J Heuristics
DOI 10.1007/s10732-009-9107-5

Human-guided search

Gunnar W. Klau - Neal Lesh - Joe Marks -
Michael Mitzenmacher

Received: 20 November 2007 / Revised: 17 March 2009 / Accepted: 20 May 2009
© Springer Science+Business Media, LLC 2009

Abstract We present a survey of techniques and results from the Human-Guided
Search (HuGS) project, an effort to investigate interactive optimization. HuGS pro-
vides simple and general visual metaphors relating to local search operations that
allow users to guide the exploration of the search space. These metaphors apply to
a wide variety of problems and combinatorial optimization algorithms, which we
demonstrate by describing the HuGS toolkit and as well as eight diverse applications
we developed using it. User experiments show that human guidance can improve the
performance of powerful heuristic search algorithms. HuGS is also a valuable devel-
opment environment for understanding and improving optimization algorithms. Al-
though HuGS was designed for human-computer interaction, for two different prob-
lems we have used the HuGS code base to develop completely automatic heuristic
algorithms that produced at the time new best automatic results on benchmark prob-
lem instances.

This work was done while the first three authors were at Mitsubishi Electric Research Laboratories
(MERL). M. Mitzenmacher has been supported in part by NSF CAREER Grant CCR-9983832 and
an Alfred P. Sloan Research Fellowship.

G.W. Klau (X)
CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands
e-mail: gunnar.klau@cwi.nl

N. Lesh
Dimagi, Inc., Cambridge, MA 02139, USA
e-mail: nlesh@dimagi.com

J. Marks
Walt Disney Animation Studios, Burbank, CA 91521, USA
e-mail: Joe.Marks @disney.com

M. Mitzenmacher

Harvard School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
e-mail: michaelm@eecs.harvard.edu

Published online: 28 May 2009 &\ Springer

mailto:gunnar.klau@cwi.nl
mailto:nlesh@dimagi.com
mailto:Joe.Marks@disney.com
mailto:michaelm@eecs.harvard.edu

G.W. Klau et al.

Keywords Interactive optimization - Human-computer interaction - Tabu search

1 Introduction

Most previous research on optimization focuses on producing algorithms that are
more efficient than previous algorithms on some class of problems. An algorithm’s
efficiency is judged by the value of the solutions it produces according to a given,
well-defined objective function (such as the total distance traveled in vehicle routing
problems) as well as the amount of computation required to produce those solutions.

This approach to evaluating optimization systems is, however, insufficient for
many real-world contexts in which optimization problems arise. First, people often
need to understand and trust a solution in order to be able to implement it effectively.
For example, one person might need to explain or justify it to others in order to gain
their cooperation. Additionally, people might have to modify a solution as unexpected
events occur (e.g., a truck breaks down). Second, optimization systems are typically
solving only an approximation of the problem that is really of interest to its users.
People often know much more about a problem than they can specify in advance
and, furthermore, cannot specify what they know in the given problem-specification
language.

One approach to addressing these often-neglected aspects of optimization is
to develop systems in which people participate in constructing solutions. Interac-
tive, or human-in-the-loop, optimization systems have been developed for a va-
riety of applications, including space shuttle scheduling (Chien et al. 1999), ve-
hicle routing (Waters 1984), and constraint-based graph drawing (Nelson 1985;
Gleicher and Witkin 1994; Ryall et al. 1997; do Nascimento and Eades 2002). People
can better trust, justify, and modify solutions that they help construct than automat-
ically generated solutions. Users can steer an interactive algorithm based on their
preferences and knowledge of real-world constraints. Interactive optimization also
leverages people’s skills in areas in which people currently outperform computers,
such as visual perception, strategic thinking, and the ability to learn.

In this paper, we provide an overview of the Human-Guided Search (HuGS)
project.1 In the HuGS framework, users can manually modify solutions, backtrack to
previous solutions, and invoke, monitor, and halt a variety of local search algorithms.
More significantly, users can constrain and focus search algorithms by assigning mo-
bilities, essentially constraints on local search, to elements of a problem instance.
During the course of this project, we have created interactive optimization systems
for a variety of problems, developed general exhaustive and heuristic search algo-
rithms that are amenable to human guidance, and studied people’s ability to guide
these search algorithms (Anderson et al. 2000; Lesh et al. 2000; Scott et al. 2002;
Klau et al. 2002a). Additionally, we have developed the HuGS Toolkit, Java software
which supports the quick development of interactive optimization systems (Klau et
al. 2002b).

I This paper contains material presented in previous conference publications (Anderson et al. 2000; Lesh
et al. 2000; Scott et al. 2002; Klau et al. 2002a; Lesh et al. 2003, 2005; Chimani et al. 2005).

@ Springer

Human-guided search

Our experiments show that human interaction can significantly improve the per-
formance of search algorithms even when measured by only the given objective
function. In particular, our experiments have shown that human guidance can im-
prove the performance of an exhaustive search algorithm for the capacitated vehi-
cle routing with time windows problem to the point where the interactive algorithm
is competitive with the best previously reported algorithms (Anderson et al. 2000;
Scott et al. 2002). Furthermore, our interactive system was able to achieve the best
performance we know of on benchmark problem instances for the 2D Rectangu-
lar Strip Packing problem (Lesh et al. 2005). Additionally, an automatic system we
developed using HuGS was able to find at the time new best solutions for the three
largest benchmarks in the literature for the two-dimensional hydrophobic-hydrophilic
protein folding problem (Lesh et al. 2003).

Below, we describe related work and then present the current applications, tech-
niques, toolkit, and experimental results from the HuGS project.

2 Related work

Interactive systems that leverage the strengths of both humans and computers must
distribute the work involved in the optimization task among the human and computer
participants. Existing systems have implemented this division of labor in a variety of
ways.

In some interactive systems, the users can only indirectly affect the solutions to
the current problem instance. For example, in interactive evolution, an approach
primarily applied to design problems, the computer generates solutions via biolog-
ically inspired methods and the user selects which solutions will be used to gen-
erate novel solutions in the next iteration (Sims 1991; Todd and Latham 1992;
Poli and Cagnoni 1997; Sato 2002; Hammond 2003; Cheng and Kosorukoff 2004;
Malinchik et al. 2004).

Other systems provide more interactivity by allowing the users to control search
parameters or add constraints as the search evolves. Colgan et al. (1995) present a
system which allows users to interactively control the parameters that are used to
evaluate candidate solutions for circuit design problems. Several constraint-based
systems have been developed for drawing applications (Gleicher and Witkin 1994;
Ryall et al. 1997; Nelson 1985). Typically, the user imposes geometric or topological
constraints on an emerging drawing. Sreevalsan-Nair et al. (2007) describe user in-
teraction with an ant colony optimization algorithm to improve the search of shortest
three-dimensional paths in the presence of impediments.

In the area of visualization, similar concepts are known as computational steering.
Mulder et al. (1999) survey several computational steering environments. Halim et
al. (2006) is a recent example of such an environment, which can be used to visually
analyze stochastic local search algorithms.

Some systems allow more direct control by allowing users to manually modify
computer-generated solutions with little or no restrictions and then invoke various
computer analyses on the updated solution. An early vehicle routing system allows
users to request suggestions for improvements after making refinements to an initial

@ Springer

G.W. Klau et al.

solution for a scheduling problem instance (Waters 1984). An interactive space shut-
tle operations scheduling system allows users to invoke a repair algorithm on their
manually modified schedules to resolve any conflicts introduced by the user (Chien
et al. 1999).

The mixed-initiative approach to human-in-the-loop systems uses agents to me-
diate the cooperation between the computation system and the user to help the user
solve an optimization problem, e.g., (Smith et al. 1996; Ferguson and Allen 1998).
The emphasis in this work is on not only on combining the skills of people and com-
puters to solve problems, but in particular on having the computer play an active role
in the collaboration itself. Thus, the work has focused on mixed-initiative interaction
between the user and computer in which the computer has some representation of
the user’s goals and capabilities, and can engage the human in a collaborative dialog
about the problem at hand and approaches to solving it.

In contrast to these other approaches, HuGS allows the user to focus local search
algorithms more directly through a combination of simple metaphors and visualiza-
tions and has been applied to a much wider range of problems.

3 Applications

In this section, we briefly describe eight applications we have developed using the
HuGS toolkit. The first four are described in more detail in Klau et al. (2002a), the
fifth in Lesh et al. (2005), the eighth in Chimani et al. (2005) while the sixth and
seventh application have not been described elsewhere.

1. The Crossing application is a graph layout problem (Eades and Wormald 1994).
A problem instance consists of m levels, each with n nodes, and edges connecting
nodes on adjacent levels. The goal is to rearrange nodes within their level to min-
imize the number of intersections between edges. A screenshot of the Crossing
application is shown in Fig. 1.

2. The Delivery application is a variation of the Traveling Salesman Problem (Feillet
etal. 2001). A problem instance consists of a starting point, a maximum distance,
and a set of customers each at a fixed geographic location with a given number
of requested packages. The goal is to deliver as many packages as possible with-
out driving more than the given maximum distance. A screenshot of the Delivery
application is shown in Fig. 2.

3. The Protein application is a simplified version of the protein folding problem,
using the hydrophobic-hydrophilic model introduced by Dill (1985). A problem
instance consists of a sequence of amino acids, each labeled as either hydrophobic
or hydrophilic. The sequence must be placed on a two-dimensional grid without
overlapping, so that adjacent amino acids in the sequence remain adjacent in the
grid. The goal is to maximize the number of adjacent hydrophobic pairs.

4. The Jobshop application is a widely-studied task scheduling problem (Aarts et al.
1994). In the variation we consider, a problem instance consists of n jobs and m
machines. Each job is composed of m operations (one for each machine) which
must be performed in a specified order. Operations must not overlap on a machine,
and the operations assigned to a given machine can be processed in any order. The
goal is to minimize the time that the last job finishes.

@ Springer

Human-guided search

File History Selections

|@|m| e =] intersections: 119 (-8) |

bu v| Restart | Stop Inputs ‘ time= 118, sinceBest= 10, best: intersections: 108 (-11)

o - ,ﬁ| Current Qutputs: iter= 3661, current= intersections: 124, div= 0.80, high= 21.
| Clear |[viInsert [viShow mobilities [] Move selected ‘rectannle -

Fig. 1 The crossing application

File History Selections
2@ €| m e = undelivered= 65.15 dis=99.72 |

tabu - Start Stop | Inputs time= 87, sinceBest= 3, best: undelivered= 64.13(-2.31) diz=99.84(-0
1 Outputs: iter= 714, current= undel= 64.53 dis=99.59, div= 0.40, high

run - Best Current

| Clear || insert selected || Remove selected || Select route || Unselect route ||rectangle « |

2 0 0

Fig. 2 The delivery application

@ Springer

G.W. Klau et al.

O Tme

File History Selections Options
2 e LA Cin=185(x100) VioH=33(x10000) VioL=855(x1) Mark=349355 I

wabu - esun stop. puts | tmes 108, sinceBesi= 2, best. Clne 182(5100) VioH=33(x10000) Viol=835(x1) Mark=343033
m + Ounputs: er= 150, currenta. Cins 182(x 100} VioH =33(x 10000} VieL «839(x1) Marks 349039, diva 076, high= 600 26

minD

- 117 noise swaps

Swap Moves _ blocks
i oo
||.1. Block Moves

Fig. 3 The paintshop application

5. The Packing application is a two-dimensional bin packing problem (Hopper 2000;
Hopper and Turton 2000). A problem instance consists of n rectangles with their
dimensions and a target width W. The rectangles must be placed parallel to the
horizontal and vertical axes. The goal is to pack the rectangles without overlap
into a single rectangle of width W and minimum height H. A screenshot of the
Packing application is shown in Fig. 6.

6. The Labeling application considers a classical problem in cartography (see, e.g.,
Christensen et al. 1995). A problem instance consists of a set of sites, for instance,
cities on a map, and a rectangular label for each site. Each label can be placed in
any of four locations around each site. The goal is to place the maximum number
of labels such that no overlaps occur.

7. The Paintshop application has been motivated by a challenge organized by the
French Operations Research society (ROADEF) in 2005. The task is to schedule
the daily order of cars in a car factory’s paintshop. The difficulty lies in finding
a balance between two conflicting objectives: on the one hand, the consumption
of paint solvent should be low. The solvent is needed when washing the spray
guns after changing the paint color. On the other hand, difficult to assemble vehi-
cles should be spread out as evenly as possible for the subsequent assembly line.
Figure 3 shows the HuGS solution approach.

This is an example of a multi-objective application, which can be dealt with
nicely using HuGS. In addition to the classical approach of combining the opti-
mization goals into one objective function by prioritization, HuGS supports mul-
tiple objectives in that it leaves it up to the user to balance the goals by guiding
the optimization process.

@ Springer

Human-guided search

1:00
1

B =lojx|
File History 001]
. JJJ‘J‘“H Airplanes=17, flyTime=619340
' o ||
; - Best Current
Alrplane View = [overview ~| mm Search Rag.
] Show Unused Airplanes lm‘ = [J lcapacwes ~] e
[T Show Airport Times: p— - .
Textual Details M H ulA [Lonond J Del Req.
]
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mov Dec
i (e et et (e e et e R et e
e 1Y iy 19 19 [l | Ly g iy iy |
’ E] L& ¥ L L i E L | d ik
[T 0 e I
‘“l P I [) T [(R S T - R w !
B e oo [io [(3o [[ie [ae [ie [io [ie [is
B ¢ s s 5 (x5 s eslesleslesles|ssy
*=azsfafass';';:a > 2 s o [
k e e |re e Jea (v [es [ee[es e [0
L | 14 14 14 1 a 13 1A 14 1A P 1145
[« 8
00 6:00 9:00 T;'DU 15:00 E
I

< 4/8/03, 14.40 >
Pickup 2 Audi TT

[
[

oY

|4t aimor C, going ta &

On Airplane 141-130@)
Request R1079; riority 111120,
Dur a 4/9/03, 14.01

Reloase HERE to Edit |

[«]
L]
=

: A

Fig. 4 Different views in the transport application

8. The Transport application (Chimani et al. 2005) is a variation of the Vehicle Rout-

ing Problem, with a main focus on shifting HuGS’s applicability from small appli-
cations to large-scale problems and on analyzing how the interaction paradigm ac-
commodates to such a settings. A problem instance consists of airports, including
service hours, airplanes with predefined capacities and restrictions of the trans-
portable goods, and a set of transportation tasks for a whole year: such a task
consists of deadlines and specified airports for pickup and delivery. The aim is to
find an assignment of the tasks to airplanes and to calculate valid airplane routes,
while minimizing the number of used airplanes and the flight durations. Screen-
shots of the application are shown in Fig. 4.

@ Springer

G.W. Klau et al.

3.1 Terminology

We use the following abstractions to allow a uniform description of the HuGS appli-
cations: problem instances, solutions, moves, and elements. An problem instance is
an instance of the type of problem being optimized. For example, a Protein problem
instance consists of a sequence of amino acids.

The goal of optimization is to find the best solution to the given problem instance.
A Delivery solution, for example, is a sequence of customers. We assume that for
each application there is a method for comparing any two solutions and that for any
two solutions, one is better than the other or they are equally good. As mentioned in
the introduction, however, we assume that this total ordering may merely approximate
the real-world constraints and preferences known by the users. Additionally, for most
applications, it is possible to create infeasible solutions which violate some of the
constraints of the problem. For example, a Delivery solution may exceed the distance
constraint.

For each application we have designed a set of possible moves, or transformations
on solutions. Applying a move to a solution produces a new solution. For example,
in the Crossing application, one possible move is to swap two adjacent nodes. For
the Delivery applications, the moves include adding or removing customers from the
current route.

Finally, we assume that each problem instance contains a finite number of el-
ements. The elements of Crossing are the nodes, the elements of Delivery are the
customers, and the elements of Protein are the amino acids. Each move is defined
as operating on one element and altering that element and possibly others. For ex-
ample, moving a node from the 3rd to the 8th position in a list, and shifting the 4th
through 8th nodes up one, would operate on the 3rd element and alter the 3rd through
the 8th. As with fully automatic optimization, deciding which moves to include is an
important design choice for the developer of an optimization system. Our framework
further requires the developer to determine the elements that should be considered
altered by each move.

4 Techniques
4.1 Mobilities

Our system maintains and displays single current solutions, such as the ones shown
in Figs. 1-3. Mobilities provide a general mechanism that allows users to visually
annotate elements of a solution in order to guide a local search to improve this solu-
tion. Each element is assigned a mobility: high, medium, or low. The search algorithm
is only allowed to explore solutions that can be reached by applying a sequence of
moves to the current solution such that each move operates on a high-mobility ele-
ment and does not alter any low-mobility elements.

We demonstrate mobilities with a simple example. Suppose the instance contains
seven elements and the solutions to this problem instance are all possible orderings of
these elements. The only allowed move on an element is to swap it with an adjacent

@ Springer

Human-guided search

element. Suppose the current solution is as follows, and we have assigned element 3
low mobility (shown in dark gray, or red, in the color copy), element 5 and 6 medium
mobility (shown in medium gray, or yellow, in the color copy), and the rest of the
elements have high mobility (shown in light gray, or green, in the color copy):

@@ @000

A search algorithm can swap a pair of adjacent elements only if at least one has
high mobility and neither has low mobility. It is limited to the space of solutions
reachable by a series of such swaps, including:

ANC) ® OO
O @600
RNC) @0 ©©

Note that setting element 3 to low mobility essentially divides the problem in-
stance into two much smaller sub-instances. Also, while medium-mobility elements
can change position, their relative order cannot be changed. Mobility constraints can
drastically reduce the search space; for this example, there are only 12 possible so-
lutions, while without mobilities, there are 7! = 5040 possible solutions. We have
found this generalized version of mobilities useful in all of the applications described
above.

4.2 Guidable algorithms

As we describe below, our interface allows the user to choose and change which
search algorithms to employ, and we have found it beneficial to provide a small suite
of algorithms. We now describe several algorithms that can be controlled by mobil-
ities. First, we describe two variations of a brute force, exhaustive search. Then we
describe a guidable version of a powerful heuristic, called tabu search. Both of these
algorithms are general and work on all of our applications for which a move set is
defined. We then describe a domain-specific, human-guidable search algorithm we
designed for the Packing application.

4.2.1 Exhaustive search

We use two variations of exhaustive search: steepest descent and greedy. Both algo-
rithms first evaluate all allowed moves given a set of mobilities, then all combinations
of two allowed moves, and then all combinations of three moves and so forth. Since
this corresponds to a set of neighborhood structures, the exhaustive search algorithms
may also be seen as variants of Variable Neighborhood Search (Hansen and Mlade-
novi¢ 1999). The steepest descent algorithm keeps searching deeper and deeper for
the move that most improves the current solution. The greedy algorithm immediately

@ Springer

G.W. Klau et al.

makes any move which improves the current solution and then restarts its search to
try to improve the solution that results from applying that move.

4.2.2 Tabu search

While we found that human guidance of a simple search algorithm to be surpris-
ingly effective (Anderson et al. 2000), we were able to improve upon these results
by providing the user with a guidable version of tabu search. Tabu search is a heuris-
tic approach for exploring a large solution space (Glover and Laguna 1997). Like
other local search techniques, tabu search exploits a neighborhood structure defined
on the solution space. In each iteration, tabu search evaluates all neighbors of the
current solution and moves to the best one. The neighbors are evaluated both in terms
of the problem’s objective function and by other metrics designed to encourage in-
vestigation of unexplored areas of the solution space. The classic “diversification”
mechanism to encourage exploration is to maintain a list of “tabu” moves that are
temporarily forbidden, although others have been developed. Recent tabu algorithms
often also include “intensification” methods for thoroughly exploring promising re-
gions of the solution space (although our algorithm does not currently include such
mechanisms). In practice, the general tabu approach is often customized for individ-
ual applications in myriad ways (Glover and Laguna 1997).

Following the description of Klau et al. (2002a), we now describe GTABU, a guid-
able tabu search algorithm. The algorithm maintains a current solution and current set
of mobilities. In each iteration, GTABU first evaluates all allowed moves on the cur-
rent solution given the current mobilities, in order to identify which one would yield
the best solution. It then applies this move, which may make the current solution
worse, and then updates its current mobilities so as to prevent cycling and encourage
exploration of new regions of the search space. The pseudocode for GTABU is shown
in Fig. 5.

The algorithm updates the mobilities in two ways. First, the call to the MEMORY
function prevents GTABU from immediately backtracking, or cycling, by setting ele-
ments altered by the current move to medium mobility. For example, in Crossing, if
the current move swaps two nodes, then both nodes are set to medium mobility, so that
these two nodes cannot simply be reswapped to their original locations. The nodes
are restored to their original user-specified mobilities after a user-defined number of
iterations elapse, controlled by an integer memSize which is an input to GTABU. Most
tabu search algorithms have a similar mechanism to prevent cycling.

A second mechanism, performed by the DIVERSIFY function in Fig. 5, encour-
ages the algorithm to choose moves that alter elements that have been altered less
frequently in the past. The algorithm maintains a list of all the problem instance el-
ements, sorted in descending order by the number of times they have been altered.
The diversity of an element is its position on the list divided by the total number of
elements. The diversity of a move is the average diversity of the elements it alters.
The diversity of a search is the average diversity of the moves it has made since the
last time it has found a best solution. The user is allowed to indicate a target minimum
diversity minDiv between 0 and 1 for the search. Whenever the average diversity falls
below this threshold, then any element with a diversity less than minDiv is set to

@ Springer

Human-guided search

Fig. 5 Pseudocode for guidable GTABU (sol,mobilities ,memSize, minDiv):
tabu search best — sol
originalMobilities < mobilities
until halted by user
m < best move in LEGALMOVES(sol,mobilities)
sol < result of m applied to sol
if ISBETTER(sol, best) then
best — sol
mobilities — originalMobilities
else
mobilities < MEMORY (m,mobilities,memSize)
mobilities < DIVERSIFY (m,mobilities, minDiv)
return best

LEGALMOVES (solution, mobilities):
returns the set of all moves m in MOVES(solution,e)
where e has high mobility in mobilities and every element
in ALTERED(m) has high or medium mobility in mobilities

DIVERSIFY (move, mobilities, minDiv):

restore any elements to high mobility that
were set to medium mobility by previous
call to DIVERSIFY

compute average diversity of search
(as defined in the paper)

if average diversity is less than minDiv
then set all elements with high mobility
in mobilities and diversity
less than minDiv to medium mobility

return mobilities

MEMORY (move, mobilities, memSize):
restore any elements to high mobility that were
set to medium mobility memSize iterations
ago by MEMORY
set all high-mobility elements in ALTERED (move)
to medium mobility
return mobilities

medium for one iteration. This forces the tabu algorithm to make a move with high
diversity.

Under the assumption that a system is more guidable if it is more understandable,
we strove to design a tabu algorithm that was easy to comprehend. Many automatic
tabu algorithms, for example, have a mechanism for encouraging diversification in
which the value of a move is computed based on how it affects the cost of the current
solution and some definition of how diverse the move is. The two components are
combined using a control parameter which specifies a weight for the diversification
factor. We originally took a similar approach, but found that users had trouble under-
standing and using this control parameter. Our experience from the training sessions
described in Sect. 5.2 is that users can easily understand the minDiv control parame-
ter.

The understandability of the algorithm is also greatly enhanced by the fact that the
tabu algorithm controls its search by modifying mobilities. The users of our system

@ Springer

G.W. Klau et al.

learn the meaning of the mobilities by using them to control and focus the search.
All applications provide a color-coded visualization of the users’ current mobility
settings. This same mechanism can be used to display GTABU’s mobilities.

We provide several different visualization modes that allow the user to step
through the search one iteration at a time or to view GTABU’s current solution and
mobility settings briefly at each iteration. During an optimization session, these vi-
sualizations are typically turned off because they reduce the efficiency of the system.
However, while learning how to use the system, these visualization modes help users
understand how the algorithm works.

4.2.3 Heuristic search for packing

Although initially devised to augment standard local search techniques, HuGS con-
cepts can be applied with good effect to other search techniques. For the packing
problem we found that our local search algorithms were not effective. This is not
surprising in that past efforts to apply standard local search techniques, such as simu-
lated annealing or genetic algorithms have not been able to match the performance of
simple heuristics (see Hopper 2000 for an overview). We now describe an improved
and guidable version of one of the most successful packing heuristics. Here, we as-
sume that the orientations of the rectangles are fixed; at the end of Sect. 5.3.1, we
consider a variation in which the rectangles can be rotated 90 degrees.

A common method for packing rectangles is to take an ordered list of rectangles
and greedily place them one by one. Perhaps the best studied and most effective
heuristic in this setting is the Bottom-Left (BL) heuristic, where rectangles are se-
quentially placed first as close to the bottom and then as far to the left as they can fit.
For some problem instances, BL cannot find the optimal packings (Baker et al. 1980),
nor does it perform well in practice when applied to random orderings. However,
a very successful approach is to apply BL to the rectangles ordered by decreasing
height, width, perimeter, and area and return the best of the four packings that result
(Hopper 2000; Hopper and Turton 2000). We refer to this scheme as Bottom-Left-
Decreasing (BLD).

We developed a variation of the BLD heuristic called BLD* that considers suc-
cessive random perturbations of the original four decreasing orderings. Our intuition
for why BLD* performs so much better than random BL is that the decreasing sorted
orders save smaller rectangles for the end. BLD* chooses random permutations that
are “near” the decreasing sorted orders used by BLD as they will also have this prop-
erty. There are many possible ways of doing this; indeed, there is a deep theory of
distance metrics for rank orderings (Marden 1995). BLD* uses the following simple
approach: start with a fixed order (say decreasing height), and generate random per-
mutations from this order as follows. Items are selected in order one at a time. For
each selection, BLD* goes down the list of previously unaccepted items in order, ac-
cepting each item with probability p, until either an item is accepted or the last item
is reached (in which case it is accepted). After an item is accepted, the next item is
selected, starting again from the beginning of the list. This approach generates per-
mutations that are near decreasing sorted order, preserving the intuition behind the
heuristic, while allowing a large number of variations to be tried. BLD* first tries

@ Springer

Human-guided search

File Histary Selections Options

2| € m| x| ®|u=603.000 width=228.000

‘ﬂmlnmnv‘ Restant stop | Inputs ‘ time= 27, sinceBest= 13, best: u=217,000(-386.0) width=207.000(-21.0)
Outputs: iter= 234

- | | o |

| Bound region | Simple compact.
Drag
Region
=
Down

Resolve

clear select

select region

show region

width -

Fig. 6 (Color online) Interactive system: The image on the left is a screen shot of our system in use.
The user has selected a region to apply BLD* to and has frozen most of the rectangles (frozen rectangles
shown in red/dark gray, unfrozen in green/light gray). The image on the right shows a blowup of the
selected portion on the packing, after BLD* has run for a few seconds and the user has pressed the Best
button to see the best solution found. Given the aspect ratio of a computer monitor, we found it more
natural to rotate the problem by 90 degrees, so that there is a fixed height and the goal is to minimize the
width of the enclosing rectangle

the four orders used by BLD and then permutes each of these orders in round robin
fashion.

While BLD* does not fit exactly into the framework for mobilities described
above, we allowed people to guide the algorithm in a simple fashion by assigning
rectangles high or low mobilities: rectangles with high mobility can be moved and
those with low mobility are frozen in their current location. The BL heuristic is then
used to place each high-mobility rectangle as close to the bottom and then as far to the
left as it can fit without overlapping any of the low mobility rectangles or any of the
high-mobility rectangles that have already been placed. Figure 6 shows a screenshot
of the interface and an example of how mobilities are used with BLD*.

4.3 Overview of user actions

We now describe the full range of user actions in the HuGS framework. In our ap-
plications, the system always maintains a single, current working solution that is
displayed to the users. The users try to improve the current solution by performing
the following three actions:

1. manually choose a move to be applied to the current solution,
2. invoke, monitor, and halt a mobility-focused search for a better solution,
3. revert to a previous or precomputed solution.

We now describe each type of action. The users can manually modify the current
solution by performing any of the possible moves defined for the current application

@ Springer

G.W. Klau et al.

on the current solution. In many of our applications, a single user action on the GUI
can invoke several moves. In the Delivery application, for example, the user can select
multiple customers on the route and remove them all with a single button press.

Users can also invoke a computer search for a better solution. The search algo-
rithm starts from the current solution and explores the space of solutions that can be
reached by applying moves which are allowed given the mobility assignments as de-
scribed above. The users can choose which search algorithm to invoke from among
the selection described above.

After the users have invoked a search algorithm, they can monitor its progress
to decide when to halt it. A text display shows the score of the best solution the
search has found and how many seconds ago this solution was found. At any time,
the user can query the search algorithm for either the best solution found so far or
the current solution it is considering. This solution becomes the current visualized
solution of the system. While the search is running the user can modify the current
visualized solution or reassign mobility values to problem instance elements. The
user can restart the search from these current settings, or halt the search.

While the search algorithm is running, the users can select from a variety of search
visualization modes. The most efficient mode is to let the search algorithm run in
the background without updating the current visualized solution. The users can also
observe the search more directly. The users can put the search into “auto” mode, in
which every solution the search considers is displayed, or “poll” mode in which the
computer is polled periodically for its current solution, or “step” mode in which the
computer waits for the user to press a button before moving on to the next solution it
considers. These modes are useful for developing applications as well as for learning
about how the system and search algorithms work.

Finally, the third type of user action is to revert to a previous solution. This impor-
tant feature allows sophisticated users to systematically investigate the neighborhoods
of local optima in the search space. The system maintains a history of previous solu-
tions, which can be browsed and adopted by the users. The GUI also provides menu
commands to quickly undo or redo recent moves, as well as revert to the best solution
seen so far. Additionally, the users can browse and adopt a set of solutions that were
precomputed by the search algorithms prior to the interactive optimization session.

5 Results
5.1 HuGS toolkit

We now describe our Java middleware for rapidly developing interactive optimization
systems. This software was used to create the above applications and is available for
research or educational purposes. More details are described in Klau et al. (2002b).
Generic code in the toolkit is used to maintain the current working solution, the
mobilities, and the history. The file Input/Output, including saving and loading of
problem instances and solutions, and logging user behavior, are also performed by
generic code. Furthermore, all our applications use the same implementation of the
exhaustive and tabu search algorithms and the GUI’s for invoking and monitoring

@ Springer

Human-guided search

them. Even the packing algorithm is controlled by the same generic GUI as the other
search algorithms. Our implementation of the tabu search algorithm functions by
modifying the mobility assignments. Thus, there is no additional burden on the de-
veloper of a new application in order to be able to use tabu search.

Of course, the developer of a new application must define what a problem is and
what a solution is for that application.> Each problem class needs to implement a
function that returns all the elements of a problem instance. Each solution class must
be able to return an object which represents the score of that solution. A score object
must be able to compare itself to another score object and decide if it is better, worse,
or equal. Additionally, a developer must define a set of moves which can be applied to
solutions in this application. For some applications, there might be several different
types of moves. In addition, the developer must provide a function for generating all
possible moves for a given element.

Each application requires a domain-specific visualization component. From the
point of view of the system, the visualization component has only three responsibil-
ities. First, it must report any manual moves made by the user. These moves will be
applied to the current solution that the system maintains. Second, the visualization
component must have an update function which, when called, triggers it to display
the current solution and mobilities maintained by the system. Third, the system must
allow users to select and unselect problem instance elements. The system will query
the visualization component for the list of currently selected elements in order to
maintain the mobilities. The users can, for example, set all the selected elements to a
particular mobility, as well as reset all elements to any particular mobility.

5.2 Guided vs. unguided search

In Anderson et al. (2000) we describe an interactive optimization system for solving
the capacitated vehicle routing with time windows problem (Solomon 1987). This
system follows the HuGS framework, although it was developed prior to the HuGS
Toolkit. It only provides the user with the exhaustive search algorithm, not GTabu.
Even so, we were able to achieve results on the well-known Solomon benchmarks
(Solomon 1987) that were competitive with state-of-the-art algorithms designed spe-
cially for this problem and these benchmarks. We also demonstrated clearly that hu-
man guidance was essential to obtain these results. As one point of comparison: the
best known solutions for the subset of benchmarks we tested require 11.5 vehicles, on
average, to satisfy all the customers requests. We used the following setup in HuGS:
Initial 90 minutes were spent on pre-computation in order to generate a number of
promising solutions to start with. This was followed by another 90 minutes of interac-
tive guidance of the exhaustive algorithms. Thus, we were able to produce solutions
requiring 11.88 vehicles, on average. This matched the best results by any one algo-
rithm up to 1999, the year before our publication. However, running our algorithm by
itself for 20 hours produces solutions that require 12.06 vehicles, on average, which
is not competitive with state-of-the-art algorithms.

2This involves defining classes which implement Java interfaces for a Problem class and a Solution class.

@ Springer

G.W. Klau et al.

Table 1 Average number of
minutes of unguided search
required to match or beat the 10 min. 10 min. 10 min. 10 min.
result produced by 10 minutes
of guided search

Delivery Crossing

guided guided guided guided

tabu greedy tabu greedy
Unguided tabu 61 29 79 25
Unguided greedy >150 >150 >150 135

Table 2 The number of wins (W), losses (L), and ties (T) when comparing the result of 10 minutes of
human-guided tabu search to 10 to 150 minutes of unguided tabu search, as well as the average difference
of the wins and losses

Minutes Delivery Crossing
W L T ave ave w L T ave ave
win loss win loss
10 16 4 0 1.76 0.85 14 3 3 3.21 4.67
20 10 10 0 1.10 1.06 11 6 3 2.64 5.67
30 10 10 0 0.95 1.27 11 6 3 2.55 5.83
60 8 12 0 0.86 1.38 10 8 2 2.70 6.25
90 8 12 0 0.80 1.46 10 8 2 2.70 7.00
120 6 14 0 0.69 1.48 9 9 2 2.33 6.89
150 4 16 0 0.6 1.42 9 9 2 2.33 6.89

In Klau et al. (2002a) we describe experiments comparing guided search of the
tabu and greedy exhaustive algorithms to unguided search for the Delivery and Cross-
ing applications (as well as some other experiments not discussed here). By unguided
search, we mean running either the tabu or exhaustive algorithm without intervention
and with all elements set to high mobility. We trained test subjects for 2—4 hours on
how to use our system. Each of our four subjects performed five 10-minute trials us-
ing our system with only our GTABU algorithm and five 10-minute trials with only
exhaustive search. The test subjects were students from nearby selective universities.
We fixed the minimum diversity of tabu to be the one that produced the best results
in preliminary experiments on random problem instances for each application.

To evaluate each result, we compared it to 2.5 hours of unguided tabu search on
the same problem instance. Table 1 shows the number of minutes required by un-
guided tabu and unguided greedy, on average, to produce an equal or better solution
to the one produced by 10 minutes of guided search. As shown in the table, it took, on
average, more than one hour for unguided tabu search to match or beat the result of
10 minutes of guided tabu search. Furthermore, the results of guided tabu were sub-
stantially better than those of guided greedy, as can be seen by the fact that unguided
tabu overtakes the results of guided greedy search much more quickly.

Table 2 shows a detailed comparison of the result of 10 minutes of guided tabu
search to between 10 and 150 minutes of unguided tabu search. The win and loss
columns show how often the human-guided result is better and worse, respectively.
The table shows that for Crossing, 10 minutes of guided search produced better re-

@ Springer

Human-guided search

sults than 2.5 hours of unguided search in nine of 20 instances and tied in two. When
guided search loses, however, it does so by more, on average, than it wins by. Inci-
dentally, some test subjects consistently performed better than others. An interesting
open question for further study is to analyze individual performance characteristics
in more detail.

5.3 Researcher-in-the-loop: the packing and protein applications

We now describe the results we obtained from the Packing and Protein applications.
In both cases, the automatic methods we developed outperformed previous automatic
methods; for Packing, human interaction further improved the results significantly.
Development of the automatic methods in HuGS has benefited from what we call
researcher-in-the-loop. As algorithm developers, we have generated many ideas from
solving problem instances ourselves using the HuGS system. Also, we often devel-
oped ideas to improve our algorithm by watching it in action. Our experience has
been that it is well worth the investment to build visualizations and to work within
the HuGS framework, even if the only goal is to produce automatic methods.

5.3.1 Packing

As an example of how implementing and watching an algorithm can itself lead to
new ideas and solution techniques, we first describe an automatic algorithm based
on exhaustive search using branch-and-bound techniques we devised for the Packing
problem. The key to this approach is a set of bounding techniques that reason about
gaps created by the currently placed rectangles. We developed these techniques by
watching the branch-and-bound algorithm in action and realizing that it was missing
opportunities for bounding. The resulting algorithm is extremely effective for prob-
lem instances with fewer than 30 rectangles and in which the rectangles can be tightly
packed with little or no unused space. For example, it solves benchmark problem in-
stances containing 25 rectangles in an average of 96 seconds. At the time, the best
reported results were more than 5% above optimal (Hopper 2000).

For instances too large to be solved exhaustively, we used the BLD* algorithm de-
scribed above. We ran experiments on the benchmark instances described in Hopper
(2000): here we review our results on the N4, N5, N6 collections, each of which con-
tains 5 instances. First, we established that BLD*, our variation of the BLD heuristic,
outperforms the BLD heuristic itself. For example, after just one minute, BLD* re-
duces the packing height from an average of 7.3% over optimal by BLD to about
5.3% over optimal on the N4-N6 data instances.

Our experiments show that human interaction improves BLD*.3 People can iden-
tify particularly well-packed subregions of a given packing and then focus a search
algorithm on improving the other parts. People can also devise multi-step repairs to
a packing problem instance to reduce unused space, often producing packings that
could not be found by the BL heuristic with any ordering of rectangles. To prepare

3This is unsurprising in that people are known to outperform computers at packing irregular polygons in
industrial applications (Milenkovic and Daniels 1999).

@ Springer

G.W. Klau et al.

Table 3 Interaction experiment results for the Packing application: The third column shows the average
percentage over optimal achieved by BLD* in two hours. These results are at least 2%—3% closer to opti-
mal than the best previously published results. The forth column shows the average time it took interactive
use of BLD* to achieve a solution another 1% closer to optimal. The values are averaged over the five
problem instances in the corresponding collection

Dataset Number of Percent over optimal Time for users to find
rectangles by BLD* in two hours packing 1% closer to optimal

N4 49 4.3% 3.3% in 14 min., 21 sec.

N5 73 4.1% 3.1% in 13 min., 52 sec.

N6 97 3.3% 2.3% in 17 min., 12 sec.

for our user experiments, we ran BLD* for 2 hours on each instance in N4-N6. We
then performed one trial for each instance in which a user attempted to find a solution
1% closer to optimal than the best solution found by BLD* within 2 hours. As shown
in Table 3, the users were able to reach these targets in about 15 minutes on average.
In every case, the target was reached within 30 minutes. While this is not exactly a
“head-to-head” comparison, since the users had the target scores to reach, the fact
that people were able to achieve superior solutions so quickly demonstrates the value
of interaction.

We also tested our interactive system on the few other benchmarks we could find in
the literature, including in particular ones without known optimal solutions, referred
to by Hopper as D1 and D3 (Hopper 2000). The best solutions for D1 and D3 in
the literature appear to have height 47 and 114. We were able to find a solution with
height 46 in about 15 minutes. We were able to match the 114 for D3 in about 20
minutes.

We now briefly describe results in the variation of the Packing in which the rec-
tangles can be rotated by 90 degrees.

First we modified the BLD* heuristic as follows. We use a single base order, in
which the rectangles are sorted in decreasing order by their smaller dimension. We
then permute that order as described above in Sect. 4.2.3. Given an ordering, we place
each rectangle by calling the BL heuristic on both possible orientations of the rectan-
gle. We chose the orientation that puts the top right corner of the rectangle closer to
the bottom, or closer to the left to break ties. We prefer the tall orientation to the wide
orientation if there is still a tie. This variation outperforms the other variations we
tested by a substantial degree. The variations we tested included ordering the rectan-
gles by their larger dimension, and choosing the placement based on the bottom left
corner or the center of the rectangle.

Allowing BLD* to change the orientation improved the packings considerably. For
the N4 and N5 benchmark sets, two hours of computation yielded solutions 2.75%
over optimal, compared with 4.2% over optimal using the given orientations.

We added a feature to our interactive Packing application which allows a user to
manually reorient a rectangle. Then we again ran tests in which the users attempted
to find solution 1% closer to optimal than the best solution found by BLD* within
2 hours. We thought this task might be too difficult since the targets were so much
closer to optimal. However, for the 10 benchmarks in N4 and N5 it only took an
average of 23 minutes and nine seconds to achieve these scores.

@ Springer

Human-guided search

Fig. 7 New at the time best solutions for simplified protein folding benchmarks. From left to right there is
a —53 configuration for the S85 sequence, a —48 configuration for S100a and —50 for S100b. The squares
represent hydrophobic amino acids, and the circles represent hydrophilic ones. Thus each image contains
the problem definition as well as its solution. The score is the number of vertically or horizontally adjacent
nonsequential hydrophobic pairs

5.3.2 Protein

In the Protein application, we used the HuGS toolkit to develop a new set of local
moves, which we call pull moves (Lesh et al. 2003). Pull moves, which resemble
the technique of inverse kinematics from robotics and computer graphics, are quite
different than previous local moves applied to this problem. We developed them in the
process of improving our user interface to help users manually move several elements
at once. In Protein, the input sequence of amino acids must be placed on a grid in a
non-overlapping path, such as those shown in Fig. 7. It was quite tedious for the user
to modify the path manually, and so we designed a “smart” manual move in which
the user would re-position one amino acid and then the system would try to move
as few other amino acids as possible to establish a valid path. Essentially, one amino
acid is moved and others are pulled after it.

While users have so far found it difficult to guide the algorithms in Protein, per-
haps because of the unintuitive geometric reasoning required, GTABU has proven
extremely effective using pull moves. The highlight of our experimental results is
that we have found what were at the time new best solutions (i.e., lowest energy con-
figurations) for the three longest benchmarks we found in the literature and matched
the best results for the others. For example, a sequence of length 85 used in Konig
and Dandekar (1999); Liang and Wong (2001) was conjectured to have a ground state
energy, or minimal energy, of —52; we have found a configuration with energy —53.
We have similarly found new then best configurations for two sequences of length
100 used in Bastolla et al. (1998); Ramakrishnan et al. (1997). We found multiple
configurations with each at the time new best score: one sample for each is shown in
Fig. 7.

The length-85 example is particularly compelling. In Konig and Dandekar (1999),
it is stated that the optimal ground state has energy —52; it appears that the authors
constructed this sequence themselves with an optimal solution in mind to test their al-
gorithm. The genetic algorithms of K&nig and Dandekar (1999) found a ground state
of —47. In Liang and Wong (2001), an evolutionary Monte Carlo algorithm found a

@ Springer

G.W. Klau et al.

ground state of —52, but only by specifying constraints that significantly cut down the
search space. That is, the algorithm is modified to constrain specified subsequences
of hydrophobic residues (covering approximately 40% of the sequence) to take one
of three forms. Our algorithm has identified several unstructured configurations with
energy —53.

6 Conclusions and future directions

A major aim of our research is to better understand general principles of interactive
optimization and to generate general ideas, techniques, and software. While inter-
active optimization systems have been built for a variety of applications, no other
interactive optimization approach has previously been applied to such a varied set of
optimization problems as we have described here.

Most of the applications described in this paper, however, consider problem in-
stances with, at most, several hundred elements. A future research direction is to
explore techniques for applying interactive optimization to larger problem instances,
in which people cannot view all the elements at once on the computer screen. Here,
Lesh et al. (2000) and Chimani et al. (2005) can be seen as first steps into this direc-
tion.

There is also a need for performing deeper analysis and user experimentation on
interactive systems. In Scott et al. (2002), we present an initial investigation into the
understanding of how well people can perform the various tasks in HuGS, and we
think that this is a promising avenue for further research. Here, human variability in
performance is an interesting aspect, both, depending on the time allowed to spend
on the optimization task and on the level of expertise.

Additionally, we find it interesting to investigate whether the impact of human
guidance increases or decreases as the speed of the algorithm increases. We further
believe that carrying out experiments to investigate how people’s understanding and
trust of solutions is effected by participating in the optimization process may yield
important insights.

Finally, we see a need for a broader set of metrics for evaluating optimization
systems. If two algorithms are equally efficient, but one affords more or better inter-
action then it is superior for many tasks. Indeed, in many contexts, interaction is more
important than efficiency because the optimization algorithm is working with an im-
poverished objective function and the ability to successfully implement the solution
depends on how well people understand and trust it.

Acknowledgements The Labeling application has been implemented by Markus Chimani and Bin Hu,
Vienna University of Technology.

References

Aarts, E., van Laarhoven, P., Lenstra, J.K., Ulder, N.: A computational study of local search algorithms for
job-shop scheduling. ORSA J. Comput. 6(2), 118-125 (1994)

Anderson, D., Anderson, E., Lesh, N., Marks, J., Mirtich, B., Ratajczak, D., Ryall, K.: Human-guided
simple search. In: Proc. AAAI 2000, pp. 209-216 (2000)

@ Springer

Human-guided search

Baker, B.S. Jr., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM J. Comput. 9,
846-855 (1980)

Bastolla, U., Frauenkron, H., Gerstner, E., Grassberger, P., Nadler, W.: Testing a new Monte Carlo algo-
rithm for protein folding. Proteins: Struct. Funct. Genet. 32, 52-66 (1998)

Cheng, C.D., Kosorukoff, A.: Interactive one-max problem allows to compare the performance of inter-
active and human-based genetic algorithms. In: Deb, K., et al. (eds.) Proc. Genetic and Evolutionary
Computation Conference (GECCO 2004). Lecture Notes in Computer Science, vol. 3102, pp. 983—
993. Springer, Berlin (2004)

Chien, S., Rabideau, G., Willis, J., Mann, T.: Automating planning and scheduling of shuttle payload
operations. J. Artif. Intell. 114, 239-255 (1999)

Chimani, M., Lesh, N., Mitzenmacher, M., Sidner, C., Tanaka, H.: A case study in large-scale interactive
optimization. In: Proc. Int. Conf. on Artificial Intelligence and Applications (AIA0S), pp. 24-29.
Acta Press, Calgary (2005)

Christensen, J., Marks, J., Shieber, S.: An empirical study of algorithms for point-feature label placement.
ACM Trans. Graph. 14(3), 203-232 (1995)

Colgan, L., Spence, R., Rankin, P.: The cockpit metaphor. Behav. Inf. Technol. 14(4), 251-263 (1995)

Dill, A.K.: Theory for the folding and stability of globular proteins. Biochemistry 24, 1501 (1985)

do Nascimento, H.A.D., Eades, P.: User hints for directed graph drawing. In: Proc. Graph Drawing, pp.
205-219. Springer, Berlin, (2002)

Eades, P, Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379-403
(1994)

Feillet, D., Dejax, P., Gendreau, M.: The selective traveling salesman problem and extensions: an overview.
TR CRT-2001-25, Laboratoire Productique Logistique, Ecole Centrale Paris (2001)

Ferguson, G., Allen, J.: Trips: An integrated intelligent problem-solving assistant. In: Proc. 15th Nat. Conf.
Al pp. 567-572 (1998)

Gleicher, M., Witkin, A.: Drawing with constraints. Vis. Comput. 11, 39-51 (1994)

Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Amsterdam (1997)

Halim, S., Yap, R.H.C., Lau, H.C.: Viz: a visual analysis suite for explaining local search behavior. In:
UIST ’06: Proc. 19th Annual ACM Symposium on User Interface Software and Technology, pp.
57-66. ACM, New York (2006)

Hammond, S.P.: Putting the user in the loop: On-line user adaption of genetic algorithms. In: Sarker, R., et
al. (eds.) Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, pp. 892-897.
IEEE Press, New York (2003)

Hansen, P., Mladenovié, N.: An introduction to variable neighborhood search. In: VoB, S., Martello, S.,
Osman, I., Roucairol, C. (eds.) Metaheuristics: Advances and Trends in Local Search Paradigms for
Optimization, pp. 433—458. Kluwer Academic, Amsterdam (1999), Chapter 30

Hopper, E.: Two-dimensional packing utilising evolutionary algorithms and other meta-heuristic methods.
PhD thesis, Cardiff University, United Kingdom (2000)

Hopper, E., Turton, B.C.H.: An empirical investigation of meta-heuristic and heuristic algorithms for a 2d
packing problem. Eur. J. Oper. Res. 128(1), 34-57 (2000)

Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided tabu search. In: Proc. 18th National
Conf. on Artificial Intelligence (AAAI 2002), pp. 41-47. AAAI Press, Menio Park (2002a)

Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M., Schafer, G.T.: The HuGS platform: A toolkit for
interactive optimization. In: Proceedings of Advanced Visual Interfaces, pp. 324-330 (2002b)

Konig, R., Dandekar, T.: Improving genetic algorithms for protein folding simulations by systematic
crossover. BioSystems 50, 17-25 (1999)

Lesh, N., Marks, J., Patrignani, M.: Interactive partitioning. In: Marks, J. (ed.) Graph Drawing, Proc. GD
’00. Lecture Notes Comput. Sci., vol. 1984, pp. 31-36. Springer, Berlin (2000)

Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein
folding. In: Proc. 7th Intl. Conf. on Research in Computational Molecular Biology (RECOMB), pp.
188-195. New York, USA, 2003. Association for Computing Machinery, New York (2003)

Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: New heuristic and interactive approaches to 2D
rectangular strip packing. J. Exp. Algorithmics 10, 1.2 (2005)

Liang, F., Wong, W.H.: Evolutionary Monte Carlo for protein folding simulations. J. Chem. Phys. 115(7),
3374-3380 (2001)

Malinchik, S., Orme, B., Rothermich, J.A., Bonabeau, E.: Exploratory data analysis with interactive evo-
lution. In: Deb, K., et al. (eds.) Proc. Genetic and Evolutionary Computation Conference (GECCO
2004). Lecture Notes in Computer Science, vol. 3102, pp. 1151-1161. Springer, Berlin (2004)

@ Springer

G.W. Klau et al.

Marden, J.I.: Analyzing and Modeling Rank Data. Chapman & Hall, New York (1995)

Milenkovic, V.J., Daniels, K.M.: Translational polygon containment and minimal enclosure using mathe-
matical programming. Int. Trans. Oper. Res. 6, 525-554 (1999)

Mulder, J.D., van Wijk, J.J., van Liere, R.: A survey of computational steering environments. Future Gener.
Comput. Syst. 15(1), 119-129 (1999)

Nelson, G.: Juno, a constraint based graphics system. Comput. Graph. 19(3), 235-243 (1985) (Proc. of
SIGGRAPH ’85)

Poli, R., Cagnoni, S.: Genetic programming with user-driven selection: Experiments on the evolution of
algorithms for image enhancement. In: Koza, J.R., et al. (eds.) Genetic Programming 1997, pp. 269—
277. Proceedings of the Second Annual Conference, Stanford University, CA, USA, 1997. Morgan
Kaufmann, San Mateo (1997)

Ramakrishnan, R., Ramachandran, B., Pekney, J.F.: A dynamic Monte Carlo algorithm for exploration of
dense conformational space in heteropolymers. J. Chem. Phys. 106, 2418 (1997)

Ryall, K., Marks, J., Shieber, S.: Glide: An interactive system for graph drawing. In: Proc. of the 1997
ACM SIGGRAPH Symposium on User Interface Software and Technology (UIST *97), pp. 97-104.
Banff, Canada, October 1997

Sato, Y.: Voice conversion using interactive evolution of prosodic control. In: Langdon, W.B., et al. (eds.)
Proc. Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 1204-1211. Morgan
Kaufmann, New York (2002)

Scott, S.D., Lesh, N., Klau, G.W.: Investigating human-computer optimization. In: Terveen, L., Wixon, D.,
Comstock, E., Sasse, A. (eds.) Proc. CHI 2002 Conf. on Human Factors in Computing Systems, pp.
155-163. ACM Press, New York (2002)

Sims, K.: Artificial evolution for computer graphics. Comput. Graph. 25(3), 319-328 (1991) (Proc. of
SIGGRAPH ’91)

Smith, S.E, Lassila, O., Becker, M.: Configurable, mixed-initiative systems for planning and scheduling.
In: Tate, A. (ed.) Advanced Planning Technology. AAAI Press, Menlo Park (1996). ISBN 0-929280-
98-9

Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window con-
straints. Oper. Res. 35(2), 254-265 (1987)

Sreevalsan-Nair, J., Verhoeven, M., Woodruff, D.L., Hotz, I., Hamann, B.: Human-guided enhancement of
a stochastic local search: Visualization and adjustment of 3d pheromone. In: Stuetzle, T., Birattari,
M., Hoos, H.H. (eds.) Proc. of Engineering Stochastic Local Search Algorithms (SLS) 2007. Lecture
Notes in Computer Science, vol. 4638, pp. 182—186. Springer, Heidelberg (2007)

Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, New York (1992)

Waters, C.D.J.: Interactive vehicle routeing. J. Oper. Res. Soc. 35(9), 821-826 (1984)

@ Springer

	Human-guided search
	Abstract
	Introduction
	Related work
	Applications
	Terminology

	Techniques
	Mobilities
	Guidable algorithms
	Exhaustive search
	Tabu search
	Heuristic search for packing

	Overview of user actions

	Results
	HuGS toolkit
	Guided vs. unguided search
	Researcher-in-the-loop: the packing and protein applications
	Packing
	Protein

	Conclusions and future directions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

