]. Even the case where n bits are sent and
just one bit is deleted provides many interesting open problems
[8]. While some attempts have been made to design coding
schemes for such channels, the work has not led to provable
performance guarantees and still seems far from optimal.

In this paper, we consider deletion and insertion channels
under an additional segmentation assumption about the loca-
tion of the errors. Specifically, we assume that the input is
naturally grouped in consecutive segments of b consecutive
bits, and there is at most one error in each segment. For
example, if our segments consist of eight bits, and at most
one deletion occurs per segment, on the input

0001011100101111,

which consists of two segments, it would be possible that the
fourth and eleventh bits were deleted, so that the received
sequence would be

00001110001111,

but not that last two bits were deleted, leaving

00010111001011.

We emphasize that the segments are implicit, and that no
segment markers appear in the received sequence. Our goal
is to develop efficient codes in this setting.

This additional assumption appears quite natural for many
practical settings. Consider the case of disk drives, a com-
monly given example for synchronizations errors. Deletions
may occur because of a timing mismatch between the device
reading the data and the data layout. In such situations, there

might naturally be a minimal gap between deletions, as the
drift caused by the timing error may require several reading
several additional bits before the timing error yields a further
deletion. Our model encompasses the case where there is such
a minimal gap, although it can also allow nearby deletions that
cross a segment boundary. Our model would therefore also
include settings such as when data is naturally written out in
segments (e.g., bytes) by a writer that might erroneously delete
a bit per segment, because of timing or other issues, and the
reader must deal with the resulting bit sequence.

Another compelling motivation for considering channels
with segmentation is the existing theoretical challenges in han-
dling random or worst-case insertions and deletions. Consid-
ering channels with additional assumptions may yield insight
into the more general problem.

We find that the segmentation assumption greatly simplifies
the problem of dealing with insertions or deletions. Our
primary result demonstrates a deterministic coding scheme
inspired by the idea of prefix coding in compression. Our
coding scheme allows for left-to-right decoding of a message,
as long as a small amount of lookahead (corresponding to
the next segment) is available. The scheme has provable
performance guarantees under the segmentation assumption,
even with adversarially chosen errors. As an example, with
segments of eight bits (one byte), allowing up to one adver-
sarial deletion per segment this scheme provides a code with a
rate of 44.8%. The same result holds if we instead allow up to
one adversarial insertion per segment. Our coding scheme is
computationally simple and quite amenable to use in hardware.
We believe the resulting transmission rates prove sufficiently
high to be useful in practical settings.

We also consider extensions of our approach to give
schemes that provide larger transmission rates under random
errors, again with the assumption of at most one error per
segment. The idea is to allow some ambiguity in the decoding,
and then incorporate check bits and checksums to resolve the
ambiguities subsequently. Here our results are experimental,
but as an example, again with segments of length one byte, we
can achieve rates above 54% with very low error rates. Such
schemes, however, also take additional computation time over
our simpler schemes. Because of space limitations, we only
present our deterministic scheme; results from our extended
approach appear in the full version of the paper [6].

ISIT2007, Nice, France, June 24 – June 29, 2007

1-4244-1429-6/07/$25.00 c©2007 IEEE 846

While our results are generally incomparable with previous
results because of our additional assumptions, we note that
previous experimental approaches to channels with insertions
and deletions generally allowed much fewer errors with non-
trivial block error rates [2], [3], [7]. Codes of rate 50%
handling only deletions or insertions at a rate of 2 to 6
percent are typical. We believe the performance as well as the
simplicity of our schemes represents an advance over previous
work.

II. A DETERMINISTIC APPROACH

A. The Communication Model

Formally, our channel transmits binary streams of fixed
length n, where n is known to the sender and receiver. We
write the input as X = x1x2 . . . xn. We use the notation
X(j, k) to refer to the substring xjxj+1 . . . xk, and similarly
for other bit sequences. For the segmented deletion channel,
the received sequence Y = y1y2 . . . ym is obtained by deletion
a number of bits from the input sequence, under the following
condition: at most one bit from each set of bits X(bi+1, b(i+
1)) can be deleted by the channel for i = 0, . . . , n/b − 1.
(For convenience we assume that b divides n evenly.) We use
si = X(bi+1, b(i+1)) to refer to the bits constituting the ith
segment in X , but we also abuse notation and use s i to refer
to the corresponding received bits in Y where the meaning is
clear. We say the ith segment si starts at position y� if the
first undeleted bit of the ith segment occurs at position y �. We
emphasize that our scheme functions for any set of deletions
satisfying the properties of the segmented deletion channel.

The case where b = n, so that there is just one segment
and hence just one deletion, has been considered extensively
[8]. Of particular interest is the class of Varshamov-Tenengolts
codes, or VT codes [10]. The VT code V Ta(n) consists of all
binary vectors x1x2 . . . xn satisfying

n∑

i=1

ixi ≡ a(modn + 1).

With a VT code, any single deletion can be corrected without
error. The codes V T0(n) are in fact optimal codes for n up
to 9; see [8], [9] for more details.

B. Encoding and Decoding for Deletions

In order to explain the reasoning behind the choices made
for our encoding and decoding schemes, we walk through step
by step showing how the properties we require arise naturally
by first principle considerations.

In our encoding scheme, each segment will consist of one
of a set of a b-bit codewords C. We refer to C as a code,
even though strictly speaking the code for this channel consists
of a concatenation of segments with each coming from C.
We use the same set C for every segment, although this is
not a requirement of our approach. For u ∈ C, let D 1(u)
be the set of all (b − 1)-bit strings that can be obtained by
deleting one bit from u. We refer to D1(u) as the set of first
order descendants of u, or just the descendants of u where the

meaning is clear. This follows the notation used in [8]. We
also use D1(C) = ∪u∈CD1(u).

The code C is said to be 1-deletion correcting if D1(u) �=
D1(v) for all u, v ∈ C with u �= v. As mentioned previously,
such codes are treated extensively in [8]. It is natural that we
will want our code C to have this property.

To see why, we start to explain our decoding process. Our
decoder will work from left-to-right, decoding one segment at
a time. Decoding a segment will only require access to the next
2b − 1 bits in sequence. Consider what might happen as we
start from the left on the received sequence Y . The first b− 1
bits reveal the value of the first segment; indeed, in general,
when C is 1-deletion correcting, if k is the starting position
of a segment, then by examining bits Y (k, k + b − 1), we
can determine the codeword associated with the segment. But
there may be some ambiguity as to whether a bit was deleted
from the segment or not, so the decoder cannot determine
whether to extract the first b−1 or first b bits. For example, if
the segments are eight bits, and the first two segments are the
strings 00000000 and 00001110, then if the received sequence
began with 00000000001110, it would be a mistake to extract
8 bits for the first segment. (As 10 of the first 12 zeroes remain,
we can see that one 0 was deleted from each segment.) Doing
so would actually remove a bit from the subsequent segment.
In general, we may not be sure whether the next segment starts
at yb−1 or yb. If we did not control this ambiguity, it could
increase as we continue decoding; the third segment could
conceivably start at y2b−2, y2b−1, or y2b, and so on.

We therefore arrange our code so that this cannot happen.
At each step, there will potentially remain some ambiguity;
we maintain the invariant the next segment may start at one
of at most two positions, yk or yk+1. This ambiguity is then
resolved at the end of the received sequence.

Because our decoder works in this fashion, it is clear that we
only need to consider how the decoder works locally. That is,
given (Y, i, k) where Y is the received string, i is the segment
to be decoded, k is starting position such that the ith segment
must start in position k or k + 1, we wish to decode the ith
segment and determine an appropriate new position k ′ such
that (i + 1)st segment starts at k′ or k′ + 1 . We can then
iterate through Y to recover X . (It should be clear in what
follows that at some points in our algorithm we may have
no ambiguity, so that we know the ith segment must start in
some position k. The algorithm could be optimized for such
situations. We do not consider such optimizations here, as they
do not affect our analysis.)

Suppose that we have segment si starting at position k.
There are two cases to consider.

• Case 1: There is no deletion si. In this case, the segment
ends at yk+b−1, and Y (k + b, k+2b− 2) is in D1(si+1).

• Case 2: There is exactly one deletion in si. In this case,
the segment ends at yk+b−2, and Y (k+ b−1, k+2b−3)
is in D1(si+1).

Optimistically, we might hope that by restricting our code-
book we can determine which case holds at each point,
in which case we can decode segment by segment with

ISIT2007, Nice, France, June 24 – June 29, 2007

847

no ambiguity. The following provides an equivalent way of
viewing this restriction. For a string x of length k > 1, let
prefix(x) be the first k − 1 bits of x, and similarly define
suffix(x) be the last k − 1 bits of x. For a set S of strings
let prefix(S) = ∪x∈Sprefix(x) and define suffix(S) similarly.
Then for our code C we can require that for all u, v ∈ C with
u �= v,

prefix(D1(u)) ∩ suffix(D1(v)) = ∅.
In Case 1, we have Y (k+b, k+2b−3) ∈ prefix(D1(C)), and
in Case 2, we have Y (k + b, k + 2b− 3) ∈ suffix(D1(C)).

It seems that we have chosen our code so that we can
distinguish Case 1 and Case 2, but this is not quite the
case. The problem is the bits Yk+b,k+2b−3 can indeed be in
both prefix(D1(C)) and suffix(D1(C)); they simply cannot
be in prefix(D1(u)) and suffix(D1(v)) for some u �= v in
our code. There is nothing, however, that prevents these bits
from being in both prefix(D1(u)) and suffix(D1(u)) for some
u ∈ C. Moreover, this specific ambiguity seems unavoidable;
for any u ∈ C, if we delete the first and last bit, we obtain a
subsequence that is both in prefix(D1(u)) and suffix(D1(u)).

Notice, though, that under this restriction, the bits Y (k +
b, k + 2b− 3) do determine the segment si+1; that is, there is
not ambiguity in what the next segment is, just where it starts
and begins. By restricting our codewords slightly further, we
can guarantee that this ambiguity does not increase from step
to step. We prove this now.

Theorem 2.1: Consider the segmented deletion channel
with segment length b. Let C be a subset of {0, 1}b with the
following properties:

• for any u, v ∈ C, with u �= v, D1(u) ∩D1(v) = ∅;
• for any u, v ∈ C, with u �= v,

prefix
(
D1(u)

) ⋂
suffix

(
D1(v)

)
= ∅;

• any string of the form a∗(ba)∗ or a∗(ba)∗b, where
a, b ∈ {0, 1}, is not in C. (Here a∗ is regular expression
notation.)

Then, using C as the code for each segment, there exists
a linear time decoding scheme for the segmented deletion
channel that looks ahead only O(b) bits to decode each block.

Proof: We follow the outline of our discussion. We
decode segment by segment, with the invariant that when
decoding the ith segment, we know it starts either at position
k or position k +1 in Y . The possible ending positions of the
ith segment are yk+b−2, yk+b−1, or yk+b. We must eliminate
either the first or third possibility to maintain our invariant,
and we must recover the ith segment.

We consider two cases. The simple case is when only one
of Y (k, k + b − 2) and Y (k + 1, k + b − 1) is in D1(C).
For example, if Y (k + 1, k + b − 1) /∈ D1(C), then the ith
segment cannot start at yk+1 and must start at yk. In this case
we can determine si from Y (k, k+b−2) and the next segment
starts either at yk+b−1 or yk+b. The argument is similar if
Y (k, k + b− 2) /∈ D1(C).

Now suppose instead that both of Y (k, k+b−2) and Y (k+
1, k + b − 1) are in D1(C). Then Y (k + 1, k + b − 2) ∈
suffix(D1(C)) and Y (k + 1, k + b− 2) ∈ prefix(D1(C)). By

assumption, we cannot have two distinct codewords u, v ∈ C
with Y (k+1, k+b−2) ∈ suffix(D1(u)) and Y (k+1, k+b−
2) ∈ prefix(D1(v)), so the bits Y (k + 1, k + b− 2) determine
the segment si.

We now show using our final assumption on the codewords
that the next segment starts either at yk+b−1 or yk+b (but not
yk+b+1). Assume the next segment starts at yk+b+1. Then si

must be the subsequence Y (k+1, k+b). Further, as Y (k, k+
b−2) ∈ D1(si), we have that there exists j with k−1 ≤ j ≤
k + b− 2 and a bit z such that

ykyk+1...yjzyj+1...yk+b−2 = yk+1...yk+b. (1)

(When j = k − 1, the left hand side is zykyk+1...yk+b−2.)
Comparing bit by bit, we have

yk = yk+1

yk+1 = yk+2

..

yj = yj+1

z = yj+2

yj+1 = yj+3

..

yk+b−2 = yk+b.

But then si is of the form a∗(ba)∗ or a∗(ba)∗b, contradicting
our assumption.

The restriction on C to exclude certain strings is an unfor-
tunate byproduct of our approach. We emphasize, however,
that of the 2b possible codewords, only O(b) of them are
excluded. Hence we would expect that this restriction would
not dramatically reduce the possible size of the code.

Given these restrictions, finding a valid C for a given
segment size b corresponds naturally to an independent set
problem, similar to those for 1-bit deletion codes [8]. We take
the underlying graph where there is a vertex for each possible
codeword, and two codewords are connected by an edge if
they cannot simultaneously be in the code according to our
restrictions. A valid code corresponds to an independent set
on this graph, and we therefore seek a maximum independent
set. For small b this can be done by exhaustive calculation,
and for larger b heuristic techniques can be used to find large
codes. In general, proving optimality for such independent set
problems can be difficult; related results appear in [1], [9].

We have exhaustively checked to find optimal codes for
b = 8 and 9, shown in Figure 1. When b = 8, so that segments
are bytes, the (unique) optimal code contains 12 codewords,
corresponding to a rate of slightly more than 44.8%. It is worth
noting that even if segment markers were given at the receiving
end, and an optimal 1-deletion correcting code is used per
segment, the maximal such code has only 30 codewords [8],
corresponding to a rate of slightly more than 61.3%. Our rate
of 44.8% is over over 73% of this benchmark. For b = 9 we
found 28 different codes consisting of 20 codewords. Hence
for b = 9 the rate is over 48%; comparing to the 52 codewords
for an optimal 1-deletion correcting code for one segment,

ISIT2007, Nice, France, June 24 – June 29, 2007

848

00100100
00101011
01110000
01110011
01111100
01111111
10000000
10000011
10001100
10001111
11010100
11011011

000011100
000011111
000100011
000100100
010111011
010111100
011001111
011010011
011010100
011111111
100000000
100101011
100101100
100110000
101000011
101000100
111011011
111011100
111100000
111100011

Fig. 1. Optimal codes for b = 8 and b = 9 with our deterministic scheme.

our codes achieves over 75% of this rate. We conjecture
that the rates for optimal codes satisfying the conditions of
Theorem 2.1 increase with b. We would also like for the ratio
between the size of these codes and the optimal 1-deletion
correcting codes to increase with b, and for both these ratios
to converge to 1, but these conjectures may be too optimistic.

The inherent limitations of exhaustive search prevents us
from finding optimal codes for larger values of b. Indeed,
[9] reports on the difficulties of finding independent sets for
similar graphs arising from coding problems. Nevertheless,
we find that using simple randomized greedy heuristics yields
codes with good rates. For example, when b = 16, so segments
are two bytes, we have found a code with 740 codewords,
giving a rate of approximately 59.57%, by using a simple
greedy strategy: repeatedly choose a remaining element of
minimal degree, and delete the element and all of its neighbors
from the graph.

Our decoding algorithm is particularly amenable to hard-
ware implementation. One possible implementation (in pseu-
docode) is given as procedure LOCAL-DECODE in Figure 2.
Each membership check could be performed by a lookup table,
as could the DECODE operation, which decodes sequences
to obtain a segment value. While the rates grow larger as b
increases, the computational problem of finding a code grows,
as do the corresponding size of the lookup tables.

For larger values of b, the lookup tables can be avoided, at
the cost of more computation and perhaps some loss of rate.
Specifically, the class of VT codes provide an example of 1-
deletion correcting codes with a simple decoding algorithms
[8]. If one restricts oneself to a code that is a subset of a
VT code meeting the required conditions, then one can use
the decoding mechanism for VT codes in place of lookup

LOCAL-DECODE(Y : string, k, i : integers)
1 if Y (k, k + b− 2)∈D1(C) and Y (k + 1, k + b− 1) /∈D1(C)
2 then si←DECODE

(
Y (k, k + b − 2)

)
and k′←k + b− 1;

3 return (si, k
′);

4 if Y (k, k + b− 2) /∈D1(C) and Y (k + 1, k + b− 1)∈D1(C)
5 then si←DECODE

(
Y (k + 1, k + b − 1)

)
and k′←k + b;

6 return (si, k
′);

7 si←DECODE
(
Y (k, k + b− 2)) and k′ = k + b− 1.

8 return (si, k
′).

Fig. 2. A decoding algorithm based on local decoding.

operations. Subsets of VT codes have the further advantage
that they are smaller than the entire set of possible codewords,
making the search for appropriate maximal independent sets
that yield codes easier. On the other hand, restricting oneself
to subsets of VT codes will generally reduce the rate.

C. Encoding and Decoding for Insertions

Our approach works entirely similarly for the segmented
insertion channel. In this model, the channel transmits a binary
stream of fixed length n, given by X = x1x2 . . . xn. The
received sequence Y = y1y2 . . . ym is obtained by inserting a
number of bits into the input sequence, under the following
condition: at most one bit is added in each segment of bits
X(bi + 1, b(i + 1)) for i = 0, . . . , n/b − 1. The bit can be
inserted before or after any bit in the sequence. (Note that
under this model we can have two bits inserted in a row, but
only on either side of a segment boundary.)

As before, under our encoding scheme, each segment will
consist of one of a fixed set of a b-bit codewords C. Paralleling
our previous notation, let I1(u) be the set of all (b + 1)-bit
strings that can be obtained by inserting one bit into u, and
I1(C) = ∪u∈CI1(u). The code C is 1-insertion correcting if
I1(u) �= I1(v) for all u, v ∈ C with u �= v.

We first show the corresponding version of Theorem 2.1
modified for insertion channels. We then prove something
more subtle: our resulting codes for segmented insertion
channels and segmented deletion channels are entirely the
same.

Theorem 2.2: Consider the segmented insertion channel
with segment length b. Let C be a subset of {0, 1}b with the
following properties:

• for any u, v ∈ C, with u �= v, I1(u) ∩ I1(v) = ∅;
• for any u, v ∈ C, with u �= v,

prefix
(
I1(u)

) ⋂
suffix

(
I1(v)

)
= ∅;

• any string of the form a∗(ba)∗ or a∗(ba)∗b, where a, b ∈
{0, 1}, is not in C.

Then, using C as the code for each segment, there exists
a linear time decoding scheme for the segmented insertion
channel that looks ahead only O(b) bits to decode each block.

Proof: The proof follows the same pattern as Theo-
rem 2.1. We decode segment by segment, with the invariant
that when decoding the ith segment, we know it starts either

ISIT2007, Nice, France, June 24 – June 29, 2007

849

at position k or position k + 1 in Y . The possible ending
positions of the ith segment are yk+b−1, yk+b, or yk+b+1. We
must eliminate either the first or third possibility to maintain
our invariant, and we must recover the ith segment.

As before, the simple case is when only one of Y (k, k + b)
and Y (k + 1, k + b + 1) is in I1(C). In this case we can
determine si and the two possible starting points of the next
segment.

If instead both Y (k, k + b) and Y (k + 1, k + b + 1) are in
I1(C), then Y (k +1, k+ b) ∈ suffix(I1(C)) and Y (k +1, k+
b) ∈ prefix(I1(C)). These bits determine the segment si. Our
additional assumption on the codewords of C will suffice to
bound the ambiguity at the next step.

Assume the next segment starts at yk+b. Then si must be the
subsequence Y (k, k+ b−1). Further, as Y (k+1, k+ b+1) ∈
I1(si), we have that there exists j with k +1 ≤ j ≤ k + b+1
such that

yk+1yk+2...yj−1yj+1...yk+n+1 = ykyk+1...yk+b−1. (2)

(When j = k − 1, the left hand side is zykyk+1...yk+n−2.)
Comparing bit by bit, we have

yk = yk+1

yk+1 = yk+2

..

yj−2 = yj−1

yj−1 = yj+1

yj = yj+2

..

yk+b−1 = yk+b+1.

But then si is of the form a∗(ba)∗ or a∗(ba)∗b, contradicting
our assumption.

Theorem 2.2 shows that we can solve a similar independent
set problem to find codes for the segmented insertion channel.
In fact, however, the codes obtained under Theorem 2.1
and Theorem 2.2 are actually the same. To demonstrate this
requires the following straightforward lemma:

Lemma 2.1: For u �= v,

D1(u) ∩D1(v) = ∅ ↔ I1(u) ∩ I1(v) = ∅, (3)

and (abbreviating prefix by pre and suffix by suf)

pre(D1(u))∩suf(D1(v))=∅ ↔ pre(I1(u))∩suf(I1(v))=∅. (4)
Note that, from this lemma, we have that the conditions of
Theorem 2.1 and Theorem 2.2 are in fact equivalent, and hence
a code derived by Theorem 2.1 for the segmented deletion
channel would also be suitable for the segmented insertion
channel (and vice versa).

Proof: Let u = u1u2 . . . un and v = v1v2 . . . vn. For (3),
we have that if D1(u)∩D1(v) �= ∅, then there exist positions
i, j with i �= j such that

u1u2 . . . ui−1ui+1 . . . un = v1v2 . . . vj−1vj+1 . . . vn.

Without loss of generality let i < j. It follows that

u1 . . . ujvjuj+1 . . . un = v1 . . . vi−1uivi . . . vn,

and hence I1(u) ∩ I1(v) �= ∅. The argument is entirely
similar in the other direction. For (4), if prefix(D1(u)) ∩
suffix(D1(v)) �= ∅, then then there exist positions i, j such
that

u1u2 . . . ui−1ui+1 . . . un−1 = v2 . . . vj−1vj+1 . . . vn.

If i �= j again it follows (assuming i < j) that

u1 . . . ujvjuj+1 . . . un−1 = v2v3 . . . vi−1uivi . . . vn.

The case where i = j follows similarly, as does the other
direction of the equivalence.

III. CONCLUSION

We have introduced the segmented deletion channel and
the segmented insertion channel, new variations of inser-
tion/deletion models motivated by timing considerations. We
have demonstrated how to develop codes that allow for greedy
left-to-right decoding for these segmented channels, based on
controlling the inherent ambiguity. We have shown that such
codes can achieve relatively high rates even under adversarial
errors satisfying the segmentation condition. Our approach
is sufficiently general that it should be applicable to similar
channels. In the full paper [6], we further discuss extensions
that achieve higher rates under less severe, non-adversarial
conditions by allowing more ambiguity in the parsing process;
such schemes naturally require significantly more complexity.

IV. ACKNOWLEDGMENTS

This work was supported in part by NSF grant CCF-
0634923.

REFERENCES

[1] S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk. Finding
maximum independent sets in graphs arising from coding theory. In
Proceedings of the 2002 ACM Symposium on Applied Computing, pp.
542-546, 2002.

[2] J. Chen, M. Mitzenmacher, C. Ng, and N. Varnica. Concatenated
codes for deletion channels. In Proceedings of the IEEE International
Symposium on Information Theory, p. 218, 2003.

[3] M.C. Davey and D.J.C. MacKay. Reliable Communication over Chan-
nels with Insertions, Deletions, and Substitutions. IEEE Transactions on
Information Theory, volume 47, number 2, pp. 687-698, 2001.

[4] E. Drinea and M. Mitzenmacher. On Lower Bounds for the Capacity of
Deletion Channels. IEEE Transactions on Information Theory, volume
52, number 10, pp. 4648-4657, 2006.

[5] M. Mitzenmacher and E. Drinea. A Simple Lower Bound for the
Capacity of the Deletion Channel. IEEE Transactions on Information
Theory, volume 52, number 10, pp. 4657-4660, 2006.

[6] Z. Liu and M. Mitzenmacher. Codes for Deletion and Insertion Channels
with Segmented Errors. Harvard University Computer Science Technical
Report TR-21-06, December 2006.

[7] E. Ratzer. Marker codes for channels with insertions and deletions.
Annals of Telecommunications, 60:1-2, p. 29-44, January-February 2005.

[8] N. Sloane. On Single-Deletion-Correcting Codes. Arxiv preprint
math.CO/0207197, 2002.

[9] N. Sloane. Challenge Problems: Independent Sets in Graphs. At
http://www.research.att.com/∼njas/doc/graphs.html.

[10] R. R. Varshamov and G. M. Tenengolts. Codes which correct single
asymmetric errors (in Russian), Automatika i Telemekhanika, 26:2, pp.
288-292, 1965. English translation in Automation and Remote Control,
26:2, pp. 286-290, 1965.

ISIT2007, Nice, France, June 24 – June 29, 2007

850

