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1. INTRODUCTION

Packing problems involve constructing an arrangement of items that minimizes
the total space required by the arrangement. In this paper, we specifically con-
sider the two-dimensional (2D) rectangular strip packing problem. The input
is a list of n rectangles with their dimensions and a target width W. The goal is
to pack the rectangles without overlap into a single rectangle of width W and
minimum height H. We further restrict ourselves to the orthogonal variation,
where rectangles must be placed parallel to the horizontal and vertical axes.
We consider two variations: fixed orientation, in which the rectangles cannot be
rotated, and variable orientation, in which they can be rotated by 90°. Further,
for all our test cases, all dimensions are integers. Like most packing problems,
2D rectangular strip packing (even with these restrictions) is NP-hard.

A common method for packing rectangles is to take an ordered list of rect-
angles and greedily place them one by one. Perhaps the best studied and most
effective such heuristic for the fixed-orientation variation is the Bottom-Left
(BL) heuristic, where rectangles are sequentially placed first as close to the
bottom and then as far to the left as they can fit. For some problems, BL can-
not find the optimal packing under any ordering of the rectangles [Baker et al.
1980; Brown 1980], nor does it perform well in practice when applied to random
orderings. However, a very successful approach is to apply BL to the rectan-
gles ordered by decreasing height, width, perimeter, and area and return the
best of the four packings that result [Hopper 2000]. We refer to this scheme as
Bottom-Left-Decreasing (BLD).

A natural alternative approach would be to find good orderings of the rectan-
gles for BL or other similar heuristics using standard search techniques, such
as simulated annealing, genetic algorithms, or tabu search. Despite significant
efforts in this area, the search space has not generally proved amenable to such
search techniques; for more details see the thesis of Hopper [2000]. Recently,
genetic algorithms and tabu search, using a different search space, have proved
more successful [Iori et al. 2003].

In this paper, we present a variation of the BLD heuristic called BLD*
that considers successive random perturbations of the original four decreasing
orderings. We also present an apparently novel generalization of BL and, conse-
quently, of BLD and BLD*, for the variable orientation case. Our experiments on
both benchmark and randomly generated problems show that BLD* substan-
tially outperforms BLD, as well as BL applied to randomly chosen orderings.
For example, for the benchmarks taken from Hopper [2000] in the case of fixed
orientation, BLD* reduces the packing height from an average of 9.4% over
optimal by BLD to about 4.9% over optimal after just one minute. These are
the best published results for these benchmarks that we are aware of. We note
that improvements of even 1% can be very valuable for industrial applications
of this problem, such as glass and steel cutting.

This work was done as part of Human-Guided Search (HuGS) project, an
ongoing effort to develop interactive optimization systems [Klau et al. 2002a].
Determining how people can effectively interact with powerful stochastic search
algorithms is important because it leverages people’s abilities in areas in which
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they currently outperform computers, such as visual perception and strategic
assessment. Furthermore, involving people in the process of optimization can
help them understand and trust the produced solutions, as well as modify them
on the fly, if the need arises. Human-guided search makes particular sense in
the context of cutting and packing problems, where humans can often find
better solutions than the best current algorithms. Our interactive optimization
system is designed to allow people to effectively use the computer’s speed and
preprogrammed algorithms to more quickly find good solutions than they could
find alone, especially for larger problems.

For the 2D packing problem, we explored people’s ability to guide our BLD*
heuristic. We found that people can reason about this problem to make use of the
computer’s power extremely well. People can identify particularly well-packed
subregions of a given packing and then focus a search algorithm on improving
the other parts. People can also devise multistep repairs to a packing problem to
reduce unused space, often producing packings that could not be found by the BL.
heuristic for any ordering of rectangles. Our experiments on large benchmarks
show that interactive use of BLD* can produce solutions 1% closer to optimal
in about 20 min than BLD* produces on its own in 2 hours. Thus, 2D packing
seems to be a problem for which people and computers can currently produce
better results together than either can alone.

2. BACKGROUND

In general, packing problems are important in manufacturing settings; for
example, one might need n specific rectangular pieces of glass to put together a
certain piece of furniture, and the goal is to cut those pieces from the minimum-
height fixed-width piece of glass. The more general version of the problem
allows for irregular shapes, which is required for certain manufacturing prob-
lems, such as clothing production. However, the rectangular case has many
industrial applications [Hopper 2000].

The 2D rectangular strip packing problem has been the subject of a great
deal of research, both by the theory community and the operations-research
community [Coffman et al. 1984; Dyckhoff 1990; Lodi et al. 2003]. One focus
has been on approximation algorithms. The BL heuristic has been shown to be
a 3-approximation when the rectangles are sorted by decreasing width; that is,
the resulting height is always within a factor of 3 of optimal [Baker et al. 1980].
The BL heuristic is not within a factor of %2 of optimal for any fixed constant
%k when the rectangles are sorted by decreasing height. Other approximation
results include algorithms that give an asymptotic 5/4-approximation [Baker
et al. 1981], an absolute 5/2-approximation [Sleator 1980], and an absolute
2-approximation algorithm [Steinberg 1997]. Recently, Kenyon and Remilia
have developed an asymptotic fully polynomial approximation scheme [Kenyon
and Remilia 1996].

Another focus has been on heuristics that lead, in practice, to good solutions.
There are two main lines of research in this area. One line considers simple
heuristics, such as BLD. Another line focuses on local search methods that
take substantially more time but have the potential for better solutions: genetic
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algorithms, tabu search, hill climbing, and simulated annealing. The recent
thesis of Hopper provides substantial detail of the work in this area [Hopper
2000; Hopper and Turton 2000]. We compare BLD* with more recent work by
Tori et al., who provide results for their novel tabu algorithm, genetic algorithm,
and hybrid algorithm on a wide range of instances from the literature [Iori et al.
2003].

Exact algorithms have received relatively little consideration. We have
developed an exhaustive branch-and-bound algorithm, which generally solves
problem instances with fewer than 30 rectangles for which a perfect packing,
i.e., one with no empty space, exists [Lesh et al. 2003, 2004]. Other recent work
includes that of Fekete and Schepers [1997a,b], who suggest branch-and-bound
techniques for bin and strip packing problems. They test their general approach
on the knapsack problem and not strip packing problems and, hence, we are
unable to provide a direct comparison. Other similar work has also been done
simultaneously by Korf [2003] and by Martello, Monaci, and Vigo [2003], who
use branch-and-bound techniques to determine optimal packings.

The fixed-orientation problem has received much more attention than the
variable-orientation problem, although some genetic-algorithm approaches
have allowed reorientation as one of the mutation operations [e.g., Dagli and
Poshyanonda 1997; Hwang et al. 1994]. We are unaware of any previous
work on adapting the BL algorithm for variable orientations (as we describe
below).

2.1 The Bottom-Left (BL) Heuristic

The BL heuristic, introduced in Baker et al. [1980], is perhaps the most widely
used heuristic for placing rectangles. We think of the points in the strip to be
packed as being ordered lexicographically, so that point A lies before point B,
if A is below B or, if A and B have the same height and A is to the left of B.
Given a permutation of the rectangles, the BL heuristic places the rectangles
one by one, with the lower left corner of each being placed at the first point in
the lexicographic ordering where it will fit. There are natural algorithms that
require O(n?) time in the worst case for the problem; Chazelle [1983] devised
an algorithm that requires O(n?) time and O(n) space in the worst case. In
practice the algorithm runs much more quickly, since a rectangle can usually
be placed in one of the first open spots available. When all rectangle dimensions
are integers, this can be efficiently exploited. Hopper [2000] discusses efficient
implementations of this heuristic in her thesis work.

Perhaps the most natural permutation to choose for the BL heuristic is to
order the rectangles by decreasing height. This ensures that at the end of the
process, rectangles of small height, which therefore affect the upper boundary
less, are being placed. It has long been known that this heuristic performs
very well in practice [Coffman et al. 1984]. It is also natural to try sorting by
decreasing width, area, and perimeter, and take the best of the four solutions.
While usually decreasing height is best, in some instances these other heuristics
perform better. We refer to the algorithm that takes the best packing produced
by these four orderings as BLD.
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2.2 Benchmarks

In this paper, we evaluate our algorithm and interactive system both on sets
of structured benchmarks with known optimal packings and on randomly gen-
erated test instances without known optimal packings. The former is a set of
benchmarks recently developed by Hopper. All instances in this benchmark
have perfect packings of dimension 200 x 200. The instances are derived by re-
cursively splitting the initial large rectangle randomly into smaller rectangles;
for more details, see [Hopper 2000]. This benchmark set contains problems with
size, ranging from 17 to 197 rectangles. We use the nonguillotinable instances
from this set, collections N1 (17 rectangles) through N7 (197 rectangles), each
containing five problem instances.

The strengths of this benchmark are that a wide range of algorithms have
been tested against it, providing meaningful comparisons; problem sizes vary
from the small to the very large; the optimal solution is known by construc-
tion. The benchmark problems, however, are highly structured, and because all
instances have perfect packings, they yield limited insight on the performance
of algorithms when perfect packings are not available. We note that we have
developed an exhaustive branch-and-bound algorithm, which can quickly solve
the N1-N3 problem instances [Lesh et al. 2003, 2004]; therefore, we tend to
focus on the N4-N7 collections to evaluate our heuristic methods.

After developing our algorithms, we ran them on other instances avail-
able in the literature to compare it to the recently reported results of [Iori
et al. 2003]. These instances include the “ht” benchmarks by Hopper and
Turton and the “gcut” examples available at the Operations Research Library
(http:/mscmga.ms.ic.ac.uk/info.html). We also ran BLD* on 10 classes of
randomly generated problems from the literature, described in [Iori et al.
2003]. The target width and the range of width and heights for the rect-
angles varies by class. The specific instances are available for download at
www.or.deis.unibo.it/ORinstances/2BP/. Each class has problems of five sizes,
ranging from 20 to 100 rectangles, and 10 instances per size.

3. ORIENTING RECTANGLES

We modified the BL and BLD heuristics for the variable orientation problem.
The modified heuristic again places rectangles, one at a time, according to some
permutation, but now it considers both orientations when placing each rectan-
gle. For each orientation, the placement is determined by the first point in
the bottom-left lexicographic ordering where the rectangle will fit, following
the BL paradigm. Given these two possible placements, the algorithm must de-
cide between them. We experimented with three decision rules. The first rule
computes where the bottom-left corner would be positioned by both orienta-
tions and chooses the orientation in which the bottom-left corner is earliest in
the lexicographic ordering. The second and third rules are the same, except
that they compare where the center and top-right corner of the rectangle is
positioned, respectively. In the case of ties (which turn out to be very rare), we
choose randomly between the two orientations.
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Table I. Results of BLD Modified for Variable Orientation®

Sort by Choose by
min | max | area | perim. || center | bottom left | top right
yes no no no 5.62 15.38 443
no yes no no 5.58 6.40 5.98
no no yes no 5.15 8.08 4.60
no no no yes 5.23 5.58 4.70
no no yes yes 5.00 6.28 4.40
no yes no yes 4.83 5.30 4.70
no yes yes no 4.85 5.82 453
no yes yes yes 4.83 5.83 4.33
yes no no yes 4.68 5.58 4.33
yes no yes no 4.85 8.08 4.43
yes no yes yes 4.78 6.28 4.23
yes yes no no 4.73 6.47 4.38
yes yes no yes 4.45 5.50 4.33
yes yes yes no 4.68 6.50 4.43
yes yes yes yes 4.60 6.08 4.23

%Each number is an average of the 20 problem instances in the N4-N7 bench-
mark collections.

Because the rectangles can be reoriented, it does not make sense to order
them by decreasing width or height. Instead, we consider ordering the rectan-
gles in decreasing order of the length of their minimum or maximum dimension,
as well as in decreasing order by area and perimeter.

We ran experiments to evaluate the possible combinations of ordering meth-
ods and decision rules for the rectangles of the 20 instances in the N4 to N7
collections using this variation of BLD. Table I shows the average percentage
over optimal from the various combinations. If more than one ordering is used,
then we took the best packing produced from all of the relevant orderings. The
results indicate that the most effective decision rule is to chose the orientation
that places the top-right corner as early as possible in the lexicographic or-
dering. The most effective ordering is to sort the rectangles by their minimum
dimension.

Our current understanding of why sorting by minimum dimension is better
than by maximum dimension when the rectangles are reorientable is best ex-
pressed by an example: a 50 x 1 rectangle can be oriented so as to only add,
at most, 1 to the height. So it is reasonable to place this rectangle toward the
end. Similarly, using the top-right corner to decide orientation most closely
approximates the objective function being used to evaluate an entire packing.

4. IMPROVING THE BLD HEURISTIC

A natural way to improve the BLD heuristic is to apply BL to other permutation
orders. At the expense of more time, more orders besides the four suggested can
be tried to attempt to improve the best solution found. One standard technique
would be random-repeat: permutations are repeatedly chosen uniformly at ran-
dom, and the best solution found within the desired time bound is used. Random
permutations, however, are known to perform poorly [Hopper 2000]. We tried
BL on random permutations on the N4 through N7 benchmark collections.
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Algorithm BLD*:

(1) Let p+ 0.5.
(2) Repeat until halted:
(a) Let R1,Ra2,..., R, be the n rectangles in order of decreasing height.
(b) For j =1 ton do:
i. Let ¢+ 0.
ii. Repeat until a rectangle is selected:
A. Choose & uniformly from [0, 1].
B. If z < p, select rectangle Ry11.
C. Ife>p,g+qg+1modn—j+1.
iii. Place the selected rectangle according to the Bottom Left rule.
iv. Remove the selected rectangle from the list, leaving the list
R1,R2,...,R,_; of remaining rectangles in sorted order.
(c) Save if the solution is the best seen so far.
(3) Return the best solution.

Fig. 1. A pseudocode description of BLD*. Different orderings, different p values, and different
placement rules could be used.

After 20 min, the average height of the best solution found was 9.6% over the
optimal compared to the 6.4% over optimal generated by the BLD heuristic in
less than a second. (All times reported in this paper are for experiments run on
a Linux machine with a 2000 MhZ Pentium processor running Java code.)

Instead, we suggest the following stochastic variation of BLD, which we
call BLD*. Our intuition for why BLD performs so much better than BL with
random-repeat is that the decreasing sorted orders save smaller rectangles for
the end. Therefore, BLD* chooses random permutations that are “near” the
decreasing sorted orders used by BLD, as they will also have this property.
There are many possible ways of doing this; indeed, there is a deep theory of
distance metrics for rank orderings [Marden 1995]. BLD* uses the following
simple approach: start with a fixed order (say decreasing height), and generate
random permutations from this order as follows. Items are selected, in order,
one at a time. For each selection, BLD* goes down the list of previously unac-
cepted items in order, accepting each item with probability p, until an item is
accepted. If the last item is reached and not selected, then we restart at the
beginning of the list, again taking an item with probability p. After an item
is accepted, the next item is selected, starting again from the beginning of the
list of unaccepted items. (See Figure 1.) More formally, choose the ith item as
follows. Let g initially be 0. Repeat the following: with probability p, terminate
and output the (¢ + 1)st unselected item from the original sorted list; otherwise
increment g by 1 modulo n —i + 1. This approach generates permutations that
are near decreasing sorted order, preserving the intuition behind the heuristic,
while allowing a large number of variations to be tried.

The probability starting from some fixed ordering x of obtaining some other
ordering y is proportional to (1 — p)ke»®*.¥) where Ken(x, y) is the Kendall-tau
distance between the two permutations. This is also known as bubble-sort
distance, because it counts the number of swaps bubble-sort would make trans-
forming x to y.

Our current version of BLD* first tries the four orders used by BLD and then
permutes each of these orders in round-robin fashion.
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Table II. Average Results of BLD* on Hopper Benchmarks with Fixed Orientation
Fixed Orientation BLD* Score after ¢ Seconds

Problem OBLD) | 30 | 60 | 120 | 300 | 600 | 1800 | 3600
Hopper N1, size = 17 16.4 6.0 | 60| 60 | 56 | 5.1 5.0 4.5
Hopper N2, size = 25 12.2 66 | 6.4 | 58 | 57 | 54 4.8 4.7
Hopper N3, size = 29 12.4 6.1 60| 60 | 56 | 51 5.0 4.6
Hopper N4, size = 49 9.0 53 | 51| 49 | 44 | 44 4.0 3.9
Hopper N5, size = 73 7.6 50| 46 | 44 | 44 | 43 4.0 4.0
Hopper N6, size = 97 5.4 43 | 40| 39 | 38 | 35 3.4 3.0
Hopper N7, size = 197 3.0 28 | 23| 23 | 2.2 1.9 1.8 1.8
Hopper N1-N7 9.4 53 | 49 | 48 | 45 | 42 4.0 3.8

Table III. Average Results of BLD* on Hopper Benchmarks with Variable Orientation
Variable Orientation BLD* Score after ¢ Seconds

Problem O(BLD) | 30 | 60 | 120 | 300 | 600 | 1800 | 3600
Hopper N1, size = 17 12.5 46 | 46 | 3.8 | 3.8 | 3.7 3.7 3.5
Hopper N2, size = 25 9.7 4.7 | 46 | 41 | 40 | 3.9 3.6 3.3
Hopper N3, size = 29 10.0 44 | 40 | 39 | 3.7 | 35 3.3 3.2
Hopper N4, size = 49 6.1 34 (32|31 | 30| 29 2.9 2.6
Hopper N5, size = 73 6.6 30|30 | 28 | 28 | 26 2.1 2.1
Hopper N6, size = 97 3.6 23 1231|2219 | 19 1.9 1.9
Hopper N7, size = 197 14 10 {10 | 10 | 1.0 | 1.0 0.9 0.9
Hopper N1-N7 7.1 36 |32 ] 30| 29 | 28 2.6 2.5

4.1 Experimental Results

We first ran BLD* on the Hopper benchmarks N1-N7 to quantify how much
improvement BLD* provides over BLD. We used p = 0.5 based on a small
amount of preliminary investigation of different values. For the fixed orienta-
tion problem, we used all four orderings (height, width, area, and perimeter).
The Hopper instances are given in a format that specifies the dimension of each
rectangle when the orientation is fixed in such a way that a perfect packing is
possible. For the variable orientation problem, we used our modified version of
BLD* with only the minimum-dimension ordering and the top-right decision
rule.

The results are shown in Tables II and III. The table shows the results of
running BLD and the results of running BLD* at various time increments. The
numbers represent the percentage over the optimal width of 200. For all cases,
BLD* dramatically improves solutions over BLD even with just one minute
of computation. It continues to improve steadily, though improvements taper
off with time. Note that BLD performs poorly on small instances and so the
improvements for BLD* are more substantial.

We also ran experiments on the N4-N7 collections to measure how many
permutations BLD* considered before improving upon the best solution by BLD;
it considered an average of only 15.25 permutations to do so.

Tables IV and V compare the performance of BLD* against those reported
by [lori et al. 2003] for the fixed orientation case (the only case they consider).
Their work presents an algorithm for computing lower bounds for these prob-
lems, as well as the results of running three algorithms (a tabu search, a
genetic algorithm, and a hybrid algorithm) for 5 minutes of CPU time on a
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Table IV. Comparison of BLD* on Randomly Generated Problems, with Fixed Orientation,
Proposed by Martello and Vigo®

Problem Tori et al. BLD* Best Result after ¢ Seconds Computation
C n w LB Est. best score 60 120 300 600 1800 3600
1 20 10 60.3 61.1 61.5 61.4 61.3 61.3 61.3 61.3
1 40 10 | 121.6 121.8 122.1 | 122.1 | 122.0 | 122.0 | 122.0 | 122.0
1 60 10 | 187.4 189.0 189.1 | 189.0 | 189.0 | 189.0 | 188.9 | 188.9
1 80 10 | 262.2 262.8 262.9 | 2629 | 262.9 | 2629 | 262.9 | 262.8
1 | 100 10 | 304.4 305.5 3059 | 305.8 | 305.8 | 305.7 | 305.6 | 305.5
2 20 30 19.7 19.9 20.0 199 19.9 19.9 19.8 19.8
2 40 30 39.1 39.9 39.5 39.5 39.3 39.1 39.1 39.1
2 60 30 60.1 61.6 61.0 61.0 60.9 60.9 60.9 60.6
2 80 30 83.2 84.6 84.0 83.9 83.6 83.6 83.6 83.6
2 | 100 30 | 100.5 101.8 101.1 | 101.1 | 101.0 | 101.0 | 100.8 | 100.8
3 20 40 | 1574 164.7 164.6 | 164.6 | 164.3 | 164.3 | 164.2 | 164.2
3 40 40 | 328.8 337.9 336.6 | 335.4 | 335.1 | 335.1 | 334.8 | 334.8
3 60 40 | 500.0 515.9 513.0 | 512.4 | 511.3 | 511.0 | 510.4 | 510.1
3 80 40 | 701.7 7174 716.9 | 716.5 | 7158 | 713.6 | 713.5 | 713.0
3 | 100 40 | 832.7 847.7 847.8 | 846.7 | 8459 | 845.1 | 844.4 | 844.1
4 20 | 100 61.4 65.6 64.5 64.4 64.3 64.2 64.1 63.9
4 40 | 100 | 123.9 131.2 129.6 | 129.3 | 128.8 | 128.6 | 128.2 | 128.1
4 60 | 100 | 193.0 202.1 201.0 | 201.0 | 200.8 | 200.6 | 200.1 | 199.9
4 80 | 100 | 267.2 278.6 278.8 | 278.4 | 277.6 | 277.3 | 277.1 | 276.6
4 | 100 | 100 | 322.0 332.2 334.6 | 334.2 | 333.8 | 333.6 | 3324 | 332.1

%Results averaged over 10 instances.

Pentium III 800 MHz machine. The hybrid algorithm generally performed the
best, but not in all cases. In Iori et al. [2003], the scores are reported as a percent
gap, defined as (s — LB)/s, where s is the score obtained by the algorithm on the
problem and LB is the lower bound computed by their algorithm. We felt that
reporting absolute scores would simplify future comparisons, especially since
improved lower bounds would decrease the percentage gap for a given packing
score achieved by a packing algorithm. We thus estimated the absolute scores
of the algorithms in [Iori et al. 2003] by finding the score that would produce
the reported percentage gap. The number is approximate because the reported
lower bounds and percentage gaps are averaged over 10 instances.

The first three columns of the tables indicate the problem class, the number
of rectangles, and the target width. The next two columns give the lower bound
and the best of the three results from Iori et al. [2003]. The next five columns
show the result of running BLD* for 60, 120, 300, 600, 1800, and 3600 sec of
wall-clock time on a 1000 MHz Alpha processor. Each result is an average over
10 instances. If the result from Iori et al. [2003] is the best result, it appears in
bold; otherwise the earliest result for BLD* that beats the best result reported
by Iori et al. [2003] is in bold. An underlined result indicates a tie.

From these results, BLD* clearly performs better than all three of the al-
gorithms [Iori et al. 2003]. In 31 of the 50 comparisons in these tables, after
1 min BLD* produces a better result than all three of the other algorithms do in
5 min (on a slightly slower processor); there are ties in one other case. In three
additional cases, BLD* outperforms the other algorithms after 2 min and, in
two cases, BLD* ties the other algorithms after 2 min.
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Table V. Comparison of BLD* on Randomly Generated Problems, with Fixed Orientation,
Proposed by Berkey and Wang®

Problem Tori et al. BLD* Best Result after ¢ Seconds Computation

C| n w LB Est. best score 60 120 300 600 1800 3600

5 20 | 100 | 512.2 536.2 536.6 | 536.3 | 535.7| 535.5| 534.9 | 534.8
5 40 | 100 | 1053.8 1085.8 1084.2 | 1083.2 | 1081.5 | 1079.9 | 1078.5 | 1076.7
5 60 | 100 | 1614.0 1667.9 1656.9 | 1655.2 | 1654.1 | 1651.5 | 1651.2 | 1651.1
5 80 | 100 | 2268.4 2304.7 2303.2 | 2302.6 | 2300.0 | 2298.6 | 2297.6 | 2297.2
5 1100 | 100 | 2617.4 2695.9 2680.8 | 2675.6 | 2672.4 | 2670.5 | 2670.1 | 2669.5
6 20 | 300 [ 159.9 174.9 1725 | 1723 | 1716 | 171.3| 170.5| 170.3
6 40 | 300 | 323.5 346.0 343.8 | 342.7 | 3422 | 340.5| 339.4| 339.2
6 60 | 300 | 505.1 530.9 536.6 | 5353 | 533.8| 531.8 | 531.0 | 529.7
6 80 | 300 | 699.7 732.2 7439 | 740.1 | 7374 | 736.3 | 734.8| 733.9
6 | 100 | 100 | 843.8 874.9 890.6 | 888.4 | 8849 | 883.7| 8827 | 8821
7 20 | 100 | 490.4 502.7 5019 | 501.9 | 501.9| 501.9| 501.9| 501.9
7 40 | 100 | 1049.7 1060.3 1059.4 | 1059.4 | 1059.0 | 1059.0 | 1059.0 | 1059.0
7 60 | 100 | 1515.9 1529.5 1530.4 | 1530.4 | 1530.4 | 1529.8 | 1529.7 | 1529.7
7 80 | 100 | 2206.1 2224.4 2223.7 | 2223.6 | 2223.5 | 2223.0 | 2222.4 | 2222.2
7 | 100 | 100 | 2627.0 2646.4 2648.4 | 2647.1 | 2646.7 | 2646.6 | 2646.5 | 2646.5
8 20 | 100 | 434.6 467.6 466.0 | 465.8 | 463.6 | 462.8 | 4619 | 461.6
8 40 | 100 | 922.0 979.3 978.6 | 977.1 | 973.4 | 971.2 | 968.7| 967.8
8 60 | 100 | 1360.9 1436.0 1437.5 | 1433.3 | 1432.8 | 1429.9 | 1426.7 | 1425.1
8 80 | 100 | 1909.3 2007.2 2014.9 | 2010.9 | 2005.9 | 1997.8 | 1994.0 | 1992.0
8 | 100 | 100 | 2362.8 2477.2 2491.4 | 2486.5 | 2477.4 | 2473.0 | 2468.5 | 2466.7
9 20 | 100 | 1106.8 1119.2 1106.8 | 1106.8 | 1106.8 | 1106.8 | 1106.8 | 1106.8
9 40 | 100 | 2189.2 2231.2 2190.9 | 2190.7 | 2190.7 | 2190.7 | 2190.6 | 2190.6
9 60 | 100 | 34104 34104 3410.4 | 3410.4 | 3410.4 | 3410.4 | 3410.4 | 34104
9 80 | 100 | 4578.6 4873.9 4588.1 | 4588.1 | 4588.1 | 4588.1 | 4588.1 | 4588.1
9 | 100 | 100 | 5430.5 5718.9 5434.9 | 5434.9 | 5434.9 | 5434.9 | 5434.9 | 5434.9
10| 20| 100 | 337.8 355.1 352.0 | 351.7 | 351.5| 351.3| 351.3| 351.1
10 | 40| 100 | 642.8 674.2 670.1 | 669.0 | 667.9| 667.1| 666.0 | 665.7
10| 60| 100 | 911.1 953.6 946.9 945.0 | 943.0 | 941.5| 940.7 | 940.1
10| 80| 100 | 1177.6 1229.6 1226.1 | 1223.6 | 1221.4 | 1221.1 | 1218.7 | 1217.8
10 | 100 | 100 | 1476.5 1537.5 1536.0 | 1532.8 | 1529.6 | 1528.4 | 1526.6 | 1525.3

%Results averaged over 10 instances.

Additionally, Tori et al. [2003] also provides the time at which their algo-
rithms found the best result during the 5 min of running time. Quite often, the
best result is found within 20 or 30 sec. Thus, for very short running times,
it is possible that their algorithms outperform BLD*. As shown in the tables,
however, BLD* generally continues to improve steadily over time.

Finally, we also compare BLD* using some of the other benchmarks from
the literature. Table VI shows results for the larger (in terms of number of
rectangles) “ht” problems and the “gcut” problems reported in Iori et al. [2003].
BLD* after 1 min performs better on all the “ht” problems and the two largest
“gcut” problems. Even on the smaller “gcut” problems, BLD* eventually beats or
matches the best score from the other algorithms. Of course, BLD* is designed
for larger problems.

5. INTERACTIVE PACKING

Human guidance has been shown to improve the performance of stochastic op-
timization algorithms for a variety of problems [e.g., Anderson et al. 2000; Klau
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Table VI. Comparison of BLD* on Problems from the Literature, with Fixed Orientation

Problem Tori et al. BLD* Best Result after ¢ Seconds Computation
Name | n | W LB Best score 60 120 300 600 1800 3600
ht13 |73 | 60 90.0 94.0 92.0 92.0 92.0 92.0 92.0 92.0
ht14 | 73| 60 90.0 93.0 92.0 92.0 92.0 92.0 92.0 92.0
htl5 |73 | 60 90.0 94.0 92.0 92.0 92.0 92.0 92.0 92.0
htl6 |97 | 80| 120.0 126.0 123.0 | 123.0 | 123.0 123.0 122.0 122.0
ht17 (97| 80| 120.0 124.0 123.0 | 123.0 | 122.0 122.0 122.0 122.0

ht18 |97 | 80| 120.0 124.0 123.0 | 123.0 | 123.0 | 123.0 | 122.0 | 122.0
gcutl | 10 | 250 | 1016.0 1016.0 1016.0 | 1016.0 | 1016.0 | 1016.0 | 1016.0 | 1016.0
geut2 | 20 | 250 | 1133.0 1207.0 1211.0 | 1211.0 | 1207.0 | 1205.0 | 1204.0 | 1195.0
geut3 | 30 | 250 | 1803.0 1803.0 1803.0 | 1803.0 | 1803.0 | 1803.0 | 1803.0 | 1803.0
geutd | 50 | 250 | 2934.0 3130.0 3072.0 | 3072.0 | 3072.0 | 3072.0 | 3063.0 | 3054.0
geutb | 10 | 500 | 1172.0 1273.0 1273.0 | 1273.0 | 1273.0 | 1273.0 | 1273.0 | 1273.0
geut6 | 20 | 500 | 2514.0 2675.0 2682.0 | 2682.0 | 2682.0 | 2682.0 | 2675.0 | 2656.0
geut7 | 30 | 500 | 4641.0 4758.0 4795.0 | 4788.0 | 4783.0 | 4774.0 | 4774.0 | 4754.0
geut8 | 50 | 500 | 5703.0 6197.0 6181.0 | 6155.0 | 6089.0 | 6089.0 | 6081.0 | 6081.0

et al. 2002a, 2002b and the papers cited therein]. In order for human interaction
to be justified for an optimization problem, improvements in solution quality
must have high enough value to warrant investing human effort. This is the
case for packing problems in which manufacturing costs, and thus potential
savings, are high. In order for interaction to be applicable to an optimization
problem, there must exist effective visualizations for its problems and solutions.
Fortunately, the obvious geometric visualization for packing problems (e.g., see
Figure 2) is simple and effective.

In order for human interaction to be beneficial, human reasoning must offer
some advantages over the best automatic methods. We have found that people
can help overcome many of the limitations of the BLD* heuristic. People can
identify particularly well-packed subregions of solutions, and focus BLD* on
improving the other parts. Furthermore, people can readily envision multistep
repairs to a packing problem to reduce unused space. These repairs often involve
producing solutions that could not be produced by the BLD heuristic.

5.1 Interactive System

We have developed an interactive rectangle-packing system in Java using the
Human-Guided Search (HuGS) Toolkit [Klau et al. 2000b]. The toolkit provides
a conceptual framework for interactive optimization as well as software for
interacting with a search algorithm, logging user behavior, providing history
functions including undo and redo, file I/0, and some other GUI functions.
We did not, however, utilize the human-guidable tabu or hill-climbing search
algorithms provided in HuGS, as we did not find them effective for this problem
in our initial explorations.

In our system, the user is always visualizing a current solution as shown
in Figure 2. Given the aspect ratio of a computer monitor, we found it more
natural to rotate the problem by 90°, so that there is a fixed height and the goal
is to minimize the width of the enclosing rectangle.

The user can manually adjust the current solution by dragging one or more
rectangles to a new location. The interface allows the user to cause all the
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Fig. 2. Interactive system: The top image is a screen shot of our system in use. The user has
selected a region to apply BLD* to and has frozen most of the rectangles (frozen rectangles shown
in red/dark gray, unfrozen in green/light gray). The image on the right shows a blowup of the
selected portion on the packing, after BLD* has run for a few seconds and the user has pressed the
Best button to see the best solution found.
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rectangles to be shifted downward or leftward. This basically has the effect of
pulling all of the rectangles in one direction until each touches its neighbor
or an edge of the possible packing area. These functions also resolve overlaps
among rectangles. In addition, the user can freeze particular rectangles. Frozen
rectangles appear in red and will not be moved by the computer. Rectangles that
are not frozen appear in green. For the variable orientation problem, the user
has the option of manually reorienting rectangles.

The user can also invoke, monitor, and halt the BLD* heuristic. The user
specifies a target region in which to pack rectangles, denoted by a purple rect-
angular outline. The user can then invoke BLD* by pressing a Start button.
Any frozen rectangles within the region are left where they are. BLD* then
tries to fill the region using any rectangles that are not currently frozen. The
system works in the background, and uses a text display to indicate the value
of the best, i.e., most tightly packed, solution it has found so far. The user can
retrieve this solution by pressing the Best button. The user can retrieve the
current solution the engine is working on by pressing the Current button. The
user can manually modify the currently visualized solution without disturbing
the current search. When the search algorithm finds a new best solution, the
Best button changes color to alert the user. The user can halt the search algo-
rithm by pressing the Stop button, or reinvoke it by pressing the Start button
again.

The user can optionally set a target for the solution he/she is trying to reach.
For example, the user can indicate that the enclosing rectangle should be 200 x
204. The system provides some visual cues for how to meet this goal. More
importantly, the target solution size affects how solutions are ranked. Rather
than using the true objective function (i.e., the size of the enclosing rectangle),
the system ranks solutions based on the total area of the rectangles that fall
within the target solution size. We found this feature to be extremely useful.
For example, the user typically begins a session by having BLD* try to pack the
entire target region. Because of our modification, the search algorithm might
return, for example, a packing with one rectangle that sticks out of the target
region by several units rather than a packing in which many rectangles stick
out of the target region by one unit. We usually found the former packings much
easier to repair.

5.2 Interaction Experiments

The primary goal of these experiments was to evaluate the hypothesis that
interactive use of BLD* can produce superior solutions than BLD* can on its
own.

Weran our first set of experiments on the fixed-orientation problem, using the
15 problem instances in the N4-N6 collections in the Hopper benchmark suite.
We ran BLD* for 2 hours in each instance. (We optimized the code slightly since
we ran the user experiments and thus BLD* was slower here than shown in
Tables II and III.) We then performed one trial for each instance in which a user
attempted to find a solution 1% closer to optimal than the best solution found by
BLD* within 2 hours, e.g., if BLD* found a solution of width 206, we would give
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Table VII. Interaction Experiment Results with Fixed Orientation®

Percent over Optimal | Time for Users to Find
Dataset || Number of Rectangles by BLD* in 2 Hours Packing 1% Closer to Optimal

N4 49 4.3% 3.3% in 14 min, 21 sec
N5 73 4.1% 3.1% in 13 min, 52 sec
N6 97 3.3% 2.3% in 17 min, 12 sec

“The second column shows the average percentage over optimal achieved by BLD* in two hours. These results
are at least 2%—3% closer to optimal than the best previously published results. The third column shows the
average time it took interactive use of BLD* to achieve a solution another 1% closer to optimal. The values
are averaged over the five problem instances in the corresponding collection.

the users a target of 204. The users were two authors of this paper. We were
careful that a user had never before seen the particular instances on which
they were tested. We logged the users’ actions, but the primary measure was
how long it took the user to reach their target.

As shown in Table VII, the users were able to reach these targets in about
15 min on average. In every case, the target was reached within 30 min. While
this is not exactly a “head-to-head” comparison, since the users had the target
scores toreach, the fact that people were able to improve on the solutions quickly
confirms our hypothesis.

The N7 problem instances presented a significant challenge because BLD*
was able to produce extremely tight packings, only 1.8% over optimal on aver-
age, even for the fixed-orientation problem. In our practice trials, we found it
difficult to improve upon these solutions, interactively, using only BLD*. The
difficulty is that the unused space is distributed into a great number of tiny
gaps throughout the packing. This makes it harder to pack the remaining rect-
angles into the target space. We were able to make steady progress, but it
seemed like it would take hours to get a better solution. Instead, we devised a
divide-and-conquer algorithm that produced solutions in which unused space is
more concentrated [described more fully in Lesh et al. 2003]. Using the divide-
and-conquer algorithm as well as BLD*, our test subjects were able to produce
solutions 1% over optimal (or about 0.8% closer than BLD* could achieve on
average) in 12.5 to 36 min of interactive use.

We also ran a set of experiments for the variable-orientation problem. In
these experiments, the users employed our variation of BLD* that orients the
rectangle and could also manually orient them. As in the first experiments, we
measured how long it took the users to find solution 1% closer to optimal than
the best solution found by BLD* within 2 hours. We ran these experiments
on the N4 and N5 collections, with the same users as the first experiments.
Thus, in this experiment, the users had previously worked on the problem
instances in the fixed-orientation variation. However, we believe both that there
is little transfer between the problem variations and that it is extremely hard
to remember anything about a given problem instance. For these problems, we
ran both users on each problem instance.

We thought this task might be too difficult since the targets were so much
closer to optimal. However, as shown in Table VIII, the users were able to reach
the targets almost as quickly as in the first experiments, requiring an average
of 23 min, 10 sec.
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Table VIII. Interaction Experiment Results with Variable Orientation®

Percent over Optimal | Time for Users to Find
Dataset || Number of Rectangles by BLD* in 2 Hours Packing 1% Closer to Optimal
N4 49 2.9% 1.9% in 26 min, 21 sec

N5 73 2.6% 1.6% in 19 min, 59 sec

%The second column shows the average percentage over optimal achieved by BLD* in 2 hours. The third column
shows the average time it took interactive use of BLD* to achieve a solution another 1% closer to optimal. The
values are averaged over the two trials each of five problem instances in the corresponding collection.

Table IX. Interaction Experiment Results on Random data Sets with Variable Orientation®

Percentage over Ideal Time for Users to Find
by BLD* in 2 Hours Percentage Successful Trials | Packing Approx. 1% Closer to Ideal
3.85% 93.75% 2.90% in 15 min. 35 sec.

“The values are averaged over the two trials each of eight problem instances (excluding one that was not solved
within an hour).

To verify that our results were not dependent on the Hopper dataset, we ran
interaction experiments on random test instances (designed before we were
aware of the random problems in the literature.) We used four problems with
50 rectangles, and four with 100 rectangles. For half of each size, we chose the
dimensions of the rectangles uniformly from 1 to 50. For the other half, we
chose the width x uniformly at random from 1 to 50 and the height by choosing
a number y uniformly at random from 1 to 50 and fixing the dimension to be
either y or 50—y, whichever is further from x; this skews the rectangles making
them less square. Since we do not know the optimal answer for the randomly
generated benchmarks, we evaluate a packing with a given height in terms of
its percentage over ideal, where the ideal is the nearest integer rounding up
from the total area divided by the target width.

Two users each tried all eight problem instances. As in the second set of
experiments, variable orientation was allowed. We measured how long it took
the users to find solution 1% closer to ideal than the best solution found by
BLD* within 2 hours, rounding to the nearest integer. Notice that the ideal
width is not always evenly divisible by 100 and so when aiming for 1% closer to
ideal, we were forced to round. Furthermore, since we do not know the optimal
width, we did not know a priori that the targets were achievable.

As shown in Table IX, the results were similar to the previous experiments.
In one case, a user was not able to achieve the target within an hour, but for
the other 15 cases, the average time to reach the target was only 15 min and
35 sec.

Finally, we also tested our interactive system on the few other (fixed-
orientation) benchmarks we could find in the literature, including in particular
ones without known optimal solutions, referred to by Hopper as D1 and D3
[Hopper 2000; Ratanapan and Dagli 1997, 1998]. The best solutions for D1 and
D3 in the literature appear to have height 47 and 114. We were able to find a
solution with height 46 (or width 46 in our interface) in about 15 min, as shown
in Figure 3. We were able to match the 114 for D3 in about 20 min.
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Fig. 3. Our solution to the D1 dataset, which is one unit better than the best previously published
solution. The solution has width 46 in our interface, or height 46 in the standard formulation.

6. CONCLUSION

We have developed several new approaches for 2D rectangular strip pack-
ing problems, improving the state of the art and providing new insights into
the problem. Specifically, we have shown that our BLD* algorithm outperforms
previous automatic methods, such as those described by Iori et al. [2003].
We point out that in parallel with this this work, there has been continuing
improvements on other heuristic approaches for 2D rectangular strip packing.
In particular, a genetic algorithm framework designed by Bortfeldt appears
quite promising [Preprint, 2003]; it would be interesting if ideas from our work,
which follows a different tack, could be incorporated with his.

Equally significant is the demonstration of the utility of interaction for pack-
ing problems. On the larger Hopper benchmark problems, we come within
1.6%-3.3% of optimal in about 15 min of interactive use; this is a significant
improvement over all previously reported results. We believe that for many
similar problems, humans have significant geometric insight that is currently
difficult to capture in a computer algorithm. Interactive systems can tap into
that insight while still taking advantage of the computer’s superior computa-
tional power.
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There are two clear broad directions that could be pursued based on results
for interactive systems. One idea would be to attempt to classify how human
users obtain improved results for this problem and design an algorithm that
encodes this approach well enough to match or exceed human performance.
We believe that this could be a difficult task; indeed, our two users seemed
to pursue very different strategies in their use of the system. This approach
highlights the utility in developing interactive systems to inspire and refine
new algorithms. A second idea would be to design interactive systems for other
geometric problems, in order to gain insight into how to best design systems
that allow beneficial interaction to occur. This is in the spirit of the ongoing
HuGS project.
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