
1558 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002

FLID-DL: Congestion Control for Layered Multicast
John W. Byers, Gavin Horn, Michael Luby, Michael Mitzenmacher, and William Shaver

Abstract—We describe fair layered increase/decrease with dy-
namic layering (FLID-DL): a new multirate congestion control al-
gorithm for layered multicast sessions. FLID-DL generalizes the
receiver-driven layered congestion control protocol (RLC) intro-
duced by Vicisanoet al.ameliorating the problems associated with
large Internet group management protocol (IGMP) leave latencies
and abrupt rate increases. Like RLC, FLID-DL is a scalable, re-
ceiver-driven congestion control mechanism in which receivers add
layers at sender-initiated synchronization points and leave layers
when they experience congestion. FLID-DL congestion control co-
exists with transmission control protocol (TCP) flows as well as
other FLID-DL sessions and supports general rates on the different
multicast layers. We demonstrate via simulations that our conges-
tion control scheme exhibits better fairness properties and provides
better throughput than previous methods.

A key contribution that enables FLID-DL and may be useful
elsewhere is dynamic layering (DL), which mitigates the negative
impact of long IGMP leave latencies and eliminates the need for
probe intervals present in RLC. We use DL to respond to conges-
tion much faster than IGMP leave operations, which have proven
to be a bottleneck in practice for prior work.

Index Terms—Congestion control, content delivery, Internet
group management protocol, layered multicast, scalability, TCP-
friendliness.

I. INTRODUCTION

ONE OF THE significant remaining hurdles to widespread
adoption of Internet protocol (IP) multicast is the de-

velopment of suitable congestion control algorithms. Ideally,
one would hope for a multicast analog of transmission control
protocol (TCP) congestion control. Such a protocol would be an
end-to-end congestion control mechanism that scales to large
audience sizes, matches the functional relationship between
throughput and packet loss rate at each receiver that TCP

Manuscript received September 1, 2001; revised May 2002. The work of J. W.
Byers was supported in part by the National Science Foundation (NSF) under
Grant ANI-9986397 and NSF CAREER Award ANI-0093296. The work of M.
Mitzenmacher was supported in part by the NSF under Operating Grant CCR-
9983832, Operating Grant CCR-0118701, Operating Grant CCR-0121154, and
in part by an Alfred P. Sloan Research Fellowship. The work of G. Horn was
done while he was with Digital Fountain, Inc. The work of W. Shaver was done
while he was interning at Digital Fountain, Inc. This paper was presented in part
at NGC’00, Stanford, CA [8].

J. W. Byers is with the Department of Computer Science, Boston University,
Boston, MA 02215 USA and also with Digital Fountain, Inc., Fremont, CA
94538 USA (e-mail: byers@cs.bu.edu).

G. Horn is with Pulsent Corporation, Milpitas, CA 95035 USA (e-mail:
gavin@alumnus.caltech.edu).

M. Luby is with Digital Fountain, Inc., Fremont, CA 94538 USA (e-mail:
luby@digitalfountain.com).

M. Mitzenmacher is with the Division of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138 USA (e-mail: michaelm@eecs.
harvard.edu).

W. Shaver is with the Oregon Institute of Technology, Beaverton, OR
97006-8921 USA (e-mail: shaver@qspeed.com).

Digital Object Identifier 10.1109/JSAC.2002.803998.

achieves, and provides responsiveness to changing network
conditions on the order of a round-trip time (RTT), like TCP.
Challenges include receiver heterogeneity, accurate modeling
of TCP performance, and providing compatibility with other
transport-level services such as reliability. In this paper, we
provide a new multicast congestion control scheme that makes
substantial strides toward a deployable solution.

Defining appropriate multicast congestion control algorithms
which scale to large, heterogeneous audiences sizes is essential
for enabling multicast “killer apps” such as reliable content dis-
tribution to large audiences [5] and video streaming [12]. Mul-
tirate congestion control, as opposed to single-rate congestion
control [17], is ade factorequirement for scaling to large audi-
ence sizes, to avoid the problem of establishing a single session
rate which caters to the receiver with the lowest end-to-end rate.

Standard approaches to multirate congestion control em-
ploy layered multicast [5], [12], [18] from a single source.
Layered multicast organizes multiple multicast groups into
logical layers. A host tunes its reception rate by subscribing
to and unsubscribing from layers, i.e., by joining and leaving
multicast groups. Different receivers may subscribe at different
end-to-end subscription rates. Acumulative layered scheme
has the additional property that all receivers must subscribe
to and unsubscribe from layers in consecutive order. Several
congestion control schemes for layered multicast sessions exist
but all have drawbacks.

Our congestion control scheme, which is based in part on the
receiver-driven layered congestion control (RLC) protocol de-
veloped by Vicisanoet al. in [18], coexists with TCP, scales to
large audience sizes, requires no changes to network routers or
multicasting routing protocols, and faces no deployment hurdles
(beyond those of deploying multicast in general). We call this
scheme “fair layered increase/decrease with dynamic layering”
(FLID-DL), a preliminary description of which was given in
[3]. FLID provides a generalization and simplification of RLC’s
TCP-like congestion control mechanisms for an arbitrary organ-
ization of multicast layers; dynamic layering (DL) is a strategy
which effectively avoids a major response bottleneck caused by
Internet group management protocol (IGMP) leave latency.

The asynchronous layered coding (ALC) approach within the
reliable multicast transport (RMT) working group of the IETF
provides a reliable layered multicast solution for content distri-
bution [10]. ALC currently lacks a multirate congestion control
protocol backed by consensus that is suitable for standardiza-
tion within the IETF. We argue that FLID combined with DL
provides a viable congestion control protocol for ALC.

The remainder of the paper is organized as follows. In
Section II, we discuss some of the basic issues associated with
the design of multirate congestion control schemes and describe
the RLC protocol in more detail. In Section III, we define DL

0733-8716/02$17.00 © 2002 IEEE

BYERSet al.: FLID-DL: CONGESTION CONTROL FOR LAYERED MULTICAST 1559

and demonstrate its capability to eliminate the performance
penalty of slow IGMP leave operations. In Section IV, we
define FLID and show how it provides improved TCP-friendly
congestion control. In Section V, we provide experimental
evidence based onnssimulations to support our results, and we
conclude with directions for future work in Section VI.

II. RELATED WORK

There is a considerable body of work on multicast conges-
tion control which we will not attempt to survey here; we refer
the reader to the excellent recent survey article on the topic
[19] and focus only on congestion control forlayeredmulti-
cast. The technique of congestion-controlled cumulative layered
multicast was first proposed by McCanneet al. [12] in the con-
text of packet video transmission to large heterogeneous audi-
ences. Their receiver-driven layered multicast (RLM) protocol
achieves scalability by using areceiver-drivenmethodology,
in which the hosts tune their subscription level by joining and
leaving layers. They advocate an approach in which receivers
periodically perform join experiments by subscribing to an ad-
ditional layer, and drop a layer when they experience packet
loss. There are several challenges that this approach introduces.
First, one host’s join experiments can introduce packet loss at
other hosts behind the same bottleneck link, producing a poten-
tial source of unfairness or inefficiency. Second, standard ap-
proaches to cumulative layered multicast have exponentially in-
creasing rates over the layers, which implies that the frequency
of join experiments across the layers must be carefully designed
to be friendly to TCP traffic and other sessions. Addressing
these challenges motivated Vicisanoet al.to propose their RLC
protocol [18].

A. RLC

RLC [18] was designed to provide a TCP-friendly multirate
congestion control scheme which scales to large audience sizes,
requires no modifications to routers or routing protocols, and
does not require any coordination amongst receivers. For full
scalability, a receiver-driven approach is required, as mainte-
nance of per-receiver state at the source is infeasible and un-
scalable, but uncoordinated join experiments by receivers pose
substantial problems, as was observed in [12]. The authors of
RLC cleverly avoid this problem bysynchronizingjoin experi-
ments. The source places synchronization points or increase sig-
nals into packets, where receivers can now only add a given layer
after an appropriate increase signal for that layer. These increase
signals are alsocumulative, i.e., an increase signalindicates
that all receivers whose maximum subscription level is at most
can join a single additional layer. The use of cumulative increase
signals solves the problem of synchronizing receivers behind a
shared bottleneck, since when one receiver joins a layer that ex-
ceeds the bottleneck bandwidth, all other receivers behind that
bottleneck will have also joined a layer. Then, since they will all
experience packet loss, they will all drop back to their original
rate prior to the join experiment.

In practice, care must be taken whenever a join experiment
is performed, since by oversubscribing, a receiver can push the
network into a state of congestion. To alleviate the congestion,

the receiver must then unsubscribe from the layer by performing
an IGMP leave operation, which can often incur substantial la-
tency, leaving the network in a congested state.1 Since oversub-
scription incurs a substantial cost, to minimize the likelihood
of oversubscribing, the RLC source periodically injects a brief
burst of packets on each layer prior to a synchronization point on
that layer. The burst on layeris designed to simulate the rate of
layer 1, the idea being that those receivers which lose packets
during the burst learn that adding layer 1 is unsafe, without
incurring the cost of a join and leave operation. Unfortunately,
if a receiver doesnot lose a packet in the burst, it still has no
guarantee that adding the layer is safe, since the burst may be of
insufficient length to induce packet loss (bursts recommended
in [18] can be as brief as eight packets). Thus, a receiver is still
prone to oversubscription. The complexity and lingering uncer-
tainty associated with avoiding costly IGMP operations is one
of the main problems with RLC which we address.

Another challenge addressed by RLC is the problem of appro-
priately orchestrating synchronization signals across the layers.
The primary goal for RLC is to be fair to other instances of it-
self as well as to other congestion control algorithms such as
TCP. As with most proposed layered multicast schemes, RLC
requires that the rates on the layers must be exponentially spaced
using a doubling scheme, i.e., the rates on the layers follow the
pattern 1, 1, 2, 4, 8, … . While dropping a layer with this scheme
performs a TCP-like multiplicative decrease, adding a layer sud-
denly doubles the rate. Therefore, RLC cannot be TCP-like at
a fine granularity, since it cannot perform fine-grained additive
increase. However, it performs TCP-like additive increase at a
coarser granularity by placing increase signals on layerat a fre-
quency of , where is the cumulative rate through layer.
When used in conjunction with a doubling scheme on the layer
rates, the trajectory induced by this distribution of increase sig-
nals corresponds to linear increase over large time scales.

One issue which RLC does not adequately address is the dra-
matic fluctuations in network bandwidth consumption and the
potential for rapid queue buildup that a doubling scheme can in-
duce. We recommend the use of schemes which exhibit slower
exponential growth in the layer rate, providing gentler transi-
tions during join experiments.

B. TCP Fairness

An increasingly widely accepted measure of TCP friendliness
is to compare the steady-state throughput of a flow along a path
to the throughput that TCP would achieve along that path. For
TCP traffic, a great deal of work has been done to determine the
equation expressing the throughput as a function of the packet
size, the packet loss rate, and the RTT along that path [8], [9],
[11], [14]. It has been advocated that any new congestion con-
trol algorithm should exhibit the same steady-state flow rate as
suggested by the TCP equation [2], [11], ensuring that the flows
will then share available bandwidth fairly across a bottleneck
link, since across the bottleneck link both streams experience the
same packet loss rate. In addition, there is an emerging body of
research that suggests designing congestion control algorithms
to explicitly use the TCP equation [9], [11], [15].

1We review the root causes of large IGMP leave latency in Section III-A.

1560 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002

In order for a congestion control scheme to be fair in this
sense against TCP, the flow rate must have the same behavior as
the TCP equation over large time scales. (Note that while this
is a necessary condition, it may not be a sufficient condition, as
issues of variance and the mechanics of rate changes come into
play. We will address this issue only through simulation.) The
TCP throughput rate , in units of packets per second, can be
approximated by the formula in [14]

RTT
(1)

Here is a function of the packet loss rate, the TCP RTT, and
the TCP timeout value (RTO), where we have set RTO4 RTT
according to [9]. In both RLC and our work, since different mul-
ticast hosts have different end-to-end latencies from the server,
and since the multicast analogue of RTT is not well defined, a
target value of RTT, which we call thenominal RTT, is fixed in
advance to generate a target rate.

C. Use of a Digital Fountain

Since receivers join and leave layers over time in layered mul-
ticast, it is hard to control or predict precisely which packets
they will receive. While this is not particularly problematic for
appropriately encoded streaming content [12] that does not need
to be transmitted reliably, scheduling packets across the layers
in reliable multicast applications is a challenging problem. Re-
cently, there has been much work on integrating forward error
correcting (FEC) codes into layered multicast as an end-to-end
solution for scaling reliable multicast to audiences with hetero-
geneous download bandwidths. The benefit of using an encoded
data stream is that it is no longer necessary to solve the diffi-
cult problem of delivering every single packet to every single
host, thus admitting some flexibility into the scheduling of data
packets onto layers over time [5], [18]. In our implementation,
we use a digital fountain encoding [5] to generate an effectively
unbounded number of different forward error correcting packets
to be scheduled among the different layers. In this approach, as
soon as the receiver receives enough distinct encoding packets,
it can recover the original data, independent of the particulars
of which layers it subscribed to over time.

III. D YNAMIC LAYERING (DL)

A significant limitation of current approaches to conges-
tion-controlled layered multicast is the timeliness of joining and
leaving groups. With all previous schemes, rate increases can
only be accomplished by joining one or more multicast groups;
likewise rate reductions can only be accomplished by leaving
one or more groups. Large join latencies are not especially
problematic, although they introduce sluggish behavior caused
by rate increases occurring more slowly than anticipated. Large
leave latencies pose severe problems, however, as they limit
responsiveness to congestion and can create unfairness to
sessions which react relatively more quickly to congestion. In
practice, IGMP leave latencies can in fact be very substantial,
often on the order of several seconds.

A. IGMP Leave Latency

With the IGMP group membership protocol [6], [7], when
a host wants to stop receiving content from a multicast group,
it sends a leave message to the last hop router. In general, the
last hop router does not track the number of hosts beyond the
interface participating in a given multicast group; thus, it must
poll the hosts to determine whether any are still active before
stopping the flow of packets. To provide reliability, the router
typically polls up to three times before terminating flow to the
group. In current implementations, each polling attempt can
take from 1 to 3 seconds, for an aggregate leave latency of
between 3 and 9 seconds. During this time, multicast traffic
continues to flow through the last-hop router, even if no sub-
scribers are present. Therefore, deployable congestion control
algorithms for layered multicast must avoid relying on IGMP
leaves to respond to congestion effectively, at least until faster
IGMP leaves [16] are implemented.

B. DL Overview

The key feature we use to achieve this goal is the use ofdy-
namiclayers, or layers whose rates change over time. Dynamic
layers are distinguished fromstaticlayers over which the rate of
packet transmission to the layer remains fixed for the duration of
the session. The use of static layers necessitates explicit IGMP
leaves to perform congestion control; use of carefully designed
dynamic layers does not.

Our approach employs the following paradigm: The sending
rate of each layer decreases over time; thus, a receiver can re-
duce its reception rate quickly, simply by not joining any addi-
tional layers. In order for receivers to maintain a given reception
rate they must periodically join layers at a moderate pace, as
though they are on a treadmill. In order to increase their recep-
tion rate, they must join additional layers beyond those needed
to maintain a constant rate. With this general approach, slow
leave operations do not affect the responsiveness to congestion.

C. Emulating Cumulative Layered Schemes

We now demonstrate how to emulate any static cumulative
layer scheme with a dynamic layer scheme. Suppose there are

static layers with rates , where zero is the index
of the base layer, 1 is the index of the highest layer, and a
receiver always subscribes to a cumulative set of layers starting
from zero. Key parameters in designing the dynamic layer
scheme are upper bounds on join and leave latencies.

We define to be the worst-case join latency andto be the
worst-case leave latency. We assume that join latency is gener-
ally small (tens or hundreds of milliseconds) with small vari-
ance, while leave latencies can be much larger and much more
highly variable. Now, let be an integer and a real number sat-
isfying 1 . Our corresponding dynamic
layer scheme uses dynamic layers. Each layer transmits at
a fixed rate for atime slotof length seconds.

Let 1 be the dynamic layers, and for con-
venience in describing the scheme, define

0. In the dynamic scheme, the transmission rate on
layer has rate during time slot . An equiv-
alent interpretation is that during time slot, layer carries the
traffic corresponding to static layer .

BYERSet al.: FLID-DL: CONGESTION CONTROL FOR LAYERED MULTICAST 1561

Fig. 1. Rates on dynamic layersd andd for the first seven time slots.

Hence, each layer has a period of time slots, where
it begins transmitting at the highest rate , drops sequen-
tially through rates down to at time slot boundaries,
and then transmits no packets fortime slots. The periodicity
described above is necessary to efficiently utilize the multicast
address space, as each new layer corresponds to a separate mul-
ticast address.

Example 1: Consider a layering scheme where 4 and
1, for 1 . Let 10 ms and

1.5 seconds. If is chosen to be 1 second, then 3. Fig. 1
shows the rates on dynamic layersand for the first seven
time slots.

In order to emulate the behavior of a static layer scheme, there
are three operations which a receiver could perform and which
must be emulated on the dynamic layers. For clarity, we assume
that we have a receiver currently subscribing to dynamic layers

, i.e., emulating subscription to static layers
in time slot . (In the discussion of dynamic layering, all

the indices are to be interpreted .) The operations
which a receiver can perform on the next time slot boundary are
as follows.

1) Emulate leaving static layer. To do so, the receiver
passively performs no action at the time slot boundary.
The resulting aggregate rate will drop from to

.
2) Emulate retaining subscription to all current layers. To do

so, the receiver joins dynamic layer at the time
slot boundary.

3) Emulate joining static layer 1. To do so, the receiver
must join both dynamic layer and dynamic
layer at the time slot boundary to move up to
a rate of .

In all of the cases above, the receiver must also initiate a leave
of dynamic layer at the time slot boundary. We empha-
size that this leave need not complete quickly, as layer
will transmit at a rate of zero for a substantial number of time
slots. However, the leave must complete before the time slot at
which reuse of layer begins. Indeed, this explains why we
use layers; we allow a layer to transmit at zero rate for

consecutive time slots so that any leave message that occurred
while the layer was transmitting has time to complete before the
layer begins transmitting again at a nonzero rate. Note that when
layer is reused, it will start transmitting at the maximum
possible rate. This strategy also requires that the client know
the current time slot (especially to correctly subscribe and leave
dynamic layers). This can be accomplished in various ways, in-
cluding using a separate multicast group for control information,
or making the base layer static and embedding time slot infor-
mation for the dynamic layers within the base layer.

To ensure that the reception rate of the receiver is smooth, a
join can be scheduled just far enough in advance of the begin-
ning of the time slot to ensure that packets start arriving from
the joined dynamic layer just after the beginning of the next
time slot. However, care must be taken that the join is not early
enough to cause reception of packets from the joined dynamic
group before the beginning of the time slot, as this may cause
unnecessary congestion.

For the DL scheme, reactions (that is, joins and passive
leaves) can occur at intervals of timein a fast and predictable
manner. The length of the time slot is, therefore, a measure
of the reactivity to network changes. should be roughly the
same as a small number of RTTs for TCP in order to be able
to have approximately the same reaction times to changes in
network conditions as TCP.

A receiver requires one leave and at most two joins to change
its rate each seconds. Smaller values of make the system
more responsive to loss; however, smaller values ofmean
more join and leave requests per second as well as the need
for more dynamic layers. The overhead for these operations in
terms of bandwidth and control message overhead at last hop
routers should be considered when designing the time slot and
base layer bandwidth. Larger values ofmean that, on average,
there is a longer time interval between the time at which packet
loss occurs and the time at which the receiver can respond to
congestion.

D. Emulating Other Layered Schemes

While cumulative layering is the standard approach for lay-
ered multicast schemes, noncumulative layering is also possible
and advantages of such an approach are discussed in [4]. Dy-
namic layering can emulate a noncumulative layering scheme
or, indeed, anarbitrary static layering scheme as follows. If the
arbitrary static layering scheme consisting oflayers, then we
will emulate it with a dynamic scheme consisting oflayers,
where is as defined above. We will usedynamic layers to em-
ulate each static layer, cycling through thosedynamic layers
so that only one is transmitting data during any time slot, and the
transmission rate on the dynamic layer is the rate of the static
layer (when it is not zero). Using layers for each static layer
allows receivers to leave a static layer without delay by leaving
the appropriate dynamic layer; to remain subscribed to a layer,
a receiver must repeatedly join the transmitting dynamic layer.

IV. FAIR-LAYERED INCREASE/DECREASE(FLID)

FLID is a protocol that is used to allow receivers to increase
and decrease their reception rates based on congestion condi-
tions in a manner that is similar to the TCP-friendliness equa-

1562 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002

tions for a TCP flow with a fixed RTT value. FLID can either be
implemented on top of DL or on top of a static layering scheme
(preferably in an environment where leave operations do not
incur large latency).

FLID is akin to RLC [18] in several ways. The server places
signals into packets that completely dictate the behavior of re-
ceivers with regards to joining and leaving layers. This prop-
erty helps to coordinate the behavior of receivers behind bot-
tleneck links. Like RLC, there is no feedback from receivers
to the server, and different receivers may join different num-
bers of layers depending on the different network conditions on
the paths between the server and the receivers. These proper-
ties make FLID scalable to an unlimited number of receivers. In
particular, receivers with slower bandwidth connections to the
server do not slow down receivers with faster connections.

We introduce the FLID congestion control algorithm in three
parts. First, we discuss the methods we employ to set the rates of
the different layers. Next, we present the actual rules for adding
and dropping layers and, finally, we discuss how to set the in-
crease signals at the server.

A. Rates on the Different Layers

FLID uses a cumulative layered scheme onlayers. When
a receiver subscribes to a set of layers , where

1, we call thesubscription level, or simply the level of the
receiver. Generally, the first layer is called thebase layer, which
in our case will be a static layer. To start receiving traffic for a
multicast session, the host joins the base layer.

As before, is the rate, in packets per second, for layer, and
is the cumulative rate, in packets per second, for

layers zero through, i.e., the reception rate for a receiver with
a subscription level.

There are a variety of methods for choosing the different rates
for the different layers. Some examples of schemes include the
following:

• Equal scheme: The rates for all layers are equal, e.g., 2.5
packets/s. For example, with 20 layers and a 1-KB
packet size, the subscription level can range from 20 Kb/s
up to 400 Kb/s.

• Increase by one scheme: The relative increases in the rates
for the layers are in the sequence 1, 2, 3, 4, …, i.e.,

1. For example, with a base layer rate of
packets/s, 20 layers and a 1-KB packet size, the sub-
scription level can range from 20 up to 4.2 Mb/s.

• Doubling scheme [18]: Adding another layer doubles the
subscription level. The relative increases in the rates for
the layers are in the sequence 1, 1, 2, 4, 8, 16, 32, 64, …,
i.e., . For example, with a base layer rate of

2.5 packets/s, 20 layers, and a 1-KB packet
size, the subscription level can range from 20 Kb/s up to
10 Gb/ps.

• Multiplicative scheme: A generalization of the doubling
scheme where the rate for subscription levelis propor-
tional to for a fixed constant 1. The relative in-
creases in the rates for the layers are in the sequence

, i.e., . For example,
with a base layer rate of 2.5 packets/s, 20 layers,

a 1-KB packet size, and 1.3, the subscription level can
range from 20 Kb/s up to 2.9 Mb/s.

• Heavy-tail scheme: Set the rates on the layers so that if
independent FLID schemes are sharing a common bottle-
neck, then they each obtain a share of the bottleneck
rate . The base layer rate is chosen to be . For layer
, 1 , so . For

example, with a bottleneck link rate of 1 Mb/s and
20 layers, the rates for the layers in Kb/s are 51.2,

2.7, 3.0, 3.3, 3.8, 4.3, 4.9, 5.6, 6.6, 7.8, 9.3, 11.4, 14.2,
18.3, 24.8, 34.1, 51.2, 85.3, 170.7, and 512.

• Tailored to specific subscription levels: Set the rates on
the layers so that the subscription level can be adjusted
to be close to the capacity of the bottleneck link. For ex-
ample, suppose there are different hosts behind bottleneck
links that have capacities of 28 Kb/s (modem), 128 Kb/s
(ISDN), 500 Kb/s (low end DSL), 1.5 Mb/s (mid range
DSL, T1, cable), 10 Mb/s (10 Mb/s Ethernet, fast DSL,
fast cable), and 100 Mb/s (100 Mb/s Ethernet), respec-
tively. Suppose further that for each bottleneck, a subscrip-
tion level of 80 and 90% of capacity is desired. Here, it
may be desirable to put in a subscription level for each
bottleneck that is just over the capacity, say 110% of ca-
pacity, so that when this subscription level is attempted,
the host feels loss but the subscription level does not jump
up dramatically to the next bottleneck link rate.

We focus on the multiplicative scheme for the remainder of
the paper for the following reason. Two useful factors to con-
sider in evaluating a cumulative layered multicast scheme are
the number of layers needed to span a given range of recep-
tion rates and the granularity with which a receiver can tune its
rate within that range. In general, the tradeoff is that the larger
the value of , the more fine-grained rate changes can be and the
smoother the reactions of the congestion control algorithm, but
the more layers and, hence, multicast addresses that are needed
for the transmission to achieve the same range of cumulative
rates.

The multiplicative scheme has the desirable property that it
uses a number of layersthat is logarithmic in the total range
of reception rates, which seems important for scalability, as it is
currently infeasible and undesirable to employ a large number
of multicast groups to satisfy receivers of a single layered multi-
cast session. At the same time, using a multiplicative factor of
that is less than two allows a more fine-grained rate adjustment.
Further discussion about performance measures for various lay-
ering schemes can be found in [4].

We emphasize that although we focus on the multiplicative
layering scheme hereon the FLID approach can be applied to
the other layering schemes described.

B. Increase and Decrease Rules

In FLID, the server partitions time into slots of duration
seconds each. All packets transmitted by the server in each

time slot include the currenttime slot index. From the receiver
point of view, a new time slot starts when the first packet is
received with a new time slot index.

Time slots are used to coordinate the activities of receivers.
If during a time slot a receiver measures any packet loss, the

BYERSet al.: FLID-DL: CONGESTION CONTROL FOR LAYERED MULTICAST 1563

receiver must decrease its subscription level by one at the end of
the time slot. The receiver ignores all subsequent packet losses
until the end of the time slot, i.e., the receiver only considers a
single congestion event per time slot.

Time slots are also used to coordinate actions when receivers
increase their subscription level. The server places anincrease
signal into each packet. The increase signal identifies a sub-
scription level which is fixed for all packets on all layers within
a time slot. Receivers use increase signals to decide whether to
increase their subscription level at the beginning of a time slot
according to the following rule: If the current subscription level
is , the increase signal for the current time slot is, where ,
and there is no packet loss during the current time slot, then in-
crease the subscription level by one at the beginning of the next
time slot. An increase signal of1 is used to indicate that no
receiver should increase its rate.

We use cumulative increase signals for the following reasons.

1) If a receiver behind a bottleneck link adds a new layer and
does not experience congestion, then receivers sharing the
same bottleneck link at lower subscription levels should
also add a layer to fully exploit the available bandwidth.

2) If a receiver adds a new layer and causes congestion on
a bottleneck link, other receivers at a lower subscription
level behind this bottleneck should not be punished. If all
low-rate receivers raise their subscription level in tandem
with a higher rate receiver, the worst that can happen is
that the low-rate receivers drop back to their previous rate
if congestion occurs.

Of course, there should be more increase signals for receivers
at lower subscription levels than for those at higher subscription
levels so that eventually all receivers behind the same bottleneck
link reach the same subscription level. The pattern of increase
signals that the server uses is one of the more important con-
siderations in the design of FLID. This pattern is designed in
conjunction with the rates of the different layers, and together,
they determine the fairness of FLID against other protocols such
as TCP.

C. Setting the Increase Signals for the Layers

To gain insight into how to set the increase signal values,
we consider a probabilistic pattern of increase signals. We then
describe a deterministic pattern. Let 1

0. In each time slot, the increase signal is set to
with probability for 1 1. This means

that a receiver with subscription levelwill increase its level in
each time slot with probability . The value of must be
set to zero to prevent a receiver joined to all layers from ever
attempting to join an additional layer that does not exist. For
simplicity, we define 1, which corresponds to a phantom
layer that carries no traffic.

In the description that follows, we assume that each packet
is lost independently with a fixed probability. This is in fact
the model used to derive the TCP throughput equation (1) and
provides a suitable and representative example of the results we
can achieve. Our approach can be used in significantly more
general settings, however. To do so, one first must be given a loss
model and a means of determining the behavior of FLID under

Fig. 2. Markov process showing the transitions for state(R ; f).

the loss model. Often, if the model is sufficiently simple, this
can be done analytically, as we do below; otherwise, it can be
accomplished via simulation. Second, one must be given a target
TCP behavior; here, we use long-term throughput versus the
loss probability . The problem then becomes to choose the
values so that FLID is as close as possible to the target behavior.
This is just a multidimensional optimization problem, for which
standard techniques may be applied. (We suggest a hill-climbing
approach in the Appendix.) It would, therefore, be relatively
straightforward to use our approach to handle more complex
loss models, such as simple Markovian burst loss models.

Again, in what follows, we assume that each packet is lost
independently with a fixed probability. Define to be
the probability of a receiver moving from subscription levelto
subscription level at the beginning of time slot. Since we can
only increase or decrease the subscription level by a single layer
at a time, 0 for 1. In a time slot of length

, a receiver with subscription levelreceives packets,
so, we have

otherwise.

The transition probability is independent of the time slot
so we write the transition probability as (also under the

assumption that does not vary over time).
The receiver now behaves like anstate Markov process, a

part of which is shown in Fig. 2. We denote bythe steady-state
fraction of the time the receiver will have a subscription level of
. At steady state, the average throughputis then

(2)

By the structure of the state diagram, at steady state, the flow
into each state on an edge has to be equal to the flow out of that
state on that edge, i.e.

(3)

or

(4)

for 0 2. Therefore, given a set of and values,
it is simple to calculate using the recursion in (2) and (4).

To match the TCP throughput in (1), we have the following
problem: Given the target functional relationship betweenand
, find a set of strictly decreasing values that approximate

this function. In the Appendix, we present an intuitive argument
for setting the values heuristically. We then develop a more
sophisticated technique based on a hill-climbing algorithm.

1564 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002

Fig. 3. Expected number of joins and leaves per second versus the packet loss
rateq for FLID with static layers and dynamic layers.

Note also that the above analysis also immediately tells us
the rate of join operations. Recall that each time slot requires
a single leave operation and either 0, 1, or 2 join operations
depending on whether the subscription level decreases, stays
the same, or increases, respectively. From the above equations
for , the expected number of joins per time slot when
at subscription level is 1 1 , and hence, the
steady-state rate of join operations is 1 1 .

Example 2: Consider a base layer of 3 packets/s, i.e.,
24 Kb/s for 1-KB packets, 30, and a multiplicative layering
scheme with 1.3. For a time slot of 0.5 seconds and a
nominal RTT of 0.1 seconds, if we set thevalues according to
the hill-climbing algorithm in Appendix, then we have the ex-
pected number of joins and leaves per second versus the packet
loss rate shown in Fig. 3.

We emphasize that while we have techniques to match TCP
throughput extremely closely and can, therefore, make FLID
fair to TCP streams in this sense, it is not necessarily clear
that is is desirable to do so. Since the FLID session may be
serving many users, some systems may prefer to make FLID
reasonably fair to TCP streams, while still giving FLID ses-
sions some advantage. For example, perhaps it would be suf-
ficient for FLID throughput to be within a specified constant
factor of TCP throughput over some range of loss probabilities.
The hill-climbing techniques we describe have the advantage
that they can be used to match any desired throughput curve.
Also, we emphasize that this simplified analysis ignores many
issues that may affect performance in practice, such as buffer
sizes, the speed of reaction to congestion, and the granularity
of FLID layers. Hence, simulations are valuable in obtaining a
better understanding of performance of a given FLID setting in
practice.

1) Use of a Reverse Binary Counter:As mentioned previ-
ously, we use a deterministic scheme to set the increase signal
in each time slot. This is because if we choose the increase signal
in each time slot at random, then we occasionally increase the
receive rate too rapidly when a receiver obtains several increase
signals over a short time interval. Our deterministic scheme still

TABLE I
VALUES FOR b AND b̂ FOR THE FIRST EIGHT TIME SLOTS AND

THE CORRESPONDINGVALUES FOR THE INCREASE SIGNAL

FORp = 0.33,p = 0.2,p = 0.09,AND p = 0

generates an increase signal that allows a receiver to increase its
subscription level from to 1 about every 1 time slots,
but it has the additional property that the variance in the number
of time slots between increase signals for each layer is minimal.
We note that under the assumption that losses are independent,
the steady-state probabilities of the Markov process will be the
same for this deterministic scheme as for the probabilistic one;
so our throughput remains compatible with TCP.

Our scheme uses a reverse binary counter. Let

be a number written in binary notation, i.e.,is a single bit and
is a concatenation of bits. Let

indicate written backward interpreted as a real number in the
range 0 1 .

Example 3: If 010 011, then 0.110 010, i.e., the real
number 0.781 25 written in decimal notation.

At the beginning of a session, setto be an arbitrary value;
then, at each time slot, the algorithm for choosing the increase
signal is to increment by one, find the largest layer such
that , and then set the increase signal to. We
increment modulo so that the counter is reset everytime
slots.

Example 4: Suppose there are four layers with

and

If is initially set to one, then the values offor the first eight
time slots are shown in the first column of Table I. The corre-
sponding values of are shown the second and third columns,
written in binary and decimal notation, respectively. Finally, the
increase signal layers for the first eight time slots are shown in
the last column.

In this example, in the second time slot, only a receiver with
subscription level zero can increase its rate. A receiver with sub-
scription level zero or one can increase its rate in the fourth time
slot, and a receiver with subscription level zero, one, or two can
increase its rate in the eighth time slot. In all other time slots, no
receiver may increase its rate.

V. EXPERIMENTS

In order to study the suitability of FLID-DL for Internet de-
ployment, we examine its behavior extensively usingns-2[13].

BYERSet al.: FLID-DL: CONGESTION CONTROL FOR LAYERED MULTICAST 1565

Fig. 4. Network topology used to set the multiplicative factorc on the different
layers. The nodes on the left are servers, the nodes on the right are hosts, and
the horizontal link in the middle is the bottleneck link.

We demonstrate two sets of experiments. In the first set, we con-
sider how to set the various parameters of FLID-DL and show
how FLID-DL addresses some of the shortcomings of RLC.
In the second set, we examine how FLID-DL scales, measure
its behavior to a set of heterogeneous clients, and demonstrate
that it coexists fairly with different types of TCP traffic. We
present only a summary of our findings here and refer the reader
to the FLID website at www.digitalfountain.com/technology/li-
brary/flid for further details.

A. Setting the FLID-DL Parameters

There are three parameters that we need to set for FLID-DL:

1) rates on the different layers;
2) nominal RTT;
3) duration of the time slots.
We implement FLID in our simulations with a multiplicative

layering scheme to set the rates on the different layers. We use
a base layer of 24 Kb/s and a packet size of 1 KB, i.e.,
3 packets/s. For each independent FLID session, we pick the
number of layers large enough so that the highest reception rate
possible for each individual session is greater than the capacity
of the bottleneck link up to a maximum of 30 layers.

To choose the rates on the different layers, we vary the value
of the multiplicative factor from 1.2 to 2.0. For eachvalue,
we simulate a single FLID-DL session for 100 s and measure the
throughput and number of packets lost over the final 50 seconds.
Our topology consists of one server and one host connected by
two drop-tail routers, with a queue size of 128, and a 10-Mb/s
bottleneck between the two routers as shown in Fig. 4. The time
slot duration is 500 ms, and the increase signals are chosen ac-
cording to the 120-ms RTT of the topology.

Fig. 5 shows the throughput and number of packets lost in
each 250 ms interval for 1.3 and 2.0. For 1.3,
the bandwidth utilization is 85%, and an average of 47 packets
are dropped per packet loss event. For 2.0, we had a band-
width utilization of 59% and an average of 17 packets dropped
per packet loss event. However, over the 50 s interval, the latter
experiment lost 2.5 times as many packets, as the large jumps in
transmission rates cause more frequent packet loss.

Based on extensive simulations, of which this experiment is
one representative, we chose 1.3 as our ideal multiplicative
factor, since it is large enough to allow us to use few layers but
small enough to give us a sufficiently small granularity in the
subscription level to avoid abrupt rate increases. It also gives a
reasonably small packet loss rate when we exceed the bottle-
neck bandwidth. With this choice of, FLID-DL is somewhat
less responsive to congestion than TCP, since our multiplicative
decrease is smaller than that of TCP. We have not found this to
result in significant unfairness in our simulations; for more on
the impact of slowly-responsive congestion control, we refer the
reader to [1].

(a)

(b)

Fig. 5. Throughput (solid line) and number of lost packets (circles) for a single
FLID-DL session. (a)c = 1.3. (b)c = 2.0.

We choose our nominal RTT to be 100 ms, so that FLID-DL
competes fairly with TCP with an RTT of 100 ms. We set the
ratio of the time slot duration to the nominal RTT using the same
topology, except we now have random independent packet loss
of 4% on the bottleneck link, i.e., we have no loss due to the
queues overflowing. For a fixed nominal RTT, we varied the
time slot duration and measured the throughput. For a given
packet loss rate, doubling the time slot duration requires that we
halve the reception rate in order to achieve the same probability
of a packet being lost in each time slot. In order to achieve a rea-
sonable reception rate, avoid large packet burst loss, and avoid a
large number of join/leave operations per second, we chose the
time slot duration to be 500 ms, or a factor of five larger than the
nominal RTT used in our subsequent experiments. When simu-
lating multiple TCP connections over a single bottleneck link in
an event-driven simulator, synchronization problems can arise.
To prevent this, we start our connections at slightly different
times by adding a small random delay to simulate processing
overhead before each packet is transmitted.

B. Static Versus Dynamic Layered Schemes

Our next experiment compares the behavior of four indepen-
dent FLID-DL sessions to four independent FLID-SL (static
layer) sessions when we have a random leave latency uniformly
distributed between 2 and 4 s. Our topology consists of a simple

1566 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002

Fig. 6. Network topology used to compare the static versus dynamic layered
schemes.

(a)

(b)

Fig. 7. Throughput (solid line) and number of lost packets (circles). (a) Four
FLID-DL sessions. (b) Four FLID-SL sessions with a 2–4 s leave latency.

double star network as shown in Fig. 6. Both routers are drop-tail
with a queue size of 50 packets.

Fig. 7 shows the behavior of four FLID-DL sessions and four
FLID-SL sessions with a leave latency of between 2 and 4 s. The
FLID-DL sessions have a total bandwidth utilization of 90%,
while for FLID-SL, the bandwidth utilization is only 78%. In
fact, these results overstate the performance of FLID-SL, in that
FLID-SL has reasonable bandwidth utilization only because, in
this simulation, hosts continue to accept packets received on
groups from which they had unsubscribed but for which the
last-hop router still continued to forward packets. The FLID-SL
sessions combined lose three times as many packets as their
FLID-DL counterparts.

Fig. 8. Coordination of 100 hosts behind a bottleneck link.

We have also run the same experiment with FLID-SL with
various other leave latencies. When the IGMP leave latency is
zero, we find that the behavior of FLID-SL and FLID-DL are
very similar. The results are also similar when we used RED
routers setting the queue size to 100 packets, setmaxthreshto
50,minthreshto five, and turned thegentlesetting on.

C. Coordination Behind a Bottleneck Link

To demonstrate how the hosts coordinate behind a common
bottleneck link, we have 100 hosts subscribe to the same
FLID-DL session at random times chosen uniformly between 0
to 5 s. We use the same topology as in Fig. 6, except now with
100 hosts. Fig. 8 shows that all 100 hosts converge to the same
subscription level after 28 s. A number of other experiments
demonstrating coordination of hosts that arrive asynchronously
behind a shared bottleneck are provided on the FLID-DL
website. In the scenarios we have considered, convergence time
is comparable to that depicted here.

D. Random Loss and Heterogeneous Delays

We test the scalability of FLID-DL in the presence of
loss, where we have a number of hosts subscribed to a single
FLID-DL session. We generate random loss at various points
on each topology and measure the throughput downstream at
the hosts. We find that the throughput of each FLID-DL host
depends only on the loss rate experienced by that particular
host. Experimental evidence indicates that FLID-DL scales
well in the presence of random loss.

When we vary the delay of each host behind a common bot-
tleneck, we find that the throughput at each host is proportional
to both the nominal RTT and the random loss rate and is rea-
sonably independent of the delay experienced by each host (ex-
cept for the fact that the join at the highest layer experiences the
longest latency). When the delay is greater than the time slot du-
ration, FLID-DL has a subscription level that is higher than the
actual reception rate. Since FLID-DL reacts to increase signals
for its subscription level, as opposed to its actual reception rate,
FLID-DL behaves less aggressively as the delay increases to the
order of a time slot.

BYERSet al.: FLID-DL: CONGESTION CONTROL FOR LAYERED MULTICAST 1567

(a)

(b)

Fig. 9. Fairness of FLID-DL and TCP Reno for a queue size of (a)7n and
(b) 25n.

E. TCP Fairness

For our final experiment, we compare how FLID-DL com-
petes with TCP Reno and TCP SACK. We haveTCP and
FLID-DL streams share a common bottleneck of 0.5Mb/s. We
vary and calculate the throughput for the final 50 s of a 100 s
simulation.

Fig. 9(a) shows the relative throughput of FLID-DL and TCP
for a drop-tail queue of size 7packets. Each point in the graphs
represents the throughput of an individual stream. We also show
the mean throughput for each type of stream. In this figure,
which is representative of a large number of additional simu-
lations, FLID-DL and TCP share the available bandwidth equi-
tably. Fig. 9(b) shows the relative throughput of FLID-DL and
TCP when we increase the drop-tail queue size to 25packets.
In this scenario, FLID-DL is unfair to TCP and the average
FLID-DL flow achieves a throughput four to eight times larger
the average TCP flow.

FLID-DL becomes less fair to TCP as the queue size in-
creases, since it does not adjust its reception rate in response to
changes in the network RTT. In contrast, a TCP flow responds to
the increased latency introduced when a queue fills by reducing
its rate of additive increase. Because of this, in an environment

where variable queueing delays can account for a significant
portion of the end-to-end latency, FLID-DL will not be fair to
TCP. Of course, this effect could be ameliorated by changing
FLID parameters, such as the nominal RTT. The experiment
does suggest that achieving fairness to the extent that FLID-DL
and TCP realize nearly identical throughput over a wide variety
of network conditions may not be realizable. Nevertheless, our
experiments reveal that FLID-DL can be made to be roughly fair
to TCP, in that the throughput achieved is within a small con-
stant factor of TCP streams sharing the same end-to-end path,
across a large spectrum of situations.

VI. CONCLUSION

We have demonstrated that the use of dynamic layering ad-
mits an elegant solution to large IGMP leave latencies, without
requiring changes to IGMP, routers, or other multicast routing
protocols. We have also outlined the FLID scheme, which gen-
eralizes the RLC protocol to accommodate a wide spectrum of
multiplicative increase rates but eliminates some of its com-
plexity, such as the need for bandwidth probes. DL combined
with FLID provides a significant step toward a complete and
scalable receiver-driven congestion control algorithm for lay-
ered multicast. We hope that our experiences with FLID-DL
will encourage additional interest and work in multirate mul-
ticast congestion control.

APPENDIX

A. Heuristic for Setting the Values

We now provide a sketch of the method for how to set the
FLID parameters so that it behaves according to the TCP equa-
tion in the face of a fixed packet loss rate. We model packet
loss by a process where each packet is lost independently with
probability , which is, in fact, the model used to derive the
TCP (1).

Supposethecurrentsubscription level is,so that theaggregate
rate is . Since the probability that each packet is lost is, on av-
erage there are roughly 1 seconds between packet
loss events. On the other hand, the increase signal when the sub-
scription level is occurs on average each seconds. If

, then the rate is as likely togoupasdown forsubscription
level . This occurs when 1 , i.e., when

(5)

We use this to set the values for the’s since this approxi-
mately equates the probability of increasing and decreasing the
rate in FLID, according to our Markov chain description in Sec-
tion IV-C. We would expect that if the steady state rate is,
then the rate is roughly as likely to go up as it is to go down.
While this is not precisely true since it depends on the relative
values of the s, it is a good first approximation. We then set
the values as follows.

1) Choose an appropriate nominal RTT.
2) For each subscription level , solve the TCP throughput

equation (1) for by setting to andRTTac-
cording to step 1.

3) Set 1 for 0 .

1568 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002

Fig. 10. Comparison of the estimated average throughput as a function of
loss probability for FLID and TCP, where thep values are obtained using the
heuristic.

When solving the TCP equation, the values ofmay not be
monotonically decreasing due to the influence of theRTOvalue
on the TCP equation for large loss rates. To ensure that the FLID
rules are followed, the values for the small layers can be set
to the maximum value.

Example 5

Consider a base layer of 3 packets/s, i.e., 24 Kb/s for
1-KB packets, 30, and a multiplicative layering scheme so
the subscription level is equal to . We set 0.5 s and
the nominal RTT to be 0.1 s.

For 1.3, the explicit triples are

(0, 24.0 Kb/s, 0.932) (15, 1.20 Mb/s, 0.441)
(1, 31.2 Kb/s, 0.932) (16, 1.56 Mb/s, 0.353)
(2, 40.6 Kb/s, 0.932) (17, 2.03 Mb/s, 0.278)
(3, 52.7 Kb/s, 0.932) (18, 2.64 Mb/s, 0.217)
(4, 68.5 Kb/s, 0.932) (19, 3.43 Mb/s, 0.169)
(5, 89.1 Kb/s, 0.932) (20, 4.45 Mb/s, 0.131)
(6, 116 Kb/s, 0.932) (21, 5.79 Mb/s, 0.100)
(7, 150 Kb/s, 0.932) (22, 7.53 Mb/s, 0.078)
(8, 196 Kb/s, 0.932) (23, 9.79 Mb/s, 0.060)
(9, 255 Kb/s, 0.932) (24, 12.7 Mb/s, 0.046)
(10, 331 Kb/s, 0.899) (25, 16.5 Mb/s, 0.035)
(11, 430 Kb/s, 0.840) (26, 21.5 Mb/s, 0.027)
(12, 559 Kb/s, 0.751) (27, 27.9 Mb/s, 0.021)
(13, 727 Kb/s, 0.649) (28, 36.3 Mb/s, 0.016)
(14, 945 Kb/s, 0.541) (29, 47.2 Mb/s, 0.0).

For 1.3, the graphs of the functions plotting average
throughput [as derived from the TCP (1) and the FLID (2)]
versus loss rate for TCP and FLID with these settings is given
in Fig. 10. As can be seen, the curves are comparable. We ob-
tained similar results for other values of, provided that the ratio
of the time slot duration to the nominal RTT was not larger than
a factor of about 20 to 1.

B. Hill-Climbing Algorithm

The previous heuristic yields a set ofvalues that closely ap-
proximate the behavior of the TCP equation. However, because

the analysis is clearly only approximate, we now describe an al-
ternative approach that allows us to find a set ofvalues that
provide a closer match, if this is desired, by applying a simple
hill-climbing algorithm. Our approach here is more general in
that it applies to any set of points describing the throughput for
a given set of packet loss event rates.

A hill-climbing algorithm requires that we apply some metric
to the values as a measure of improvement. For this, we
consider a specific range of loss rate probabilities . We
choose linearly or logarithmically spaced points

and evaluate the TCP throughput equation (1)
to determine the steady-state transmission rate at these points
for a givenRTT. In fact, we can evaluate any throughput equa-
tion for these loss rates. We denote the throughput versus packet
loss rate curve as .

Given a set of values, we proceed as follows. For each,
1, 2, , we compute the average throughput at

steady state by solving the Markov chain using the recursion in
(2) and (4) in Section IV-C. We denote the resulting throughput
versus packet loss rate curve as . We then calculate the
normalized mean square error (NMSE) between and
as follows:

NMSE

Of course, we could also use the mean square error or another
similar metric, such as the absolute difference, to measure the
distance between the curve given by the cumulative layering
scheme and the curve given by the TCP rate equation

.
Our hill- climbing algorithm is now as follows:

Hill-Climbing Algorithm:
Choose and RTT
Calculate
Initialize the , s
do
for to
Find the value of
s.t. minimizes

while (the 's have not converged)

If we define to be the value of before the execution of
thefor loop, then we say the s have converged when after the
for loop completes we have

where is a positive constant. In calculating thes, we chose
.

We note that in performing the hill-climbing algorithm, we
maintain the restriction that the values are decreasing. Simi-
larly, it may be desirable to ensure that thevalues are some-
what separated, i.e., to ensure that
for every , where is the minimum distance between con-
secutive values. This ensures that it is possible for a layer to
receive an increase signal without the layer above also receiving
an increase signal. This prevents the situation where subscribers

BYERSet al.: FLID-DL: CONGESTION CONTROL FOR LAYERED MULTICAST 1569

Fig. 11. Comparison of the estimated average throughput as a function of loss
probability for FLID and TCP, where thep values are obtained using the hill-
climbing algorithm.

up to layer find they cannot increase their receive rate because
every time they increase their receive rate, so do subscribers to
layer 1, and the combination of increases causes packet loss.
In calculating the value, we chose 0.001.

A priori, it is not clear how close we may come to the TCP
curve but experiments over a wide range of values have shown
that the hill-climbing algorithm can closely approximate the
TCP curve with a cumulative layering scheme.

Example 6

Consider a base layer of 3 packets/s, i.e., 24 Kb/s for
1-KB packets, 30, and a multiplicative layering scheme so
the subscription level is equal to . We set s and
the nominal RTT to be 0.1 s. We use the hill-climbing algorithm
with 0.001, 0.1, 500, and the values linearly
spaced. For 1.3, the explicit triples are

(0, 24.0 Kb/s, 0.999) (15, 1.20 Mb/s, 0.312)
(1, 31.2 Kb/s, 0.932) (16, 1.56 Mb/s, 0.311)
(2, 40.6 Kb/s, 0.931) (17, 2.03 Mb/s, 0.310)
(3, 52.7 Kb/s, 0.930) (18, 2.64 Mb/s, 0.248)
(4, 68.5 Kb/s, 0.929) (19, 3.43 Mb/s, 0.122)
(5, 89.1 Kb/s, 0.928) (20, 4.45 Mb/s, 0.118)
(6, 116 Kb/s, 0.927) (21, 5.79 Mb/s, 0.108)
(7, 150 Kb/s, 0.926) (22, 7.53 Mb/s, 0.077)
(8, 196 Kb/s, 0.925) (23, 9.79 Mb/s, 0.051)
(9, 255 Kb/s, 0.924) (24, 12.7 Mb/s, 0.040)
(10, 331 Kb/s, 0.923) (25, 16.5 Mb/s, 0.005)
(11, 430 Kb/s, 0.922) (26, 21.5 Mb/s, 0.003)
(12, 559 Kb/s, 0.921) (27, 27.9 Mb/s, 0.002)
(13, 727 Kb/s, 0.920) (28, 36.3 Mb/s, 0.001)
(14, 945 Kb/s, 0.901) (29, 47.2 Mb/s, 0.0).

For 1.3, the graphs of the functions plotting average
throughput versus packet loss rate for TCP and FLID with these
settings is given in Fig. 11. The hill-climbing algorithm provides
a better fit than the initial heuristic, particularly at low loss rates.

We are conducting further research into determining which
settings are appropriate in practice and whether theNMSE

distance metric can be fine-tuned to take into account other con-
siderations that may arise in practice.

ACKNOWLEDGMENT

The authors would like to thank M. Handley and L. Vicisano
for their feedback and their help in compiling a list of suit-
able experiments to test the FLID-DL protocol. We also thank
D. Towsley, the anonymous NGC’00 reviewers, and the anony-
mous referees for their suggestions for improving this paper.

REFERENCES

[1] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, “Dynamic be-
havior of slowly-responsive congestion control algorithms,” inProc.
ACM SIGCOMM, Aug. 2001, pp. 263–273.

[2] “Recommendations on Queue Management and Congestion Avoidance
in the Internet,” IETF, IETF RFC 2309, Apr. 1998.

[3] J. Byers, M. Frumin, G. Horn, M. Luby, M. Mitzenmacher, A. Roetter,
and W. Shaver, “FLID-DL: Congestion control for layered multicast,” in
Proc. 2nd Int. Workshop Group Communication (NGC), Stanford, CA,
Nov. 2000, pp. 71–81.

[4] J. Byers, M. Luby, and M. Mitzenmacher, “Fine-grained layered multi-
cast,” inProc. IEEE INFOCOM, Apr. 2001, pp. 275–283.

[5] , “A digital fountain approach to asynchronous reliable multicast,”
IEEE J. Select. Areas Commun., vol. 1540, pp. 20–1528, Oct. 2002.

[6] S. Deering, “Multicast routing in a datagram internetwork,” Ph.D. dis-
sertation, Stanford Univ., Stanford, CA, 1991.

[7] W. Fenner, “Internet Group Management Protocol, Version 2,” IETF,
IETF RFC 2236, 1997.

[8] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion con-
trol in the internet,”IEEE/ACM Trans. Networking, vol. 7, pp. 458–472,
Aug. 1999.

[9] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” inProc. ACM SIGCOMM,
Aug. 2000, pp. 43–56.

[10] M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, and J. Crowcroft,Asyn-
chronous Layered Coding Protocol Instantiation, Feb. 2002, IETF In-
ternet Draft draft-ietf-rmt-pi-alc-06.txt.

[11] J. Mahdavi and S. Floyd,in Proc. TCP-Friendly Unicast Rate-Based
Flow Control, Jan. 1997.

[12] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered
multicast,” in Proc. ACM SIGCOMM, Stanford, CA, Aug. 1996, pp.
117–130.

[13] NS: Network Simulator. [Online]. Available: http://www.isi.edu/nsnam
/ns.

[14] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Reno
performance: A simple model and its empirical validation,”IEEE/ACM
Trans. Networking, vol. 8, pp. 133–145, Apr. 2000.

[15] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end rate-based
congestion control mechanism for real-time streams in the internet,” in
Proc. IEEE INFOCOM, Mar. 1999, pp. 1337–1345.

[16] L. Rizzo, “Fast group management in IGMP,” inProc. Hipparch Work-
shop, London, U.K., June 1998, pp. 32–41.

[17] , “PGMCC: A TCP-friendly single-rate multicast congestion
control scheme,” inProc. ACM SIGCOMM, Stockholm, Sweden, Aug.
2000, pp. 17–28.

[18] L. Vicisano, L. Rizzo, and J. Crowcroft, “TCP-like congestion control
for layered multicast data transfer,” inProc. IEEE INFOCOM, San Fran-
cisco, CA, Mar. 1998, pp. 996–1003.

[19] J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly con-
gestion control,”IEEE Network, vol. 15, pp. 28–37, May 2001.

John W. Byers received the Ph.D. degree in theo-
retical computer science from the University of Cal-
ifornia, Berkeley, in 1997.

He is an Assistant Professor with the Department
of Computer Science at Boston University, MA, and
an Affiliated Scientist at Digital Fountain, Inc., Fre-
mont, CA. He was a Postdoctoral Researcher at the
International Computer Science Institute, Berkeley,
CA, where he helped lay the groundwork for Digital
Fountain’s core technology.

Dr. Byers is the recipient of the National Science
Foundation (NSF) Early Faculty CAREER Development Award for his research
on scalable network protocols and applications to Internet content delivery.

1570 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002

Gavin Horn received the B.A.Sc. degree in com-
puter engineering from the University of Toronto,
ON, Canada, in 1995, and the M.S. and Ph.D.
degrees in electrical engineering from the California
Institute of Technology, CA, in 1996 and 1999,
respectively.

He was a Research Engineer at Digital Fountain,
Fremont CA, from 1999 to 2001. He is currently an
Engineer at Pulsent Corporation, Milpitas, CA. His
research interests include coding theory, network
protocols, congestion control, streaming media, and

object-based video compression.

Michael Luby received the Ph.D. degree in theoret-
ical computer science from the University of Cali-
fornia, Berkeley, in 1983.

He cofounded Digital Fountain, Inc., Fremont,
CA, in 1998, where he holds the position of Chief
Technology Officer. He is a world-renowned
scientist in the areas of coding theory, randomized
algorithms, cryptography, and graph theory. He
has been a Computer Science Professor at both
the University of Toronto, ON, Canada and the
University of California, Berkeley. He is the inventor

of the Luby Transform, the unique breakthrough technology that the Digital
Fountain products are built upon.

Michael Mitzenmacher (M’01) received the Ph.D.
degree in computer science from the University of
California, Berkeley, in 1996.

He worked at Digital Systems Research Center,
Palo Alto, CA, until January 1999, when he joined
the faculty of Harvard University, Cambridge, MA
as an Associate Professor. His research interests
include algorithms, random processes, networks,
and information theory.

William Shaver received the B.S. degree in software
engineering from the Oregon Institute of Technology,
Beaverton, OR, in 2002.

He has extensive experience as a Software Engi-
neer on projects at Digital Fountain, Inc., Fremont,
CA, the University of Oregon Network Services De-
partment, Eugene OR, QSpeed Internet Design, and
Dynamix.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

