
Digital Fountains: A Survey and Look Forward

Michael Mitzenmacher1

Harvard University
Division of Engineering and Applied Sciences

e-mail: michaelm@eecs.harvard.edu

Abstract — We survey constructions and applica-
tions of digital fountains, an abstraction of erasure
coding for network communication. Digital foun-
tains effectively change the standard paradigm where
a user receives an ordered stream of packets to one
where a user must simply receive enough packets in
order to obtain the desired data. Obviating the need
for ordered data simplifies data delivery, especially
when the data is large or is to be distributed to a
large number of users. We also examine barriers to
the adoption of digital fountains and discuss whether
they can be overcome.

I. Introduction

Most network communication is based on TCP (the
Transport Control Protocol), which treats data as an or-
dered sequence of packets. TCP uses retransmissions to
guarantee that, from the receiver’s point of view, all pack-
ets are received in order.

For some applications, the ordered-sequence paradigm
of TCP is too restrictive. An alternative paradigm was
introduced in [3], based on the idealized solution of a dig-
ital fountain (similar in spirit but more expansive than
the similar idea of the information dispersal algorithm
[23, 27]). A digital fountain has properties similar to a
fountain of water: when you fill your cup from the foun-
tain, you do not care what drops of water fall in, but only
want that your cup fills enough to quench your thirst.
With a digital fountain, a client obtains encoded pack-
ets from one or more servers, and once enough packets
are obtained, the client can reconstruct the original file.
Which packets are obtained should not matter.

In more detail, an idealized digital fountain should
have the following properties:

• A source can generate a potentially infinite supply
of encoding packets from the original data. Ideally,
encoding packets can be generated in constant time
per encoding packet given the original data.2

• A receiver can reconstruct a message that would
require k packets to send using TCP once any k
encoding packets have been received. This recon-
struction should also be extremely fast, preferably
linear in k.

1This work was supported by NSF Grants CCR-9983832, CCR-
0118701, and CCR-0121154.

2In this setting we use a standard machine model where random
access to the original data takes only constant time.

Approximations to a digital fountain can be obtained
from the idealized version by loosening the requirements
in various ways. For example, the number of encoding
packets could be limited; the encoding or decoding times
could be slower; or the number of encoding packets re-
quired could be greater than k. The utility of an approx-
imation depends on the target application.

In what follows, we first briefly describe (without great
technical detail) codes that can provide approximate dig-
ital fountains, including the recent advances in what are
called fountain codes.3 We then describe some of the ap-
plications that have been proposed for digital fountains,
and end by considering some of the barriers that have pre-
vented digital fountains from becoming more widespread
in practice.

II. Digital Fountain Constructions

A. Reed-Solomon codes

In theory, Reed-Solomon codes [28] can be used to
develop a useful approximation to a digital fountain: a
message of k symbols can be recovered after receiving k
distinct encoding symbols. In practice, however, there
are several complications. The field size F gives a limi-
tation on the number of distinct encoding symbols that
can be created; usually F is 256 or 65,536, corresponding
to symbols of 8 or 16 bits. Larger fields introduce non-
trivial overhead for the resulting field arithmetic opera-
tions. More importantly, standard algorithms for decod-
ing Reed-Solomon codes require quadratic time, which
are too slow for even moderate values of k. (Stan-
dard quadratic time encoding algorithms can similarly
be too slow, although encoding can often be done in
preprocessing.) A natural approach for dealing with
this problem involves encoding over small blocks of data
and then striping data from various blocks to cope with
bursty errors. This approach lessens the total computa-
tion, but can significantly increase the number of packets
that must be obtained before complete decoding. Reed-
Solomon codes may certainly be suitable for some ap-
plications, particularly when only small blocks of sym-
bols need to be encoded. In general, however, they do
not adequately fulfill the promise of digital fountains. A

3We have chosen to use the term digital fountain to refer to the
network abstraction of an essentially infinite supply of encoding
packets, and use the term fountain codes to refer to a class of codes
that are useful in implementing a nearly ideal digital fountain. The
terms are, however, nearly interchangeable, and they may become
substitutes for each other in the future.



more detailed argument is presented in [3], and computa-
tional experiments exploring the tradeoffs between Reed-
Solomon codes and Tornado codes (discussed below) are
presented in [26].

Instead, many implementations of digital fountains are
based on variations of low-density parity-check (LDPC)
codes (introduced by Gallager [5]), which we now de-
scribe.

B. Tornado Codes

A breakthrough in this area was the development of
Tornado codes, a class of LDPC codes designed for era-
sures [17]. Tornado codes can naturally be described in
terms of graphs. In the original construction, the graph
consists of many layers of nodes. For the first layer, there
is one node for each symbol in the message, where we can
think of a symbol as being bits organized as a packet.
The first layer is connected by edges to a second layer of
redundant nodes. The edges of the graph determine the
symbols corresponding to the second layer. In the stan-
dard framework, the symbol for a node at the second
layer is the exclusive-or of the symbols corresponding to
its neighbors. A recursive construction is used, deriving
a third layer from the second, and so on.

The interpretation of this graph structure is that the
symbols in the first layer are variables, and the symbols in
the subsequent layers are constraints on these variables.
By choosing these constraints properly in a random fash-
ion, one can guarantee that with high probability, the
message can be decoded once enough information about
the variables and constraints arrive. This is similar in
spirit to Reed-Solomon codes, with one important differ-
ence. With Reed-Solomon codes, every constraint (or re-
dundant symbol) depends on every message symbol; this
is what makes encoding and decoding expensive. With
Tornado codes, each constraint depends only on a few
message symbols; on average, only a constant number
of exclusive-or operations are required to generate each
redundant symbol. In graph language, the graph repre-
senting the code is sparse, with very few edges; hence the
term “low-density” to describe these codes. This prop-
erty gives Tornado codes their fast encoding and decoding
time, at the cost that now more than k packets are gen-
erally required to obtain enough information to decode
successfully.

In [17], the following results were shown. Let ε > 0 be
a fixed overhead (say, 0.05), k be the number of message
packets, and n be the number of encoding packets. There
exist carefully chosen graphs (equivalently, codes) such
that only (1 + ε)k encoding packets (chosen uniformly
from all encoding packets) are necessary to decode with
high probability, and the time to encode and decode is
proportional to n ln(1/ε). That is, there exist codes with
very low overhead that are still fast – time linear in n –
to decode.

The original construction has been simplified greatly;
in particular, there is a construction which just uses

two graph layers while maintaining linear encoding and
decoding times [29]. The first layer includes both the
message packets and the necessary redundancy. The
constraints implied by the second layer are that the
exclusive-or of the neighbors of each node in the sec-
ond layer must equal 0; these constraints are enforced
by choosing the redundancy appropriately.

While Tornado codes, because they require time only
linear in n for encoding and decoding, offer a better
approximation to digital fountains than Reed-Solomon
codes for many applications, they still suffer from a pow-
erful drawback. When using a Tornado code, one must
determine the number of encoding packets that can be
generated, or equivalently the rate of the code, ahead
of time, as the encoding packets are determined by the
graph representing the Tornado code. While theoreti-
cally one could use a code with a very large number of
encoding packets, because the running time and mem-
ory required are proportional to the number of encoding
packets, this is not viable in practice.

Subsequent work has led to codes that circumvent this
drawback, effectively making the underlying graph for
the code implicit rather than explicit, as we now describe.
As a result, the codes are called rateless. No fixed rate
need be determined ahead of time, and essentially an
infinite stream of encoding packets can be constructed
from the message data.

C. LT codes

LT codes [13] were the first practical realization of a
rateless code. LT codes have a very simple description.
An encoding symbol is generated in the following manner:

• Choose a degree d for the encoding symbol, accord-
ing to a predetermined distribution.

• Choose d distinct message symbols uniformly at
random, and set the encoding symbol to be
exclusive-or of these d symbols.

LT codes have a similar graph structure to Tornado
codes, but the graph is implicit, instead of explicit, in the
sense that each encoding symbol tracks its own neighbors,
and there is no predetermined global view of the graph.
For this to work, each encoding symbol must have as-
sociated with it a list of its associated message nodes,
or neighbors. In practice, this is accomplished by using
additional information, such as the packet identification
number, as a seed to a pseudorandom number genera-
tor that is used to determine the degree and neighbors.
The sender and receiver agree on this generator and the
distribution ahead of time; they constitute part of the
code.

The term fountain codes, informally defined (see, e.g.
[32]), refers to codes of this form, where encoding sym-
bols are (independently) determined by a distribution on
the message symbols, and the encoding symbols are es-
sentially sums of these message symbols.



As is the case with Tornado codes, a great deal of care
is necessary to choose the appropriate underlying degree
distribution in order to make this approach effective. LT
codes do have an advantage over Tornado codes, in that
with Tornado codes, even after designing the degree dis-
tribution, some care must be taken to design the actual
graph used as well. With LT codes, there is no explicit
graph to optimize.

It was shown in [13] that using encoding symbols with
average degree O(ln k), one can devise codes such that
only k + o(k) encoding symbols are necessary to decode
with high probability. Encoding symbols can be gener-
ated on the fly in time proportional to ln k, and decoding
can be done in time proportional to k ln k. These codes
allow us to construct near-ideal digital fountains. Per-
haps the only additional thing one might hope for is to
reduce the average degree to a constant, and the decod-
ing time to O(k). This cannot be done in the strict LT
framework; one can easily show that simply for every
message node to have at least one neighbor when there
are O(k) encoding symbols, the average degree must be
at least Ω(ln k). However, using pre-coding as described
in the next section, the average degree can be reduced to
a constant.

D. Raptor Codes

Raptor codes [33, 32] extend the idea of LT codes one
important step farther. LT codes suffer in that an av-
erage degree of Ω(ln k) is needed to cover every message
node (with high probability). To circumvent this, sup-
pose that we first pre-code the message M by encoding
it with a fixed erasure code, such as a Tornado code.
We now treat the encoded version M ′ as the message,
so that encoding symbols are the exclusive-or of packets
of M ′, in a manner similar to LT codes. Now, since we
do not need to recover every packet of M ′ in order to
recover M , but instead just a constant fraction of the
packets of M ′, the Ω(ln k) bound on the average degree
no longer applies. Indeed, with an appropriate design, for
any constant ε > 0 and sufficiently large k the message
M can be decoded after receiving only (1 + ε)k packets
with high probability, with the degree of each encoding
symbol being O(ln 1/ε) and the total decoding time being
O(k ln 1/ε). This coding approach was first described in a
patent application [33], and was published independently
in [24, 32]. The paper by Shokrollahi [32] has many addi-
tional details, including useful descriptions of extremely
effective practical constructions and analysis techniques
for codes of finite length.

Raptor codes currently give the best approximation to
a digital fountain. A virtually limitless supply of packets
can be generated on the fly after some small initial pre-
processing, with each packet taking only constant time to
produce. Decoding can be accomplished after receiving
just a few percent more than the minimum of k encoding
packets (with high probability), and requires space and

time linear in the size of the original message. Moreover,
very efficient implementations are possible.

III. Network Applications of Digital Fountains

A. Multicast

The digital fountain paradigm was introduced in the
context of reliable multicast [3], such as for the delivery
of new software products. The assumption is that a large
number of users, roughly but not exactly overlapping in
time, want to download the same file without loss. Pack-
ets are distributed over one or more multicast trees to the
receivers, with packets being copied only when necessary
at branches in the route. This avoids the overhead of
sending a distinct copy of each packet for each user over
the network.

The benefits of using encoded content in the context
of multicast are readily apparent. As each user may ex-
perience independent losses, if we have users request re-
transmission from the source, the result will be a feed-
back implosion when the set of receivers is large. Using
encoded data prevents the need for retransmission and
the corresponding feedback. Other benefits include sim-
ple means of handling heterogeneous users and disparate
start time. For example, if two receivers share all but the
last hop of their routing paths, but have different down-
load rates, packets can be sent at the higher rate along
the path, and are dropped at the last hop to match the
rate of the slower receiver. Since every received packet
is useful, dropping packets in this way does not hurt the
slow receiver, and allows the faster receiver to maintain
its higher rate. In a similar manner, if two such receivers
begin downloading at different times, the later receiver
can immediately receive useful packets. Since the order
in which packets are received does not matter, joining a
multicast session already in session is trivial.

Even using digital fountains, multicast presents many
challenging problem, including the issue of designing ap-
propriate congestion control schemes in order to make
the resulting traffic network friendly. The use of digi-
tal fountains can simplify the resulting protocols; more
information and examples can be found in [2, 3, 14].

B. Downloading in Parallel

Just as digital fountains can ease multicasting from
one source to many receivers, they can simplify one re-
ceiver downloading in parallel from many sources. While
downloading in parallel can also be done without digi-
tal fountains [4, 30], they greatly simplify the underly-
ing network issues. Using digital fountains, each source
can independently produce an endless stream of encoding
packets; because the available supply of encoding pack-
ets is essentially infinite, no collisions where the same
encoding packet is received from multiple sources need
occur. The receiver can close all connections after re-
ceiving enough packets, without any concern of where



the packets are coming from, or the loss rate or send-
ing rate of each source. Byers, Luby, and Mitzenmacher
consider downloading from multiple sources in parallel
using Tornado codes [4]. With Tornado codes, if the k
message packets are used to create n encoding packets
with n = ck for some fixed constant c, then some frac-
tion of the packets received from multiple senders will be
duplicates, reducing the efficiency of the parallel down-
load. The more recent LT and Raptor codes therefore
yield even better results.

A scenario imagined in [4] combines multicast and
downloading in parallel: mobile wireless receivers capa-
ble of receiving from multiple sources obtaining informa-
tion seamlessly from fixed multicasting sources spread
throughout a building or metropolitan area.

C. One-to-Many TCP

Rost, Byers, and Bestavros describe a way of using
digital fountain codes in an architecture, dubbed the Cy-
clone architecture, that has many of the advantages of
multicast while utilizing TCP [31]. This is a potential
advantage, as TCP is still generally more trusted on the
network than content sent by UDP.

The standard problem with handling large, popular
files using TCP is that separate state must be maintained
for each connection. Specifically, for performance rea-
sons, each connection should cache recently sent packets
that may have been lost and therefore could need to be
retransmitted in a timely fashion. The effect of main-
taining such state is to limit the number of connections
that can be effectively handled, because of the memory
requirements for each connection.

The main point of Rost, Byers, and Bestavros is that
the memory for connections requesting the same file can
be shared using content encoded with a digital fountain in
place of the original content [31]. If we think of the cache
as being a buffer with fresh encoded data corresponding
to a file continuously being pumped into it, then trans-
missions and retransmissions for a file can all be han-
dled from the same buffer, across connections. The only
difference is that when a retransmission occurs, the en-
coded packet that was originally sent will not be retrans-
mitted, but another encoded packet will be sent instead.
Most importantly, the flow control and congestion con-
trol mechanisms of TCP are completely maintained by
this approach.

D. Streaming Video

While downloading and storing a complete movie can
naturally be done in conjunction with a digital fountain,
handling streaming video or on-demand delivery is sig-
nificantly more challenging. The issue is latency: if the
entire file of k packets is encoded in one block, then essen-
tially k packets must arrive before decoding can begin,
incurring an unreasonable amount of latency for many
video-based applications.

An overview of previously suggested techniques as well
as a system that uses digital fountains is given by Ma-
hanti, Eager, Vernon, and Sundaram-Stukel [22]. Most
solutions are based on schemes that break the video file
into segments. The first segment can be played while the
second segment is downloading, and so on for the entire
video. Each segment can be encoded separately; erasure
coding enhances the system by reducing extreme perfor-
mance variations that can occur in the face of non-trivial
packet loss. If the segment lengths increase geometrically
in size, then only a logarithmic number of distinct seg-
ments are necessary. Issues such as the relative sizes of
the segments and the ratio of the download rate to the
playback rate are important for designing robust systems,
and discussed in detail in [22].

E. Transmission over Overlay Networks

An alternative to IP multicast, which requires the net-
work to have IP multicast available, is to establish a data
transmission system on top of an overlay network. The
overlay allows more control, avoiding many problematic
issues and allowing better management. Multicast can
still be used when effective.

Byers, Considine, Mitzenmacher, and Rost argue for
digital fountains when using multicast or simply down-
loading data to many users in this environment [1]. Over-
lay networks are expected to adapt to changing network
conditions, and thus should be robust against congested
or unstable areas of the network. Using encoded data
and avoiding the need for an ordered stream enhances
adaptability to transient network conditions. Further-
more, with encoding, the multicast distribution is not
restricted to a multicast tree. Encoding easily allows not
only taking full advantage of the overlay network by al-
lowing data to be downloaded in parallel from multiple
sources, but also taking advantage of what is called per-
pendicular bandwidth between the peers themselves.

More specifically, in many cases it may beneficial for
peers to provide information to each other, potentially
while they are still downloading. For example, two users
downloading a file might start at slightly different times,
suffer different losses, or obtain packets at different rates
from different sources. In this case, they might be able
to productively collaborate by sharing received encoded
packets. If either peer obtained the entire file, that peer
could produce new encoded content using the appropri-
ate code. An interesting case considered in [1] is when
neither peer has obtained enough encoding packets to
construct the original file. In this case the peers’ sets of
encoding packets may have a great deal overlap, since the
encoding packets may have come from the same sources.
The question is then how to quickly determine what en-
coding packets might be useful to the other peer. Various
techniques for this reconciliation problem are explored in
[1], as well as in [25]. The Bullet system, which uses many
of the techniques suggested in [1], was implemented and
tested in [7].



Kwon and Byers suggest another approach for large-
scale distribution on overlay networks, based on loosely
connected TCP streams [8]. The idea is similar to that
for the Cyclone architecture. Generally, the problem with
using TCP in a multicast setting on overlay networks is
that one is forced to slow the connection to the speed of
the slowest link in the tree; otherwise, an intermediate
point will have to buffer packets for this slow link, cre-
ating the potential for a buffer overflow. To avoid this
problem, in the ROMA architecture [8], the TCP con-
nections can use encoded packets. A buffer of limited
size can be used, and if the sending rate is too large for
this buffer, packets are simply discarded. This process
maintains a fresh supply of encoded packets available for
fast connections, while ensuring reliability for the slow
connections as well.

IV. Barriers to Adoption

The concept of a digital fountain was described in
the original digital fountain conference paper [3] back in
1998. Given their seeming promise, one might hope that
they would be in widespread use today. Despite inter-
est from parts of the networking community, uses of the
digital fountain paradigm remain relatively scarce. We
consider here some of the significant barriers to adop-
tion.
Patent protections: Most of the work that has been
described above has been undertaken by employees of
or consultants with the company Digital Fountain, Inc.
As should be clear, the company has both spurred in-
novation and made a great deal of their work public
for the research community. On the other hand, the
company has a number of patents issued and pend-
ing that appear to cover both the fundamental theory
and specific implementation designs for Tornado, LT,
and Raptor codes. Issued patents in the area include
[6, 9, 10, 11, 12, 15, 16, 19, 20, 21]. (This list does not
include several pending applications, some of which can
be found through the U.S. Patent Office. For example,
there is a patent application covering various techniques
covered in the discussion of Raptor codes that has not is-
sued at this time [33].) As far as I currently know, these
patents have never been used against any company or
individual. However, these patents may have in the past
and hold the potential in the future to serve as a barrier
to researchers wishing to work in this area. For example,
it is not clear whether the creation of a publicly available
implementation of various LDPC schemes would infringe
on Digital Fountain patents; see, e.g., the discussion in
[26].

These patent protections will eventually disappear,
but not for well over a decade. On the other hand, the
existing patents provide strong motivation for developing
alternative designs for digital fountains or approximate
digital fountains.
Perceived complexity: Although several papers de-
scribe various coding techniques that can be used to build

(approximate) digital fountains, building a high-quality
coding engine for a digital fountain is a non-trivial task,
with a large number of pitfalls. For example, the random
structure chosen for the code can have a significant im-
pact on the average amount of overhead required before
decoding; these structures often need to be fine-tuned
carefully for top performance.

Network researchers would prefer to use “off-the-shelf”
components rather than design such a coding engine
themselves. At this time, however, I am not aware of a
standard public coding library that implements a “black-
box” digital fountain that can be used for network exper-
iments. (While Digital Fountain, Inc., advertises such a
library, it is naturally not free nor publicly available.) A
standard tool of this form would allow more experimenta-
tion among network researchers, encouraging adoption of
digital fountain technologies. Of course, any such public
implementation would have to be built with intellectual
property situation in mind, as discussed above.

Lack of a “killer application”: The digital foun-
tain framework was designed to deal with the problem
of large-scale multicast over the Internet, and its ad-
vantages in this domain are substantial. Unfortunately,
IP multicast as a technology has failed to get off the
ground, never finding significant acceptance. Various rea-
sons have been given, including overall complexity, the
need for widespread deployment to make it effective, the
lack of management tools, and issues with IP multicast
addresses. In part, the lack of acceptance may be due
to viable alternatives, including replication via hosting
services such as Akamai. In any case, multicast was
the “killer application” for digital fountains, and while
digital fountains can simplify or enhance other network
solutions, it is not clear that they offer such dramatic
advantages for other problems.

There is hope that appropriate killer applications will
arise in the future. Video-on-demand systems offer one
opportunity. Large scale distribution of data to wireless
devices is another. While cell phones or digital assis-
tants are natural targets, as wireless networking becomes
a standard feature on automobiles, the possibility of us-
ing digital fountains to effectively broadcast software to
millions of vehicles may also become compelling.

V. Conclusions

The field of erasure codes has moved dramatically for-
ward over the last decade. Many new codes with out-
standing performance derived from the LDPC framework
have been developed, including families of rateless codes,
which allow for very close approximations to an idealized
digital fountain. The networking community has recog-
nized the potential of these codes for solving problems
related to multicast, and further applications continue to
arise. Widespread adoption, however, remains an elusive
goal. The development of new approximations to digi-
tal fountains, unencumbered by potential patent protec-



tion and accompanied by freely available reference imple-
mentations, could greatly speed adoption, and provides
a theoretical and technical challenge to the community.
Regardless, we believe that both theory and practice of
digital fountains will continue to grow, with an increas-
ing emphasis on integrating digital fountains into existing
and new network applications.

Acknowledgments

I would like to thank John Byers for helpful discussions
as well as assistance in tracking down references.

References

[1] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. In-
formed content delivery over adaptive overlay networks. In
Proceedings of ACM SIGCOMM Conference, pp. 47-60, 2002.
Journal version to appear in IEEE/ACM Transactions on Net-
working, 2004.

[2] J. Byers, G. Horn, M. Luby, M. Mitzenmacher, and W. Shaver.
FLID-DL: congestion control for layered multicast. IEEE Jour-
nal on Selected Areas in Communications, 20(8), pp. 1558-
1570, October 2002.

[3] J. Byers, M. Luby, and M. Mitzenmacher. A Digital Fountain
Approach to Asynchronous Reliable Multicast. IEEE Journal
on Selected Areas in Communications, 20(8), pp. 1528-1540,
October 2002. (A preliminary version appeared in ACM SIG-
COMM ’98, pp. 56-67).

[4] J. Byers, M. Luby, and M. Mitzenmacher. Accessing Multiple
Mirror Sites in Parallel: Using Tornado Codes to Speed Up
Downloads. In Proceedings of INFOCOM 1999, pp. 275-283.

[5] R. G. Gallager. Low-density parity check codes. PhD thesis,
MIT, 1963. Manuscript published by MIT Press.

[6] A. Haken, M. Luby, G. Horn, D. Hernek, J. Byers, and
M. Mitzenmacher. Generating high weight encoding symbols
using a basis. U.S. Patent #6,411,223. Issued June 25, 2002.

[7] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
high bandwidth data dissemination using an overlay mesh. In
Proceedings of the 19th ACM Symposium on Operating Systems
Principles, pp. 282-297, 2003.

[8] G.-I. Kwon and J. Byers. ROMA: Reliable overlay multicast
with loosely coupled TCP connections. Proceedings of the 23rd
Annual Joint Conference of the IEEE Computer and Commu-
nication Societies (Infocom 2004), Hong Kong, March 2004.

[9] M. Luby. Information additive code generator and decoder for
communication systems. U.S. Patent #6,307,487. Issued Octo-
ber 23, 2001.

[10] M. Luby. Information additive code generator and decoder for
communication systems. U.S. Patent #6,373,406. Issued April
16, 2002. (continuation to #6,307,487).

[11] M. Luby. Information additive code generator and decoder
for communication systems. U.S. Patent #6,614,366. Issued
September 2, 2003. (continuation to #6,373,406).

[12] M. Luby. Information additive group code generator and de-
coder for communication systems. U.S. Patent #6,320,520. Is-
sued November 20, 2001.

[13] M. Luby. LT codes. In Proc. of the 43rd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pp. 271-
282, 2002.

[14] M. Luby, V. Goyal, S. Skaria, and G. Horn. Wave and equa-
tion based rate control using multicast round trip time. In Pro-
ceedings of ACM SIGCOMM Conference, pp. 191-204, 2002.

[15] M. Luby, G. Horn, J. Persch, J. Byers, A. Haken, and
M. Mitzenmacher. On demand encoding with a window. U.S.
Patent #6,486,803. Issued November 26, 2002.

[16] M. Luby and M. Mitzenmacher. Loss resilient code with
double heavy tailed series of redundant layers. U.S. Patent
#6,195,777. Issued February 27, 2001.

[17] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman.
Efficient erasure correcting codes. IEEE Transactions on In-
formation Theory, 47(2):569–584, February 2001.

[18] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. Spielman,
and V. Stemann. Practical loss-resilient codes. In ACM STOC
’97, pages 150–159, 1997.

[19] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, V. Stemann,
and D. Spielman. Message encoding with irregular graphing.
U.S. Patent #6,163,870. Issued December 19, 2000.

[20] M. Luby, M. A. Shokrollahi, V. Stemann, M. Mitzenmacher,
and D. Spielman. Irregularly graphed encoding technique. U.S.
Patent #6,081,909. Issued June 27, 2000.

[21] M. Luby, M. A. Shokrollahi, V. Stemann, M. Mitzenmacher,
and D. Spielman. Loss resilient decoding technique. U.S.
Patent #6,073,250. Issued June 6, 2000.

[22] A. Mahanti, D. L. Eager, M. K. Vernon, and D. Sundaram-
Stukel. Scalable On-Demand Media Streaming with Packet
Loss Recovery. IEEE/ACM Transactions on Networking, Vol.
11, No. 2, pp. 195-209, April 2003.

[23] N. F. Maxemchuk, Dispersity Routing in Store and Forward
Networks. Ph. D. thesis, University of Pennsylvania, May 1975.

[24] P. Maymounkov. Online Codes. NYU Technical Report
TR2002-833, November 2002.

[25] P. Maymounkov and D. Mazières Rateless codes and big
downloads. In Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems, February 2003. Available in Lecture
Notes in Computer Science 2735, pp. 245-255, Springer, 2003.

[26] J. Plank and M. Thomason. On the practical use of LDPC era-
sure codes for distributed storage applications. Technical Re-
port UT-CS-03-510, University of Tennessee, September 2003.

[27] M. O. Rabin. Efficient Dispersal of Information for Security,
Load Balancing, and Fault Tolerance. Journal of the ACM,
Volume 38, pp. 335-348, 1989.

[28] I.S. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of the Society for Industrial and Applied
Mathematics, 8:300–304, June 1960.

[29] T. Richardson and R. Urbanke. Efficient encoding of low-
density parity-check codes. IEEE Transactions on Information
Theory, 47(2), pp. 638-656, 2001.

[30] P. Rodriguez and E. Biersack. Dynamic parallel access to
replicated content in the Internet. IEEE/ACM Transactions
on Networking, 10(4), pp. 455-465, 2002.

[31] S. Rost, J. Byers, and A. Bestavros. The Cyclone Server Ar-
chitecture: streamlining delivery of popular content. Computer
Communications, 25(4), pp. 403-412, 2002.

[32] A. Shokrollahi. Raptor codes. Preprint available at
http://algo.epfl.ch/pubs/raptor.pdf.

[33] A. Shokrollahi, S. Lassen, and M. Luby. Multi-stage code
generator and decoder for communication systems. U.S. Patent
Application #20030058958.


