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Abstract—We present two upper bounds on the capacity of
the i.i.d. binary deletion channel, where each bit is independently
deleted with a fixed probability d. The first can be numerically
evaluated for any fixed d. The second provides an asymptotic
upper bound as d goes to 1. These appear to be the first non-
trivial upper bounds for this probabilistic deletion channel.

I. INTRODUCTION

In this paper, we consider upper bounds on the capac-
ity of the i.i.d. binary deletion channel, where each bit is
independently deleted with a fixed probability d. The i.i.d.
binary deletion channel (henceforth also called the BDC)
is perhaps the simplest stochastic model of a channel with
synchronization errors. For this channel, there is still no single-
letter characterization of the achievable rate.
There has been significant recent progress in improving the

capacity lower bounds for the BDC [1]–[7], demonstrating that
the capacity is much higher than previously known. But other
than the trivial 1− d upper bound given by the corresponding
erasure channel, no non-trivial upper bound appears available.
In order to close the gap between the known upper and lower
bounds on the capacity, we would like to have good upper
bounds for the BDC as well.
Our upper bounds are all determined by considering a

genie-aided decoder with access to side information about the
deletion process. For example, in this framework the erasure
channel corresponds to a decoder with access to the entire
deletion process and gives a trivial upper bound. We consider
two regimes. We first consider general bounds that hold for
any d. Focusing on binary deletion channels, we define runs as
a set of contiguous zeros (or ones). In Section III, we consider
the case when the decoder knows when an entire run has been
deleted from the input codeword. This allows us to reformulate
the capacity of such a channel in terms of a capacity per unit
cost of a new channel based on run lengths.
In Section IV, we also develop bounds for the asymptotic

behavior as d approaches 1. Recently, Mitzenmacher and
Drinea established a general lower bound for the capacity of
the BDC of c1(1 − d) for c1 = 0.1185 > 1/9 [7]. Motivated
by this, we looked for an upper bound of the form c2(1− d),

with c2 < 1, in the limit as d → 1. Such a bound is obtained
with c2 = 0.7918 for this limiting case.

A. Previous work

The insertion/deletion/substitution channel was introduced
by Levenshtein [8] and the information coding theorem was
established by Dobrushin in [9]. The line of work initiated
by Levenstein led to combinatorial code constructions for
insertion/deletion channels; see for example [10] for a recent
survey of such results. Most early work focused on the case
when there were a finite number of synchronization errors.
For i.i.d. deletion errors, no single-letter characterization of

the achievable rate has been found, the main difficulty being
that such a channel is not memoryless. When attention is
restricted to i.i.d. input codebooks, a single-letter form for
a lower bound on the achievable rate was established for
binary input i.i.d. insertion/deletion/substitution channels by
Gallager [11]. This idea was extended to a slightly more
general model for insertion errors in [12]. Ullman [13] also
studied this problem in a combinatorial context, establishing
achievable rates and some upper bounds. His work does
not focus on probabilistic models, but on achieving correct
decoding without error for a given fraction of synchronization
errors, and as such his bounds do not hold for the channels
considered here. More recently, improved lower bounds on the
capacity of the BDC based on improved analysis techniques
were introduced by Diggavi and Grossglauser [1], [2]. These
bounds were further improved by Drinea and Mitzenmacher
[5], [6], [14]. Kavčić and Motwani also computed simulation
based lower bounds based on a suboptimal decoder [3]. Some
of these bounds can be extended to additional channel models,
including channels where bits can be duplicated as well as
deleted. Recent work by Mitzenmacher has focused on the
case where bits can only be duplicated, with such channels
having been dubbed sticky channels [15]; the analysis of sticky
channels utilizes many of the ideas developed in Section III.
Despite the recent improvements in lower bounds for the BDC,
there has been no significant improvements in upper bounds
of which we are aware.
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II. PRELIMINARIES

Sets are denoted by calligraphic letters: A,X ,Y . Random
variables are denoted by capital letters: X,Y,Z. The distribu-
tion of a random variable is denoted pX(x). The set of finite
strings of positive integers is A = {1, 2, . . .}∗. The set of finite
strings of non-negative integers is A0 = {0, 1, . . .}∗. The set
of finite strings of bits is B = {0, 1}∗. Complete strings are
denoted by underlines X,x. Single elements of a string are
denoted by a subscript index Xi, xi. The interval substrings
(i.e., Xi,Xi+1, . . . , Xj) of a string are given by Xj

i , xj
i . The

length of a string is l(a). The weight of a string w(a) is the
sum of all entries

∑l(a)
i=1 ai.

The i.i.d. binary deletion channel (BDC) takes n transmitted
bits, and outputs a random subsequence of the input where the
subsequence is obtained by deleting each bit independently
with probability d. The difference between the BDC and the
erasure channel is that the erasure channel has knowledge
of which subsequence was received whereas the BDC does
not. Therefore, the set of possible transmissions is {0, 1}n

and the set of possible receptions is ∪n
m=0 {0, 1}m, where

m ∈ {0, . . . , n} denotes the length of the received string.
Run-length notation parses each binary string into runs of

zeros and ones and produces a string of positive integers giving
the run lengths (e.g., 001000111 is mapped to 2, 1, 3, 3). If
n bits are transmitted, then the set of possible transmissions
is {a ∈ A|w(a) = n} and the set of possible receptions is
{a ∈ A|w(a) ≤ n}. It is worth noting that run-length notation
does not distinguish between complementary strings (e.g.,
00101 and 11010), but this is asymptotically irrelevant and
ignored henceforth.
Let us define the run-length projection RL(·) of a binary

string b ∈ B as the positive-integer string a ∈ A where ai

is the length of the ith run in b. Let V be an input string
to a BDC and W be the output string. Let X = RL(V )
and Ỹ = RL(W ) be the run-length projections of V ,W . The
run-length channel (RLC) is defined by transition probabilities
pỸ |X(y|x). Note that converting to run-length notation does
not immediately make the problem easier; if the length of any
run in the input string is reduced to zero, the the adjacent runs
are combined in the output, and this is reflected in the RLC.
For example, the runs 3,2,3 (corresponding to binary input
00011000) could result in an output of 4 (if the middle four
bits were deleted, yielding 0000).
The following simple observation (given without proof)

allow us to relate the RLC and the BDC.
Lemma 1: The mutual information of the run-length chan-

nel (RLC) and the binary deletion channel (BDC) are related
by

I
(
X; Ỹ

)
− 1 ≤ I (V ;W ) ≤ I

(
X; Ỹ

)
+ 1. (1)

III. UPPER BOUNDS VIA DECODER SIDE INFORMATION

Even for i.i.d. deletion processes, we know of no approach
for establishing a single-letter characterization of the capacity.
Given the recent success in establishing lower bounds for the
BDC, we hope to establish corresponding good upper bounds.

Genie-aided methods are a useful technique in information
theory to establish upper bounds for capacity. In this case,
we combine a genie for the RLC with a natural approach for
upper-bounding the capacity per unit cost of the RLC in order
to obtain our bound.
Specifically, we allow side information that converts the

RLC into a memoryless channel, which is much better suited
to analysis. Since adding side information only improves the
channel capacity, this allows upper bounds on the capacity of
BDC via a memoryless channel.
The side information we introduce is the most natural: if a

run is entirely deleted, a 0 symbol is introduced at the output of
the RLC. Considering our previous example, if the binary input
00011000 had the middle four bits deleted, the runs presented
at the enhanced RLC with side information would be 2, 0, 2.
In other words, the side information gives for each run in the
input the corresponding length of the run in the output, even if
that length is 0. Therefore, we define Y to be a new modified
output of the channel where the sequence of run lengths in W
has 0 inserted (and the run lengths of W split appropriately)
if a run was deleted. This is the channel we consider for the
upper bound.
Since each run in the input is affected independently, this

new channel can also be seen as a memoryless binomial
channel where the length of the output run, y, is related to
x ≥ 1 denoting the length of the input run via

pY |X(y|x) =

{(
x
y

)
dx−y(1 − d)y if 0 ≤ y ≤ x

0 otherwise
. (2)

Now, we can relate the capacity of this memoryless binomial
channel to the genie-aided BDC through a capacity-per-unit-
cost relationship. Intuitively this is clear, since transmitting
input x on the RLC costs x bits on the BDC, and so we
expect that the capacity of the BDC is upper bounded by the
capacity per unit cost of the binomial channel. This intuition
is formalized below.
Lemma 2: If we denote the mutual information of the

memoryless binomial channel given in (2) as I(X;Y ), then,

CBDC ≤ max
pX(x)

I(X;Y )
E[c(X)]

, (3)

where c(x) = x.
Proof: By Lemma 1, we know that for an input of n bits

to the BDC, lim
n→∞

1
n

I(V ;W ) = lim
n→∞

1
n

I(RL(V );RL(W )).
As the genie-aided receiver knows which runs are deleted, we
have I(RL(V );RL(W )) ≤ I(X;Y ), where X is the set of
input runs and Y is the set of genie-aided output runs. We
now need only to observe that

max
pX(x):w(X)=n

1
n

I(X;Y ) ≤ max
pX(x):E[w(X)]=n

1
n

I(X;Y )

≤ max
pX(x)

I(X;Y )
E[w(X)]

= max
pX(x)

I(X;Y )
E[X]

, (4)
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where the last step follows from the fact the capacity per unit
cost of a discrete memoryless channel (DMC) is maximized
by choosing an i.i.d. input distribution: pX(x) =

∏m
i=1 pX(xi)

[16]. This completes the proof.
The standard upper bound on the capacity of a DMC (see

[17] problem 4.17) was generalized to the capacity per unit
cost by Abdel-Ghaffar [16].
Theorem 1: [Abdel-Ghaffar] Consider a memoryless chan-

nel defined by pY |X(y|x) with input alphabet X and output
alphabet Y . Let qY (y) be any distribution on Y which is
absolutely continuous with respect to pY |X(y|x); Then, for
a cost function c(x), the capacity per unit cost satisfies

C ≤ sup
x∈X

I(x)
c(x)

, (5)

where I(x)
def
= D(pY |X(·|x)||qY (·)) is the standard informa-

tion divergence. �
Choosing a valid output run-length distribution allows us

to upper bound this capacity per unit cost and thereby the
capacity of the BDC, but we still must deal with maximizing
over the countably infinite input alphabet X . Since we cannot
simply truncate the support of X and still obtain a valid upper
bound, we need bound this infinite optimization problem by a
finite one.
We do this in two steps. First, we compute a lower bound on

the capacity per unit cost for a binomial channel by truncating
the input alphabet. Let A be the lower bound and pU (u) be
the output distribution associated with the optimized input
distribution. Next, we spread the finite tail of pU (u) out to
infinity using a geometric distribution to get

qY (y) =

{
pU (y) if y < m

c2−Ay/(1−d) if y ≥ m
, (6)

where c = 2Am/(1−d)(1 − 2−A/(1−d))
(
1 − ∑

y<m pU (y)
)
.

Combining any output distribution of this form with Theorem
1 gives the main result of this section:
Theorem 2: Then the capacity of BDC satisfies

CBDC ≤ max
(

(1 + δ)A, max
1≤x<M

1
x

I(x)
)

, (7)

where δ is a positive constant, A comes from (6), and M is
a positive integer defined in the proof.

Proof: The proof follows from separating the supremum
from (5) into two parts. The first uses the the true value of
I(x) and ranges over 1 ≤ x < M . The second uses a closed
form upper bound on I(x) using the geometric tail and handles
x ≥ M .
Let T (x) =

∑m−1
y=0 pY |X(y|x) the left tail of pY |X and

define B = max0≤y<m log 1
qY (y) . If c ≥ 1, let M = min{x ∈

N|B T (x) ≤ δA}. If c < 1, then choose α > 0 and let m0 =
min{x ∈ N|T (x) ≤ α log 1

c}, m1 = 1+α
δA log 1

c , and M =

d LB UB

0.05 0.7283 0.816
0.10 0.5620 0.704
0.15 0.4392 0.6188
0.20 0.3467 0.5507
0.25 0.2759 0.4943
0.30 0.2224 0.4466
0.35 0.1810 0.4063
0.40 0.1484 0.3711
0.45 0.1229 0.33987
0.50 0.1019 0.31082
0.55 0.08432 0.28382
0.60 0.06956 0.25815
0.65 0.05686 0.2331
0.70 0.04532 0.2083
0.75 0.03598 0.183
0.80 0.02727 0.157
0.85 0.01938 0.1298
0.90 0.01238 0.0999∗
0.95 0.00574 0.064∗

TABLE I

THE LOWER BOUND FROM [6] AND THE UPPER BOUND DERIVED FROM

THEOREM 2. ENTRIES DENOTED ∗ ARE WORSE THAN THE 1 − d BOUND.

max{m0,m1}. The closed form bound is given by

I(x) =

xX
y=0

pY |X(y|x) log
pY |X(y|x)

qY (y)

=
xX

y=0

pY |X(y|x) log
1

qY (y)
− H(Y |X = x)

(a)

≤
xX

y=0

pY |X(y|x) log
1

qY (y)

=

m−1X
y=0

pY |X(y|x) log
1

qY (y)
+

xX
y=m

pY |X(y|x) log
1

qY (y)

≤ B

m−1X
y=0

pY |X(y|x) +
xX

y=m

pY |X(y|x)

„
log

1

c
+

Ay

1 − d

«

(b)

≤ B T (x) + log
1

c

xX
y=m

pY |X(y|x) + Ax, (8)

where (a) follows from the bound1 H(Y |X = x) ≥ 0 and
(b) follows from E[Y |X = x] = (1 − d)x.
If c < 1 and x ≥ m0, then the first term of (8) is upper

bounded by α log 1
c and this gives I(x) ≤ Ax+(1+α) log 1

c .
If x > m1, then it follows from the definition of m1 that
I(x)

x ≤ (1 + δ)A.
If c ≥ 1 and x ≥ M , then the first term of (8) is upper

bounded by δAx and the second term is negative. This allows
us to write I(x)

x ≤ (1 + δ)A.
Theorem 2 provides a simple upper bound on the capacity

of the BDC which can be optimized by computer. Table III
presents the numerical results derived from Theorem 2 and
compares them with the numerical lower bounds given in [6].
Notice that this upper bound does not yet improve over the
trivial 1 − d upper bound for d ≥ 0.9.

1We also have an improved bound on I(x) which is omitted due to length.
Its main advantage is that m1 remains bounded as δ → 0.
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IV. ASYMPTOTIC UPPER BOUNDS

We now introduce an approach for obtaining upper bounds
on the capacity of the BDC in the limit as the deletion
probability d approaches 1; this approach is motivated by the
lower bound approach of [7]. In this case, the genie-aided
decoder has available a special marker symbol that is sent
after every block of b = �α/(1 − d)� input bits; this marker
cannot be deleted. Adding this special marker symbol can only
increase the capacity of the channel (since it could simply be
ignored). With the addition of these markers, however, the
channel can be though of as a memoryless channel, with each
block of b input bits viewed as a symbol; that is, the input
alphabet consists of all possible sequences of b bits and the
output sequence consists of all possible sequences of up to
b bits. We bound the mutual information for this ostensibly
simpler channel.
As we are primarily interested in the asymptotic behavior

as d goes to 1, we introduce the following simplifications.
Each block can be described as an initial bit and a finite
vector (q1, . . . , qj) with each qi > 0 and

∑j
i=1 qi = 1 as

follows: the block is divided into j contiguous subblocks,
where each ith subblock consists of bqi copies of the same bit;
the subblocks alternate between 0’s and 1’s; and the initial bit
determines the value for the first subblock. For this to make
sense, the qi values should also be chosen so that the subblock
lengths are integers. However, by taking large enough block
lengths we can allow qi to take on values arbitrarily close
any real value, and henceforth we ignore any issues related
to rounding to obtain integer-length subblocks. Similarly, by
taking b sufficiently large we can make the distribution of
the number of bits that pass through a block arbitrarily close
to a discrete Poisson distribution with mean α. We use this
distribution for the number of output bits in what follows. It
is clear that the effects of these simplifications vanish in the
limiting case as d approaches 1.
Now, we consider the channel Ṽ → W̃ , where Ṽ is a

b-bit input symbol (between successive markers) and W̃ is
the corresponding output. Since l(W̃ ) denotes the received
sequence length, the mutual information I(Ṽ ; W̃ ) can be
written as

I(Ṽ ; W̃ ) = I(Ṽ ; W̃ , l(W̃ ))

= I(Ṽ ; l(W̃ ))| {z }
=0

+I(Ṽ ; W̃ |l(W̃ ))

=
bX

l=0

pl(W̃ )(l) I(Ṽ ; W̃ |l(W̃ ) = l)

≤
kX

l=0

pl(W̃ )(l)I(Ṽ ; W̃ |l(W̃ ) = l)+

bX
l=k+1

pl(W̃ )(l) l.

Recall that we take the limit as d → 1, so that the length
distribution of the received sequence is exactly Poisson. This
implies that

I(Ṽ ; W̃ ) ≤
kX

l=0

pl(W̃ )(l) I(Ṽ ; W̃ |l(W̃ ) = l)+

∞X
l=k+1

l e−ααl

l!
. (9)

We note that a numerical upper bound u of the capacity of
this channel immediately yields the upper bound u

b = 1−d
α u

on the asymptote of the capacity of the BDC as d → 1. Notice
that, for our upper bound, we now are left with bounding a
summation of terms up to only received length k; we make
use of this fact in our resulting numerical optimization. On the
other hand, small values of k are perfectly suitable; when α =
1 and k = 4, the (rather weak) upper bound I(Ṽ ; W̃ |l(W̃ ) =
l) ≤ l for l > k results in a loss of less than 0.02(1 − d).
The key to computing this bound is the following two

lemmas. The first is quite simple and its proof is omitted.
Lemma 3: Consider any DMC defined by pY |X(y|x) =

W (y|x). Suppose there are inputs x0, . . . , xm and non-
negative constants a1, . . . , am such that

∑m
i=1 ai = 1 which

also satisfy

W (y|x0) =
m∑

i=1

aiW (y|xi),

then there is a capacity achieving input distribution with zero
probability assigned to x0. �
The following lemma shows that we can achieve capacity with
a reduced input space consisting of symbols which have at
most k alternating subblocks. Intuitively, if the sender only
needs to consider the cases where at most k bits are obtained
at the receiver, then it makes sense that each symbol should
consist of at most k alternating subblocks. The advantage of
this constraint is that we can significantly reduce the search
space over distributions for the sender.
Lemma 4: For any input u with more than k alternating

subblocks, we can show that there exist k sequences v1, . . . , vk

(each with at most k alternating blocks of zeros and ones) such
that the modified deletion channel satisfies

pW̃ |Ṽ (w̃|u) =
k∑

i=1

si pW̃ |Ṽ (w̃|vi)

for all w̃ such that l(w̃) ≤ k. Of course, we require that si ≥ 0
and

∑k
i=1 si = 1.

Proof: We show that any symbol with k+1 subblocks can
be replaced by multiple sequences with at most k subblocks
while achieving the same output distribution at the receiver
for all received sequences of up to k bits. The lemma then
follows by induction.
Consider any symbol with k + 1 subblocks. Since at most

k bits are obtained at the receiver, some subblock is entirely
deleted. Imagine that instead of using this bit sequence, we
initially choose a block to be deleted, remove it, and then
send the corresponding remaining bits over the channel. If we
can choose correct probabilities for removing each block, this
gives us a distribution over symbols with at most k subblocks,
proving the lemma. Specifically, let us denote a symbol S
by an ordered pair consisting of a bit and a vector of qi

values. Consider the symbol (0, (q1, . . . , qk+1)). We will find
probabilities si such that the output distribution is the same if
we instead send the symbol (1, (q2/(1 − q1), . . . , qk+1/(1 −
q1)) with probability s1, (0, (q1/(1 − qk+1), . . . , qk) with
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probability sk+1, and (0, (q1/(1− qi), . . . , (qi−1 + qi+1)/(1−
qi), . . . , qk+1/(1 − qi)) with probability si.
To see that appropriate si exist, imagine the following

experiment: rather than bits being deleted by the channel
with j ≤ k making it through, we could choose j bits of S
randomly and send them (in the appropriate order). But instead
of choosing just j bits, imagine instead that we successively
choose bits at random from the input until we obtain at least
one bit from each subblock (giving k + 1 > j bits). In this
scenario, some bit and its corresponding block is chosen last;
we let si be the probability the ith subblock was chosen last.
We therefore see that the distribution of j ≤ k bits chosen

from S is equivalent to the distribution obtained by first
deleting the ith block with probability si and then choosing
the j ≤ k bits from the remaining blocks. This equivalence
completes the lemma.
Combining Lemma 3 and Lemma 4 shows that, for the

channel with l(W̃ ) ≤ k, there is a capacity achieving input
distribution which puts probability mass only on sequences
with at most k alternating blocks. Therefore, we have

max
p

Ṽ
(·)

I(Ṽ ; W̃ |l(W̃ ) ≤ k) ≤ max
v∈V

D

„
pW̃ |Ṽ (·|v)

˛̨̨
˛
˛̨̨
˛qW̃ (·)

«
, (10)

where V is the set of input symbols with at most k alternating
symbols and qW̃ (w) is an arbitrary distribution over binary
strings of length k. Hence, combining (9) and (10) gives a
computable asymptotic upper bound for the deletion channel.
Now, we consider some of the practical issues involved.

Basically, the channel input is represented as a k-vector
(q1, . . . , qk) and the output is one of the 2k+1−1 binary strings
of length at most k. This ignores whether the input string
starts with a sequence of 0’s or 1’s though. To handle this, we
use the channel symmetry implied by complementary strings.
This symmetry implies that any optimal input distribution must
choose v with the same probability as the complement of v.
Therefore, we can compute (10) by choosing qW̃ (w) with this
symmetry and then maximizing only over inputs starting with
0’s. This works because the symmetry of qW̃ (w) implies the
divergence must be the same for any input and its complement.
The most tedious part of this computation is coding an

efficient subroutine that computes the output distribution for a
fixed input. Once we have this subroutine, the following steps
are straightforward. First, we pick a large number of input
vectors (either randomly or in a k−1 dimensional lattice) and
compute their associated output distributions. Next, we use the
Blahut-Arimoto algorithm to optimize the implied DMC. Let
qW̃ (w) be the output distribution associated with the optimal
output distribution of this DMC. Finally, we perform the k−1
dimensional optimization using (9) and (10).
To obtain a valid upper bound, we cannot underestimate the

maximum on the RHS of (10). Since the function is smooth
and the k-D domain is bounded, a good global optimizer
should suffice. We used the MATLAB function ”fmincon” and
verified our results by restarting it from a large number of
random initial points. Our best result is currently CBDC ≤

0.7918(1 − d) as d → 1, and it was computed using k = 6
and α = 2.0.

V. DISCUSSION

In this paper we have studied upper bounds for the i.i.d.
deletion channel. While there have been upper bounds for the
combinatorial deletion problem (e.g. [13]), which can be con-
sidered an adversarial deletion model, we believe our results
give the best non-trivial upper bounds for the probabilistic
deletion channel. One approach using side information yields
good upper bounds for low deletion probabilities; another
approach focused on the case where d → 1. We are currently
examining other techniques that bridge these two regimes. We
believe that such upper bounds will shed considerable light
on the coding techniques and the capacity of the i.i.d. deletion
channel.
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