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Abstract
We address the problem of collecting unique items in a large
stream of information in the context of Intrusion Prevention
Systems (IPSs). IPSs detect attacks at gigabit speeds and
must log infected source IP addresses for remediation or
forensics. An attack with millions of infected sources can
result in hundreds of millions of log records when counting
duplicates. If logging speeds are much slower than packet
arrival rates and memory in the IPS is limited,scalable log-
ging is a technical challenge. After showing that naı̈ve ap-
proaches will not suffice, we solve the problem with a new
algorithm we call Carousel. Carousel randomly partitions
the set of sources into groups that can be logged without du-
plicates, and then cycles through the set of possible groups.
We prove that Carousel collects almost all infected sources
with high probability in close to optimal time as long as
infected sources keep transmitting. We describe details of
a Snort implementation and a hardware design. Simula-
tions with worm propagation models show up to a factor
of 10 improvement in collection times for practical scenar-
ios. Our technique applies toanylogging problem with non-
cooperative sources as long as the information to be logged
appears repeatedly.

1 Introduction

With a variety of networking devices reporting events at in-
creasingly higher speeds, how can a network manager ob-
tain a coherent and succinct view of this deluge of data?
The classical approach uses asampleof traffic to make be-
havioral inferences. However, in many contexts the goal
is complete or near-complete collectionof information —
MAC addresses on a LAN, infected computers, or mem-
bers of a botnet. While our paper presents a solution to this
abstract logging problem, we ground and motivate our ap-
proach in the context of Intrusion Prevention Systems.

Originally, Intrusion Detection Systems (IDSs) imple-
mented in software worked at low speeds, but modern In-

trusion Prevention Systems (IPSs) such as the Tipping Point
Core Controller and the Juniper IDP 8200 [5] are imple-
mented in hardware at 10 Gbps and are standard in many
organizations. IPSs have also moved from being located
only at the periphery of the organizational network to be-
ing placed throughout the organization. This allows IPSs
to defend against internal attacks and provides finer granu-
larity containment of infections. Widespread, cost-effective
deployment of IPSs, however, requires using streamlined
hardware, especially if the hardware is to be integrated into
routers (as done by Cisco and Juniper) to further reduce
packaging costs. By streamlined hardware, we mean ide-
ally a single chip implementation (or a single board with
few chips) and small amounts of high-speed memory (less
than10 Mbit).

Figure 1 depicts a logical model of an IPS for the pur-
poses of this paper. A bad packet arrives carrying some
key. Typically the key is simply the source address, but other
fields such as the destination address may also be used. For
the rest of the paper we assume the key is the IP source ad-
dress. (We assume the source information is not forged. Any
attack that requires the victim to reply cannot use a forged
source address.) The packet is coalesced with other pack-
ets for the same flow if it is a TCP packet, normalized [16]
to guard against evasions, and then checked for whether
the packet is indicative of an attack. The most common
check issignature-based(e.g., Snort [13]) which determines
whether the packet content matches a regular expression in
a database of known attacks. However, the check could also
bebehavior-based. For example, a denial of service attack
to a destination may be detected by some state accumulated
across a set of past packets.

In either case, the bad packet is typically dropped, but the
IPS is required tolog the relevant information on disk at a re-
mote management console for later analysis and reporting.
The information sent is typically the keyK plus a report
indicating the detected attack. Earlier work has shown tech-
niques for high speed implementations of reassembly [4],
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Figure 1: IPS logical model including a logging component
that is often implemented naı̈vely

normalization [15, 16], and fast regular expression match-
ing (e.g., [12]). However, to the best of our knowledge,
there is no prior work in scalable logging for IPS systems
or networking.

To see why logging may be a bottleneck, consider
Figure 2, which depicts a physical model of a streamlined
hardware IPS implementation, either stand-alone or pack-
aged in a router line card. Packets arrive at high speed
(say 10 Gbps) and are passed from a MAC chip to one or
more IDS chips that implement detection by for example
signature matching. A standard logging facility, such as in
Snort, logs a report each time the source sends a packet that
matches an attack signature and writes it to a memory buffer,
from which it is written out later either to locally attached
disk in software implementations or to a remote disk at a
management station in hardware implementations. A prob-
lem arises because the logging speed is often much slower
than the bandwidth of the network link. Logging speeds
less than 100 Mbps are not uncommon, especially in 10
Gbps IDS line cards attached to routers. Logging speeds are
limited by physical considerations such as control proces-
sor speeds and disk bandwidths. While logging speeds can
theoretically be increased by striping across multiple disks
or using a network service, the increased costs may not be
justified in practice.

In hardware implementations where the memory buffer is
necessarily small for cost considerations, the memory can
fill during a large attack and newly arriving logged records
may be dropped. A typical current configuration might in-
clude only 20 Mbits of on-chip high speed SRAM of which
the normalizer itself can take 18 Mbits [16]. Thus, we as-
sume that the logger may be allocated only a small amount
of high speed memory, say 1 Mbit. Note that the memory
buffer may include duplicate records already in the buffer or
previously sent to the remote device.

Under a standard naı̈ve implementation, unless the log-
ging rate matches the arrival rate of packets, there is no
guarantee that all infected sources will be logged. It is easy
to construct worst-case timing patterns where some set of
sourcesA are never logged because another set of sourcesB
always reaches the IDS before sources in the setA and fills
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Figure 2: IPS hardware model in which we propose adding
a scalable logger facility called Carousel. Carousel focuses
on a small random subset of the set of keys at one time,
thereby matching the available logging speed.

the memory. Even in a random arrival model, intuitively as
more and more sources are logged, it gets less and less prob-
able that a new unique source will be logged. In Section 3
we show that, even with a fairly optimistic random model,
a standard analysis based on the coupon collector’s prob-
lem (e.g., [8]) shows that the expected time to collect allN
sources is amultiplicativefactor oflnN worse than the op-
timal time. For example, whenN is in the millions, which
is not unusual for a large worm, the expected time to col-
lect all sources can be 15 times larger than optimal. We
also show similar poor behavior of the naı̈ve implementa-
tion, both through analysis and simulation, in more complex
settings.

The main contribution of this paper, as shown in Figure 2,
is a scalable logger module that interposes between the de-
tection logic and the memory buffer. We refer to this module
and the underlying algorithm asCarousel, for reasons that
will become apparent. Our logger is scalable in that it can
collect almost allN sources with high probability with very
small memory buffers in close to optimal time, where here
the optimal time isN/b with b being the logging speed. Fur-
ther, Carousel is simple to implement in hardware even at
very high speeds, adding only a few operations to the main
processing path. We have implemented Carousel in software
both in Snort as well as in simulation in order to evaluate its
performance.

While we focus on the scalable logging problem for IPSs
in this paper, we emphasize that the problem is a general
one that can arise in a number of measurement settings. For
example, suppose a network monitor placed in the core of an
organizational network wishes to log all the IP sources that
are using TCP Selective Acknowledgment option (SACK).
In general, our mechanism applies to any monitoring setting
where a source is identified by a predicate on a packet (e.g.,
the packet contains the SACKPERMITTED option, or the
packet matches the Slammer signature), memory is limited,
and sources do not cooperate with the logging process. It
does, however, require sources to keep transmitting packets
with the predicate in order to be logged. Thus Carousel does
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Figure 3: Abstract logging model:N keys to be logged en-
ter the logging device repeatedly at a speedB that is much
greater then the logging speedb and in a potentially adver-
sarial timing pattern. At the same time, the amount of mem-
ory M is much less than theN , number of distinct keys to
be logged. Source cooperation isnot assumed.

not guarantee the logging of one-time events.
The rest of the paper is organized as follows. In Section 2

we describe a simple abstract model of the scalable logging
problem that applies to many settings. In Section 3 we de-
scribe a simple analytical model that shows that even with
an optimistic random model of packet arrivals, naı̈ve log-
ging can incur a multiplicative penalty oflnN in collection
times. Indeed, we show this is the case even if naı̈ve logging
is enhanced with a Bloom filter in the straightforward way.
In Section 4 we describe our new scalable logging algorithm
Carousel, and in Section 5 we describe our Snort implemen-
tation. We evaluate Carousel using a simulator in Section 6
and using a Snort implementation in Section 7. Our eval-
uation tests both the setting of our basic analytical model,
which assumes that all sources are sending at time0, and
a more realistic logistic worm propagation model, in which
sources are infected gradually. Section 8 describes related
work while Section 9 concludes the paper.

2 Model

The model shown in Figure 3 abstracts the scalable logging
problem. First, there areN distinct keys that arrive repeat-
edly and with arbitrary timing frequency at a cumulative
speed ofB keys per second at the logger. There aretwo
resources that are in scarce supply at the logger. First, there
is a limited logging speedb (keys per second) that is much
smaller than the bandwidthB at which keys arrive. Even
this might not be problematic if the logger had a memoryM
large enough to hold all the distinct keysN that needed to
be logged (using methods we discuss below, such as Bloom
filters [1, 3], to handle duplicates), but in our setting of large
infections and hardware with limited memory, we must also
assume thatN >> M .

Eliminating all duplicates before transmitting to the sink
is not a goal of a scalable logger. We assume that the sink
has a hash table large enough to store allN unique sources
(by contrast to the logger) and eliminate duplicates.

Instead, the ultimate goal of the scalable logger isnear-

complete collection: the logging of allN sources. We now
adopt some of the terminology of competitive analysis [2] to
describe the performance of practical logger systems. The
best possible logging timeToptimal for an omniscient algo-
rithm is clearlyN/b. We compare our algorithms against
this omniscient algorithm as follows.

Definition 2.1 We say that a logging algorithm is(ǫ, c)-
scalable if the time to collect at least(1−ǫ)N of the sources
is at mostcToptimal. In the case of a randomized algo-
rithm, we say that an algorithm is(ǫ, c)-scalable if in time
cToptimal the expected number of sources collected is at
least(1 − ǫ)N .

Note that in the caseǫ = 0 all sources are collected. While
obviously collecting all sources is a desirable feature, some
relaxation of this requirement can naturally lead to much
simpler algorithms.

These definitions have some room for play. We could in-
stead call a randomized algorithm(ǫ, c)-scalable if the ex-
pected time to collect at least(1− ǫ)N is at mostcToptimal,
and we may be concerned only with asymptotic algorithmic
performance as either or both ofN/M andB/b grow large.
As our focus here is on practically efficient algorithms rather
than subtle differences in the definitions we avoid such con-
cerns where the meaning is clear.

The main goal of this paper is to provide an effective and
practical(ǫ, c)-scalable randomized algorithm. To empha-
size the value of this result, we first show that simple naı̈ve
approaches are not(ǫ, c)-scalable for any constantsǫ, c > 0.
Our positive results will require the following additionalas-
sumption for our model:

Persistent Source Assumption:We assume that any dis-
tinct keyX to be logged will keep arriving at the logger.

For sources infected by worms this assumption is of-
ten reasonable until the source is “disinfected” because the
source continues to attempt to infect other computers. The
time for remediation (days) is also larger than the period
in which the attack reaches its maximum intensity (hours).
Further, if a source is no longer infected, then perhaps it mat-
ters less that the source is not logged. In fact, we conjecture
that no algorithm can solve the scalable logging problem
without the Persistent Source assumption.

The abstract logger model is a general one and applies to
other settings. In the introduction, we mentioned one other
possibility, logging sources using SACK. As another exam-
ple, imagine a monitor that wishes to log all the sources in
a network. The monitor issues a broadcast request to all
sources asking them to send a reply with their ID. Such mes-
sages do exist, for example the SYSID message in 802.1.
Unfortunately, if all sources reply at the same time, some
set of sources can consistently be lost.

Of course, if the sources could randomize their replies,
then better guarantees can be made. The problem can be



viewed as one of congestion control: matching the speed
of arrival of logged keys to the logging speed. Congestion
control can be solved by standard methods like TCP slow
start or Ethernet backoffif sources can be assumed to co-
operate. However, in a security setting we cannot assume
that sources will cooperate, and other approaches, such as
the one we provide, are needed.

3 Analysis of a Näıve Logger

3.1 The Näıve Logger Alone
Before we describe our scalable logger and Snort imple-

mentation, we present a straw man naı̈ve logger, and a theo-
retical analysis of the expected and worst-case times. The
theoretical analysis makes some simplifications that only
benefit the näıve logger, but still its performance is poor.
The näıve logger motivates our approach.

We start with a model of the naı̈ve logger shown in
Figure 4. We assume that the naı̈ve logger only has a mem-
ory buffer in the form of a queue. Keys, which again are
usually source addresses, arrive at a rate ofB per second.
When the näıve logger receives a key, it is placed at the tail
of the queue. If the queue is full, the key is dropped. The
size of the queue isM . Periodically, at a smaller rate ofb
keys per second, the naı̈ve logger sends the key (and any as-
sociated report) at the head of the queue to a disk log. Let
LD denote the set of keys logged to disk, andLM the set of
keys that are in the memory.

The näıve logger works very poorly in an adversarial set-
ting. In an adversarial model, after the queue is full ofM
keys, and when an empty slot opens up at the tail, the adver-
sary picks a duplicate key that is part of theM keys already
logged. When the queue is full, the adversary cycles through
the remaining unique sources to pick them to arrive and be
dropped, thus fulfilling the persistent source assumption in
which every source must arrive periodically. It is then easy
to see the following result.

Theorem 3.1 Worst-case time for näıve logger: The
worst-case time to collect allN keys is infinity. In fact, the
worst-case time to collect more thanM keys is infinite.

We believe the adversarial models can occur in real situ-
ations especially in a security setting. Sources can be syn-
chronized by design or accident so that certain sources al-
ways transmit at certain times when the logger buffers are
full. While we believe that resilience to adversarial models
is one of the strengths of Carousel, we will show that even in
the most optimistic random models, Carousel significantly
outperforms a näıve logger.

The simplest random model for key arrival is one in which
the next key to arrive is randomly chosen from theN possi-
ble keys, and we can find the expected collection time of the
näıve logger in this setting.
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Figure 4: Model of näıve logging using an optimistic ran-
dom model. When space opens up in the memory log, a
source is picked uniformly and randomly from the set of all
possibleN sources. Unfortunately, that source may already
be in the memory log (LM ) or in the disk log (LD). Thus as
more sources are logged it gets increasing less probable that
a new unique source will be logged, leading to a logarithmic
increase in collection time over optimal
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Figure 5: Portion of timeline for random model shown in
Figure 4. We divide time into cycles of timeT whereT
is the time to send one piece of logged information at the
logging rateb. The time for a new randomly chosen source
to first arrive is much smallert = 1/B, whereB is the faster
packet arrival rate.

Let us assume thatM < B/b, so that initially the queue
fills entirely before the first departure. (The analysis is eas-
ily modified if this is not the case.) Figure 5 is a timeline
which shows that the dynamics of the system evolve in cy-
cles of lengthT seconds, whereT = 1/b. EveryT seconds
the current head of the memory queue leaves for the disk
log, and within the smaller timet = 1/B, a new randomly
selected key arrives to the tail of the queue. In other words,
the queue will always be full except when a key leaves from
the head, leaving a single empty slot at the tail as shown
in Figure 4. The very next key to be selected will then be
chosen to fill that empty slot as shown in Figure 5.

The analysis of this naı̈ve setting now follows from a stan-
dard analysis of the coupon collector’s problem [8]. Let
L = LM ∪ LD denote the set of unique keys logged in
either memory or disk. LetTi denote the time forL to grow
from sizei − 1 to i (in other words, the time for thei-th
new key to be logged). If we optimistically assume that the
first M keys that arrive are distinct, we haveTi = T for
1 ≤ i ≤ M , as the queue initially fills. Subsequently, since
the newly arriving key is chosen randomly from the set ofN
keys, it will get increasingly probable (asi gets larger) that
the chosen key already belongs to the logged setL.

The probability that a new key will not be a duplicate of
i − 1 previously logged keys is isPi = (N − i + 1)/N . If



a key is a duplicate the naı̈ve logger simply wastes a cycle
of time T . (Technically, it might beT − t wheret = 1/B,
but this distinction is not meaningful and we ignore it.) The
expected number of cycles before thei-th key is not a dupli-
cate is the reciprocal of the probability or1/Pi. Hence for
i > M, i ≤ N the expected value ofTi is

E(Ti) =
N

b(N − i + 1)
.

Using the linearity of expectation, the collection time for
the lastN − M keys is

N
∑

i=M+1

N

b(N − i + 1)
=

N

b

N−M
∑

j=1

1

j
=

N

b
(ln(N − M) + O(1)) ,

using the well-known result for the sum of the harmonic
series. Hence if we letTnaive

collect be the time to collect allN
keys for the näıve collector thenTnaive

collect > N
b

ln(N − M),
and so the näıve logger is a multiplicative factor ofln(N −
M) worse than the optimal algorithm.

It might be objected that it is not clear thatN/b is in
fact the optimal time in this random model, and that this
lnN factor is due entirely to the embedded coupon collec-
tor’s problem arising from the random model. For exam-
ple, if B = b = 1, then you cannot collect theN keys in
time N , since they will not all appear until after approxi-
matelyN lnN keys have passed [8]. However, as long as
B/b > lnN (andM > 1), for anyγ > 0, with high proba-
bility an omniscient algorithm will be able to collect all keys
after at most(1 + γ)NB/b keys have passed in this random
model, so the optimal collection time can be made arbitrar-
ily close toN/b. Hence, this algorithm is indeed not truly
scalable in the sense we desire, namely in a comparison with
the optimal omniscient algorithm.

Even if we seek only to obtain(1−ǫ)N keys, by the same
argument we have the collection time is

N

b
(ln((1 − ǫ)N − M) + O(1)) .

Hence whenM = o(N), the logger is still not(ǫ, c)-
scalable for any constantsǫ andc. We can summarize the
result as follows:

Theorem 3.2 Expected time for näıve logger: The ex-
pected time to collect(1− ǫ)N keys is at least a multiplica-
tive factor ofln((1−ǫ)N −M) worse than the optimal time
for sufficiently largeN,M, and ratiosB/b.

As stated in the introduction, for large worm outbreaks,
the näıve logger can be prohibitively slow. For example,
as ln 1, 000, 000 is almost 14, if the optimal time to log 1
million sources is 1 hour, the naı̈ve logger will take almost
14 hours.

The results for the random model can be extended to situ-
ations that naturally occur in practice and appear somewhere

between the random model and an adversarial model. For
example, suppose that we have two sets of sources, of sizes
N1 andN2, but the first source sends at a speed that isj
times the second. This captures, at a high level, the issue that
sources may be sending at different rates. We assume each
source individually behaves according to the random model.
Let T1 be the expected time to collect all the keys in the fast
set, andT2 the expected time for the slow set. Then clear the
expected time to collect all sources is at leastmax(T1, T2),
and indeed this lower bound will be quite tight whenT1 and
T2 are not close. As an example, supposeN1 = N2 = N/2,
andj > 1. ThenT2 is approximately

N(j + 1)

2b
ln

(

N

2
− M

j + 1

)

.

The time to collect in this case is dominated by the slow
sources, and is still a logarithmic factor from optimal.

3.2 The Näıve Logger with a Bloom Filter
A possible objection is that our naı̈ve logger is far too

näıve. It may be apparent to many readers that additional
data structures, such as a Bloom filter, could be used to pre-
vent logging duplicate sources and improve performance.
This is true, and we shall use such measures in our scalable
approaches. However, we point out that as the Bloom filter
of limited size, it cannot by itself prevent the problems of
the näıve logger, as we now explain.

To frame the discussion, consider 1 million infected
sources that keep sending to an IPS. The solution to the
problem may appear simple. First, since all the sources may
arrive at a very fast rate ofB before even a few are logged,
the scheme must have a memory buffer that can hold keys
waiting to be logged. Second, we need a method of avoiding
sending duplicates to the logger, specifically one that takes
small space, in order to make efficient use of the small speed
of the logger.

To avoid sending duplicates, one naturally would think
of a solution based on Bloom filters or hashed fingerprints.
(We assume familiarity with Bloom filters, a simple small-
space randomized data structure for answering queries of
the form “Is this an item in setX” for a given setX. See [3]
for details.) For example, we could employ a Bloom filter
as follows. For concreteness, assume that a source address
is 32 bits, the report associated with a source is 68 bits, and
that we use a Bloom filter [1] of 10 bits per source.1 Thus we
need a total of 100 bits of memory for each source waiting to
be logged, and 10 bits for each source that has been logged.
(Instead of a Bloom filter, we could keep a table of hash-
based fingerprints of the sources, with different tradeoffsbut
similar results, as we discuss in Section 4.2.2.)

1This is optimistic because many algorithms would require not just a
Bloom filter but instead a counting Bloom filter [7] to supportdeletions,
which would require more than 10 bits per entry.



Unfortunately, the memory buffer and Bloom filter have
to operate at Gigabit speeds. Assume that the amount of
IDS high speed memory is limited to storing say 1 Mbit.
Then, assuming 100 bits per source, the IPS can only store
information about a burst of 10,000 sources pending their
transmission to a remote disk. This does not include the size
of the Bloom filter, which can only store around 100,000
sources if scaled to 1 Mbit of size; after this point, the false
positive rate starts increasing significantly. In practiceone
has to share the memory between the sources and the Bloom
filter.

The inclination would be to clear the Bloom filter after it
became full and start a second phase of logging. One con-
cern is that timing synchronization could result in the same
sources that were logged in phase 1 being logged and filling
up the Bloom filter again, and this could happen repeatedly,
leading to missing several sources. Even without this poten-
tial problem, there is danger in using a Bloom filter, as we
can see by again considering the random model.

Consider enhancing the naı̈ve logger with a Bloom filter
to prevent the sending of duplicates. We assume the Bloom
filter has a counter to track the number of items placed in
the filter, and the filter is cleared when the counter reaches
a thresholdF to prevent too many false positives. Between
each clearing, we obtain a group ofF distinct random keys,
but keys may be appear in multiple groups. Effectively, this
generalizes the naı̈ve logger, which simply used groups of
sizeF = 1.

Not surprisingly, this variation of the coupon collector’s
problem has been studied; it is know as the coupon sub-
set collection problem, and exact results for the problem
are known [11, 14]. Details can be examined by the in-
terested reader. A simple analysis, however, shows that
for reasonable filter sizesF , there will be little or no gain
over the näıve logger. Specifically, supposeF = o(

√
N).

Then in the random model, the well-known birthday para-
dox implies that with high probability the firstF keys to
be placed in the Bloom filter will be distinct. While there
may still be false positives from the Bloom filter, for such
F the filter fills without detecting any true duplicates with
high probability. Hence, in the random case, the expected
collection time even using a Bloom filter of this size is still
N
b

ln(N − M) + O(1). With larger filters, some true du-
plicates will be suppressed, but one needs very large filters
to obtain a noticeable gain. The essential point of this ar-
gument remains true even in the setting considered above
where different sets of sources arrive at different speeds.

The key problem here is that we cannot supply the IDS
with the list of all the sources that have been logged, even
using a Bloom filter or a hashed set of fingerprints. Indeed,
whenM << N no data structure can track a meaningful
fraction of the keys that have already been stored to disk.
Our solution to this problem is to partition the population of

keys to be recorded into subsets of the right size, so that the
logger can handle each subset without problem. The log-
ger then iterates through all subsets inphases, as we now
describe. This repeated cycling through the keys is reminis-
cent of a Carousel, yielding our name for our algorithm.

4 Scalable logging using Carousel

4.1 Partitioning and logging
Our goal is to partition the keys into subsets of the right

size, so that during each phase we can concentrate on a sin-
gle subset. The question is how to perform the partitioning.
We want the size of each partition to be the right size for
our logger memory, that is approximately sizeM . We sug-
gest using a randomized partition of the sources into subsets
using a hash function that uses very little memory and pro-
cessing. This randomized partitioning would be simple if
we initially knew the population sizeN , but that generally
will not be the case; our system must find the current popu-
lation sizeN , and indeed should react as the population size
changes.

We choose a hash-based partition scheme that is particu-
larly memory and time-efficient. LetH(X) be a hash func-
tion that maps a source keyX to anr-bit integer. LetHk(X)
be the lower orderk bits ofH(X). The size of the partition
can be controlled by adjustingk.

For example, ifk = 1, we divide the sources into two
subsets, one subset whose low order bit (after hashing) is 1,
and one whose lower order bit is a 0. If the hash function is
well-behaved, these two sets will be approximately half the
original sizeN . Similarly, k = 2 partitions the sources ap-
proximately into four equally sized subsets whose hash val-
ues have low order bits 00, 01, 10, and 11 respectively. This
allows only very coarse-grained partitioning, but that is gen-
erally suitable for our purposes, and the simplicity of using
the lower orderk bits of H(X) is particularly compelling
for implementation and analysis. To begin we will assume
the population size is stable but unknown, in which case the
basic Carousel algorithm can be outlined as follows:

• Partition: Partition the population into groups of size
2k by placing all sources which have the same value of
Hk(X) in the same partition.

• Iterate: A phase is assigned timeTphase = M/b which
is the time to logM sources, whereM is the avail-
able memory in keys andb is the logging time. The
i-th phase is defined by logging only sources such that
Hk(s) = i. Other sources are automatically dropped
during this phase. The algorithm must also utilize
some means of preventing the same source from being
logged multiple times in the phase, such as a Bloom
filter or hash fingerprints.



• Monitor: If during phasei, the number of keys that
matchHk() = i exceeds a high threshold, then we
return to the Partition step and increasek. While our
algorithms typically usek = k + 1, higher jumps can
allow faster response. If the number of number of keys
that matchHk() = i falls below a low threshold, then
we return to the Partition step and decreasek.

In other words, Carousel initially tries to log all sources
without hash partitioning. If that fails because of mem-
ory overflow, the algorithm then works on half the possi-
ble sources in a phase. If that fails, it works on a quarter
of the possible sources, and so on. Once it determines the
appropriate partition size, the algorithm iterates through all
subsets to log all sources.

As described, we could in the monitoring stage change
k by more than 1 if our estimate of the number of keys
seen during that phase suggests that would be an appropri-
ate choice. Also, of course, we can choose to decreasek
if our estimate of the keys in that phase is quite small, as
would happen if we are logging suspected virus sources and
these sources are stopped. There are many variations and
optimizations we could make, and some will be explored in
our experiments. The important idea of Carousel, however,
is to partition the set of keys to match the logger memory
size, updating the partition as needed.

4.2 Collection Times for Carousel
We assume that the memory includes, for each key to

be recorded, the space for the key itself, the correspond-
ing report, and some number of bits for a Bloom filter.
This requires slightly more memory space that we assumed
when analyzing the random model, where we did not use
the Bloom filter. The discrepancy is small, as we expect
the Bloom filter to be less than 10% of the total memory
space (on the order of 10 bits or less per item, against 100
or more bits for the key and report). This would not effec-
tively change the lower bounds on performance of the naı̈ve
logger. We generally ignore the issue henceforth; it should
be understood that the Bloom filter takes a small amount of
additional space.

Recall that Carousel has 3 components: partition, iterate,
and monitor. Faced with an unknown populationN , the
scalable logger will keep increasing the number of bits cho-
senk until each subset is less than sizeM , the memory size
available for buffering logged keys.

We sketch an optimistic analysis, and then correct for the
optimistic assumptions. Let us assume that allN keys are
present at the start of time, that our hash function splits the
keys perfectly equally, and that there is no failed recording
of keys due to false positives from the Bloom filter (or what-
ever structure suppresses duplicates). In that case it willtake
at most⌈log2

N
M
⌉ partition steps for Carousel to get the right

number of subsets. Each such step required time for a sin-

gle logging phase,Tphase = M/b. The logger then reaches
the right subset size, so thatk is the smallest value such that
N/2k ≤ M . The collector then goes through2k phases to
collect all N sources. Note that2k ≤ 2N/M , or elsek
would not be the smallest value withN/2k ≤ M . Hence,
after the initial phases to find the right value ofk, the ad-
ditional collection time required is just2N/b, or a factor of
two more than optimal. The total time is thus at most

M⌈log2(N/M)⌉
b

+
2N

b
,

and the generally the second term will dominate the first.
Asymptotically, whenN >> M , we are roughly within a
factor of 2 of the optimal collection time.

Note that the factor of 2 in the2N/b term could in fact be
replaced in theory by any constanta > 1, by increasing the
number of sets in the partition by a factor ofa rather than
2 at each partition step. This would increase the number
of partition steps to⌈loga

N
M
⌉. In practice we would not

want to choose a value ofa too close to 1, because keys will
not be partitioned equally into sets, as we describe in the
next subsection. Also, as we have described a factor of 2 is
convenient in terms of partitioning via the low order bits of
a hash. In what follows we continue to use the factor 2 in
describing our algorithm, although it should be understood
smaller constants (with other tradeoffs) are possible.

In some ways our analysis is actually pessimistic. Early
phases that fail can still log some items, and we have as-
sumed that we could partition to require2N/M phases,
when generally the number of phases required will be
smaller. However, we have also made some optimistic as-
sumptions that we now revisit more carefully.
4.2.1 Unequal Partitioning: Maximum Subset Analy-

sis
If the logger usesk bits to partition keys, then there are

K = 2k subsets. While the expected number of sources in
a subset isN

K
, even assuming a perfectly random hash func-

tion, there may be deviations in the set sizes. Our algorithm
will actually choose the value ofk such that the biggest par-
tition is fit in our memory budgetM , not the average parti-
tion, and we need to take this into account. That is, we need
to analyze themaximumnumber of keys being assigned to a
subset at each phase interval.

In general, this can be handled using standard Chernoff
bound analysis [8]. In this specific case, for example, [10]
proves that with very high probability, the maximum num-

ber of sources in any subset is less thanN
K

+
√

2N ln K
K

.
Therefore we can assume that the smallest integerk satisfy-
ing

N

K
+

√

2N lnK

K
≤ M, (1)

whereK = 2k, is greater than or equal to thek eventually



found by the algorithm.
Note that the difference between our optimistic analysis,

where we required the smallestk such thatN/K ≤ M , and

this analysis is generally very small, as
√

2N ln K
K

is gener-

ally much less thanN/K. That is, suppose thatN/K ≤ M ,

but N
K

+
√

2N ln K
K

> M , so that at some point we might
increase the valuek to more than the smallest value such
thatN/K ≤ M , because we unluckily have a subset in our
partition that is bigger than the memory size. The key here
is that in this caseN/K ≈ M , or more specifically

M ≥ N

K
> M −

√

2N lnK

K
,

so that our collection time is now

2KM

b
<

2N

b
+

2

b

√

2N lnK

K
.

That is, the collection time is still, at most, very close to
2N/b, with the addition of a smaller order term that con-
tributes negligibly compared to2N/b for largeN . Hence,
asymptotically, we are still with a factor ofc of the optimal
collection time, for anyc > 2.
4.2.2 Effects of False Positives

So far, our analysis has not taken into account our method
of suppressing duplicates. One natural approach is to use
a Bloom filter, in which case false positives can lead to
a source not being logged in a particular phase. This ex-
plains our definition of an(ǫ, c)-scalable logger. We have
already seen thatc can be upper bounded by any number
larger than 2 asymptotically. Hereǫ can be bounded by
the false positive rate of the corresponding Bloom filter. As
long as the number of elements per phase is no more than

M ′ = N
K

+
√

2N ln K
K

with high probability, then given
the number of bits used for our Bloom filter, we can bound
the false positive rate. For example, using10M ′ bits in the
Bloom filter, the false positive rate is less than 1%, so our
logger asymptotically converges to a(0.01, 2)-scalable log-
ger.

We make note of some additions one can make to improve
the analysis. First, this analysis assumes only a singlema-
jor cycle that logs each subset in the partition once. If one
rerandomized the chosen hash functions each major cycle,
then the probability a persistent source is missed each major
cycle is independently at mostǫ each time. Hence, after two
such cycles, the probability of a source being missed is at
mostǫ2, and so on.

Second, this analysis is pessimistic, in that in this setting,
items are gradually added to an empty Bloom filter each
phase; the Bloom filter is not in its full state at all times,
so the false positive probability bound for the full filter isa

large overestimate. For completeness we offer the follow-
ing more refined analysis (which is standard) to obtain the
expected false positive rate. (As usual, the actual rate is con-
centrated around its expectation with high probability.)

Assume the Bloom filter hasm bits and usesh hash func-
tions. Consider whether the(i + 1)st item added to the fil-
ter causes a false positive. First consider a particular bit
in the Bloom filter. The probability that it is not set to
1 by one of thehi hash functions thus far is(1 − 1

m
)hi.

Therefore the probability of a false positive at this stage is
(1 − (1 − 1

m
)hi)h ≈ (1 − e−

hi

m )h.
SupposeM ′ items are added into the Bloom filter within

a phase interval. The expected fraction of false positives is

then (approximately)
∑M ′

−1

i=0
(1− e−

hi

m )h, compared to the

(1 − e−
hM

′

m )h given by the standard analysis for the false
positive rate afterM ′ elements have been added. As an ex-
ample, withM ′ = 312, h = 5, andm = 5000, the standard
analysis gives a false positive rate of1.4 · 10−3, while our
improved analysis gives a false positive rate of2.5 · 10−4.

Third, if collecting all or nearly all sources is truly
paramount, instead of using a Bloom filter, one can use
hash-based fingerprints of the sources instead. This requires
more space than a Bloom filter (Θ(log M ′) bits per source
if there areM ′ per phase) but can reduce the probability of
a false positive to inverse polynomial inM ′; that is, with
high probability, all sources can be collected. We omit the
standard analysis.
4.2.3 Carousel and Dynamic Adaptation

Under our persistent source assumption, any distinct key
keeps arriving at the logger. In fact, for our algorithm as
described, we need an even stronger assumption: each key
must appear during the phase in which it is recorded, which
means each key should arrive everyN/b steps. Keys that
do not appear this frequently may miss their phase and not
be recorded. In most settings, we do not expect this to be
a problem; any key that does not persist and appear this
frequently does not likely represent a problematic source
in terms of, for example, virus outbreaks. Our algorithm
could be modified for this situation in various ways, which
we leave as future work. One approach, for example, would
be to sample keys in order to estimate the 95% percentile
for average interarrival times between keys, and set the time
interval for the phase time to gather a subset of keys accord-
ingly.

A more pressing issue is that the persistent source as-
sumption may not hold because external actions may shut
down infected sources, effectively changing the size of the
set of keys to record dynamically. For example, during a
worm outbreak, the number of infected sources rises rapidly
at first but then they can go down due to external actions (for
example, network congestion, users shutting down slow ma-
chines due to infection, and firewalling traffic or blocking a



Figure 6: Flowchart of Carousel within Snort packet flow

part of the network). In that case, the scalable logger may
pick a large number of sampling bitsk at first due to large
outbreak traffic. However, the logger should correspond-
ingly increase the value ofk subsequently as the number of
sources to record declines, to avoid inefficient logging based
on too large a number of phases.

5 Carousel Implementations

We describe our Snort evaluation in Section 5.1 and a sketch
of a hardware implementation in Section 5.2.

5.1 Snort Implementation
In this section, we describe our implementation of

Carousel integrated into the Snort [13] IDS. We need to
first understand the packet processing flow within Snort to
see where we can interpose the Carousel scalable logger
scheme. As in Figure 6, incoming packets are captured by
libpcap, queued in a kernel buffer, and then processed by
the callback functionProcessPacket.

ProcessPacketfirst passes the packet to preprocessors,
which are components or plug-ins serving to filter out suspi-
cious activity and prepare the packet to be further analyzed.
The detection engine then matches the packet against the
rules loaded during Snort initialization. Finally, the Snort

output module performs appropriate actions such as logging
to files or generating alerts. Note that Snort is designed to
be strictly single-threaded for multiplatform portability.

The logical choice is to place Carousel module between
the detection engine and output module so that the traffic
can either go directly to the output plugin or get diverted
through the Carousel module. We cannot place the logger
module before the detection engine because we need to log
only after a rule (e.g., a detected worm) is matched. Sim-
ilarly, we cannot place the logger after the output module
because by then it is too late to affect which information is
logged. Our implementation also allows a rule to bypass
Carousel if needed and go directly to the output module.

Figure 6 is a flowchart of Carousel module for Snort in-
terposed between the detection engine and the output model.
The module uses the variablesTphase = M/b (time for each
phase) andk (number of sampling bits) described in Sec-
tion 4.1. M is the number of keys that can be logged in a
partition andb is the logging rate; in our experiments we
useM = 500. The module also uses a 32-bit integerV that
represents the hash value corresponding to the current parti-
tion. Initially, k = 0, V = 0, the Bloom filter is empty, and
a timerT is set to fire afterTphase. The Bloom filter uses
5000 bits, or 10 bits per key that can fit inM , and employs
5 hash functions (SDBM, DJP, DEK, JS, PJW) taken from
[9].

The Carousel scalable logger first compares the low-order
k bits of the hash of the packet key (we use the IP source
address in all our experiments) to the low orderk bits ofV .
If they do not match, the packet is not in the current partition
and is not passed to the output logging. If the value matches
but the key yields a positive from the Bloom filter (so it is
either already logged, or a false positive), again the packet
is not passed to the output module. If the value matches and
the key does not yield a positive from the Bloom filter, then
the module adds the key to the Bloom filter. If the Bloom
filter overflows (the number of insertions exceedsM ), then
k is incremented by 1, to create smaller size partitions.

When the timerT expires, a phase ends. We first check
for underflow by testing whether the number of insertions is
less thanM/x. We found empirically that a factorx = 2.3
worked well without causing oscillations. (A value slightly
larger than 2 is sensible, to prevent oscillating because of
the variance in partition sizes.) If there is no underflow, then
the sampling valueV is increased by 1 mod2k to move to
the next partition.

5.2 Hardware Implementation
Figure 7 shows a schematic of the base logic that can be

inserted between the detector and the memory buffer used
to store log records in an IPS ASIC. Using 1 Mbit for the
Bloom filter, we estimate that the logic takes less than 5%
of a low-end 10mm by 10 mm networking ASIC. All re-
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Figure 7: Schematic of the Carousel Logger logic as part of
an IPS Chip.

sults are reported for a standard 400 Mhz 65 nm process cur-
rently being used by networking vendors. The logic is flow-
through: in other words, it can inserted between the detector
and logging logic without changing any other logic. This al-
lows the hardware to be incrementally deployedwithin an
IPS without changing existing chip sets.

We assume the detector passes a key (e.g., a source IP ad-
dress) and a detection record (e.g., signature that matched)
to the first block. The hash blocks computes a 64-bit hash
of the key. Our estimates use a Rabin hash whose loop is
unrolled to run at 40 Gbps using 20K gates.

The hash output supplies a 64-bit number which is passed
to the Compare block. This block masks out the low-orderk
bits of the hash (a simple XOR) and then compares it (com-
parator) to a register valueV that denotes the current hash
value for this phase. If the comparison fails, the log attempt
is dropped. If it succeeds, the key and record are passed to
the Bloom filter logic. This is the most expensive part of the
logic. Using 1 Mbit of SRAM to store the Bloom filter and 3
parallel hash functions (these can be found by taking bits 1-
20, 21-40, 41-60 etc of the first 64-bit hash computed with-
out any further hash computations), the Bloom filter logic
takes less than a few percent of a standard ASIC.

As in the Snort implementation, a periodic timer module
fires everyTphase = M/b time and causes the valueV to be
incremented. Thus the remaining logic other than the Bloom
filter (and to a smaller extent the hash computation) is very
small. We use two copies of the Bloom filter and clear one
copy while the other copy is used in a phase. The Bloom
filter should be able to store a number of keys equal to the
number of keys that can be stored in the memory buffer.
Assuming 10 bits per entry, a 1 Mbit Bloom filter allows ap-
proximately 100,000 keys to be handled in each phase with
the targeted false positive probability. Other details (under-
flow, overflow etc.) are similar to the Snort implementation
and are not described here.

6 Simulation Evaluation

To evaluate Carousel under more realistic settings in which
the population grows, we simulate the logger behavior when
faced with a typical worm outbreak as modeled by a logistic
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Figure 8: Performance of Carousel with different logging
populations

equation. We used a discrete event simulation engine that is
a stripped down (for efficiency) version of the engine found
in ns-2. We implement the Carousel scalable logger as de-
scribed in Section 4. The simulated logger maintains the
sampling bit countk and only increasesk when the Bloom
filter overflows;k stabilizes when all sources sampled dur-
ingTphase fit the into memory budgetM with logging speed
b. Simulation allows us to investigate the effect of various
input parameters such as varying worm speed and whether
the worm uses a hit list. Again, in all the simulations below,
the Bloom filter uses 5000 bits and5 hash functions (SDBM,
DJP, DEK, JS, PJW) taken from [9]. For each experiment,
we plot the average of50 runs of simulation.

We start by confirming the theory with a baseline exper-
iment in Section 6.1 when all sources are present at time0.
We examine the performance of our logger with the logis-
tic model in Section 6.2. We evaluate the impact of non-
uniform source arrivals in Section 6.3. In Section 6.4, we
examine a tradeoff between using a smaller number of bits
per Bloom filter element and taking more more major cycles
to collect all sources. Finally, in Section 6.5, we demon-
strate the benefit of reducingk in the presence of worm re-
mediation.

6.1 Baseline Experiment
In Figure 8, we verify the underlying theory of Carousel

in Section 4 assuming all sources are present at time0. We
consider various starting populationsN = 10000 to 80000
sources, a memory budget ofM = 500 items, and a logging
speedb = 100 items per second.

Figure 8 shows that the Carousel scalable logger collects
almost all(at least99.9%) items byt = 189, 354, 679 and
1324 seconds forN = 10000, 20000, 40000 and80000 re-
spectively. This is no more than2N

b
in all cases, matching

the predictions of our optimistic analysis in Section 4.
With these settings, the10, 000 sources will be parti-

tioned into32 subsets, each of size approximately312 (in



expectation). In fact, our experiment trace shows that the
number of sources per phase is in the range of280 to
340. Since the Bloom filter uses5000 bits, essentially
we have more than 10 bits per item once the right num-
ber of partitions is found. As we calculated previously (in
Section 4.2.2), the accumulated false positive rate of312
sources in a 5000-bit Bloom filter with5 hash functions
is 2.5 · 10−4. We also verified that most phases have no
false positives. However, the Carousel algorithm may need
additional major cycles to collect these remaining sources.
Since a major cycle is2k iterations, the theory predicts that
Carousel requires more time to collect missed false posi-
tives for largerk and hence for largerN . We observe that
the length of horizontal segment of each curve in Figure 8,
which represents the collection time of all sources missed in
the first major cycle, is longer for larger populationsN .

6.2 Logger Performance with Logistic Model
In the logistic model, a worm is characterized byH, the

size of the initial hit list, the scanning rate, and a probability
p of a scan infecting a vulnerable node. In our simulations
below, we use a population ofN = 10, 000, a memory size
M = 500 with Bloom filter andM = 550 without Bloom
filter, and logging speedb = 100 packets/sec; the best pos-
sible logging time to collect all sources isN/b = 100 sec-
onds.

For our first 3 experiments, shown in Figures 9, 10 and 11,
we use an initial hit list ofH = 10, 000. Since the hit list
is the entire population, as in the baseline, all sources are
infected at timet = 0. We use these simulations to see
the effect of increasing the scan rate and monitoring abil-
ity assuming all sources are infected. Our subsequent ex-
periments will assume a much smaller hit list, more closely
aligned with a real worm outbreak.

For the first experiment, shown in Figure 9 we use 6 scans
per second (to model a worm outbreak that matches the
Code Red scan rate [17]) andp = 0.01. Figure 9 shows
that Carousel needs200 seconds to collect theN = 10, 000
sources whereas the naı̈ve logger takes4, 000 seconds. Fur-
ther, the difference between Carousel and the naı̈ve logger
increases with the fraction of sources logged. For example,
Carousel is 6 times faster at logging 90% level of all sources
but 20 times faster to log 100% of all sources. This is con-
sistent with the analysis in Section 3.1.

In Figure 10 we keep all the same parameters but increase
the scan rate ten times to60 scans/sec. The higher scan rate
allows näıve logging a greater chance to randomly sample
packets and so the difference between scalable and naı̈ve
logging is less pronounced. Figure 11 uses the same param-
eters as Figure 9 but assumes that only50% of the scanning
packets are seen by the IPS. This models the fact that a given
IPS may not see all worm traffic. Notice again that the dif-
ference between naı̈ve and Carousel logging decreases when

the amount of traffic seen by the IPS decreases.
The remaining simulations assume a logistic model of

worm growth starting with a hit list ofH = 10 infected
sources when the logging process starts. The innermost
curve illustrates the infected population versus time, which
obeys the well-known logistic curve. Even under this prop-
agation model, Carousel still outperforms naı̈ve logging by
a factor of almost 5. Carousel takes around 400 seconds to
collect all sources while naı̈ve logger takes 2000 seconds.

Figure 13 shows a slower worm. A slower worm can be
modeled in many ways, such using a lower initial hit list,
a lower scan rate, or a lower victim hitting probability. In
Figure 13, we used a smaller hitting probability of0.001.
Intuitively, the faster the propagation dynamics, the better
the performance of the Carousel scalable logger when com-
pared to the näıve logger. Thus the difference is less pro-
nounced.

Figure 14 demonstrates the scalability of Carousel, as we
scale upN from 10, 000 to 100, 000 with all other parame-
ters staying the same (i.e., 6 scans per second andp = 0.01).
Carousel takes around 9,000 seconds to collect all sources,
while the näıve logger takes 40,000 seconds. Note also that
in all simulations with the logistic model (and indeed in all
our experiments) the performance of the naı̈ve logger with a
Bloom filter is indistinguishable from that of the naı̈ve log-
ger by itself — as the theory predicts.

6.3 Non-uniform source arrivals
In this section, we study logging performance when the

sources arrive at different rates as described in Section 3.1.
In particular, we experiment with two equal sets of sources
in which one set sends at ten times as fast as the other set.
Figure 15b shows the result for the naı̈ve logger. We observe
that the näıve logger has a significant problem in logging the
slow sources, which are responsible for dragging down the
overall performance. As predicted by our model, the times
taken to log all slow sources is ten times slower than the time
taken to log all fast sources. The times to log all and almost
all sources are8, 000 and4, 000 seconds respectively.

Simply adding a Bloom filter only slightly increases the
performance of the naı̈ve logger as predicted by the theory
. On the other hand, Carousel is able to consistently log all
sources as shown in Figure 15a. Carousel is not suscepti-
ble to source arrival rates: sources from both the fast and
slow sets are logged equally in each minor cycle once the
appropriate number of sampling bits has been determined.

6.4 Effect of Changing Hash Functions
In this section, we study the effect of randomly changing

the hash functions for the Bloom filter on each major cycle
(that is, each pass through all of the sets of the partition).Re-
call that this prevents similar arrival patterns between major
cycles from causing the same source to be missed repeat-
edly.
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Figure 9: Performance of the Carousel
scalable logger. Scan rate = 6/s, victim
hit=1%, M = 500, N = 10, 000, b = 100
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Figure 10:High scan rate (60 scans/s)
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Figure 11: Reduced monitoring space
(50%)
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Figure 12:Logistic model of propagation
- fast worm
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Figure 13:Logistic model of propagation
- slow worm
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Figure 14:Scaling up the vulnerable pop-
ulation

Figure 17abc compares the performance in Carousel of
using fixed hash functions throughout and changing the
hash functions each major cycle with 1-bit, 5-bit and 10-
bit Bloom filters respectively. We changed the hash func-
tions randomly by simply XORing each hash value with a
new random number after each major cycle. In these ex-
periments, a major cycle is approximately160 seconds. For
the 1-bit results, one can clearly see knees in the curves at
t = 160, 320, and480 corresponding to each major cycle in
which the logger collects sources missed in previous cycles.

Carousel instrumented with changing hash functions is
much faster in collectingall sourcesacross several major
cycles. For example, for the 1-bit case, with changing hash
functions each major cycle, it takes 1500 seconds to log all
sources while using fixed hash functions takes 2500 seconds
to log all sources.

Should one prefer using a smaller number of bits per
Bloom filter element and a greater number of major cycles
or using a larger number of Bloom filter elements? This
depends on the exact goals; for a fixed amount of memory,
using a smaller number of Bloom filter bits per element al-
lows the logger to log slightly more keys in every phase at
the cost of a somewhat increased false positive probability.
Based on our experiments, we believe using 5 bits per el-

ement provides excellent performance, although our Snort
implementation (built before this experiment) currently uses
10 bits per element.

6.5 Adaptively Adjusting Sampling Bits
As described in Section 4.2, an optimization for Carousel

is to dynamically adapt the number of sampling bitsk to
match the currently active source population. In a worm
outbreak, the value ofk needs to be large as the when the
population of infected sources is large, but it should be de-
creased when the scope of the outbreak declines.

To study this effect, we use thetwo-factor worm
model[17] to model the dynamic process of worm propa-
gation coexisting with worm remediation. The two-factor
worm model augments the standard worm model with two
realistic factors: dynamic countermeasures by network ad-
ministrators/users (such as node immunization and traffic
firewalls) and additional congestion due to worm traffic that
makes scan rates reduce when the worm grows. The model
was validated using measurements of actual Internet worms
(see [17]).

In Figure 16, we apply the two-factor worm model. The
curve labeled “Source dynamics” records the number of in-
fected sources as time progresses. Observe the exponential
increase in the number of infected sources prior tot = 100.
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Figure 15: Logger performance under non-uniform source arrivals
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pling in Carousel
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time (sec) 
0 1000 2000 3000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2500

5000

7500

10000

Static hashing
Dynamic hashing

(b) 5-bit Bloom filter
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Figure 17: Comparison of fixed vs. changing hash functions inCarousel

However, the infected population then starts to decline.
If we let the two-factor model run to completion, the num-

ber of infected sources will eventually drop to zero, which
makes logging sources less meaningful. In practice, how-
ever, it is the logging that makes remediation possible. Thus
to illustrate the efficacy of using fully adaptive sampling
within the logger, we only apply the two-factor model until
the infectious population drops to half of the initial vulnera-
ble tally. We then look at the time to collect the final infected
population. Note that a non-decreasing logger will choose a
sampling factor based on the peak population and thus may
take unnecessarily long to collect the final population of in-
fected sources.

Figure 16 shows that the fully adaptive scheme (incre-
mentk on overflow, decrement on underflow) enhances per-
formance in terms of logging time and also the capability to
collect more sources before they are immunized. In partic-
ular, the fully adaptive scheme collects almost all sourcesat
220 seconds while the non-decreasing scheme (only incre-
mentsk on overflow, no decrements) takes more than 300
seconds to collect all sources. Examining the simulation
results more closely, we found the non-decreasing scheme
adapted tok = 5 (32 partitions) and stayed there, while the
fully adaptive scheme eventually reduced tok = 4 (16 par-

titions) at timet = 130.

7 Snort Evaluation

We evaluate our implementation of Carousel in Snort using
a testbed of two fast servers (Intel Xeon 2.8 GHz, 8 cores,
8 GB RAM) connected by a10 Gbps link. The first server
sends simulated packets to be logged according to a spec-
ified model while the second server runs Snort, with and
without Carousel, to log packets.

We set the timer periodTphase = 5 seconds. The vul-
nerable population isN = 10, 000 sources and the memory
buffer hasM = 500 entries. In the first experiment, the
pattern of traffic arrival is random: each incoming packet
is assigned a source that is uniformly and randomly picked
from the population ofN sources.

Figure 18 shows the logging performance of Snort instru-
mented with Carousel. Traffic arrives at the rate (B) of 100
Mbps. All packets have a fixed size of1000 bytes. The log-
ging rate isb = 100 events per second, i.e.,b ≈ 1 Mbps
and B

b
= 100. Figure 18 shows the improvements in log-

ging from our modifications. Specifically, our scalable im-
plementation is able to log all sources within300 seconds
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Figure 18: Logging performance of Snort instrumented with
Carousel under a random traffic pattern
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Figure 19: Logging performance of Snort instrumented with
Carousel under a periodic traffic pattern

while standard Snort needs1500 seconds. Also, adding a
Bloom filter does not significantly improve the performance
of Snort, matching our previous theory.

Figure 19 shows the logging performance when the
sources are perpetually dispatched in a periodic pattern 1,
2, ...,N , 1, 2...,N , ... Such highly regular traffic patterns
are common in a number of practical scenarios, such as syn-
chronized attacks or periodic broadcasts of messages in the
communication fabric of large distributed systems. We ob-
serve that the performance of standard Snort degrades by
one order of magnitude as compared to the random pattern
shown in Figure 18. Further examination shows that the
näıve logger keeps missing certain sources due to the regu-
lar timing of the source arrivals. On the other hand, Carousel
performance remains consistent in this setting.

We also performed an experiment with two equally sized
sets of sources arriving at different rates, with fast sources
arriving at1 Gbps and slow sources at100 Mbps, as shown
in Figure 20. Our observations are consistent with the sim-
ulation results in Section 6.3. Note that in this setting stan-
dard Snort takes about 20 times longer to collect all sources
than Snort with Carousel (300 seconds versus 6000 sec-
onds); in contrast, Snort took only about 5 times longer in

our experiment with random arrivals.

8 Related Work

A number of recent papers have focused on high speed im-
plementations of IPS devices. These include papers on fast
reassembly [4], fast normalization [15, 16], and fast regular
expression matching (e.g., [12]). To the best of our knowl-
edge, we have not seen prior work in network security that
focuses on the problem of scalable logging. However, net-
work managers are not just interested in detecting whether
an attack has occurred but also in determining which of their
computers is already infected for the purposes of remedia-
tion and forensics.

The use of random partitions, where the size is adjusted
dynamically, is probably used in other contexts. We have
found a reference to the Alto file system [6], where if the file
system is too large to fit into memory (but is on disk), then
the system resorts to a random partition strategy to rebuild
the file index after a crash. Files are partitioned randomly
into subsets until the subsets are small enough to fit in main
memory. While the basic algorithm is similar, there are dif-
ferences: we havetwo scarce resources (logging speed and
memory) while the Alto algorithm only has one (memory).
We have duplicates while the Alto algorithm has no dupli-
cate files; we have an analysis, the Alto algorithm has none.

9 Conclusions

In the face of internal attacks and the need to isolate parts
of an organization, IPS devices must be implementable
cheaply in high speed hardware. IPS devices have success-
fully tackled hardware reassembly, normalization, and even
Reg-Ex and behavior matching. However, when an attack
is detected it is also crucial to also detect who the attacker
was for potential remediation. While standard IPS devices
can log source information, the slow speed of logging can
result in lost information. We showed a naı̈ve logger can
take a multiplicative factor oflnN more time than needed,
whereN is the infected population size, for small values of
memoryM required for affordable hardware.

We then described the Carousel scalable logger that is
easy to implement in software or hardware. Carousel col-
lects nearly all sources, assuming they send persistently,in
nearly optimal time. While large attacks such as worms and
DoS attacks may be infrequent, the ability to collect a list of
infected sources and bots without duplicates and loss seems
like a useful addition to the repertoire of functions available
to security managers.

While we have described Carousel in a security setting,
the ideas applies to other monitoring tasks where the sources
of all packets that match a predicate must be logged in the
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Figure 20: Snort under non-uniform source arrivals

face of high incoming speeds, low memory, and small log-
ging speeds. The situation is akin to congestion control in
networks; the classical solution, as found in say TCP or
Ethernet, is for sources to reduce their rate. However, a
passive logger cannot expect the sources to cooperate, es-
pecially when the sources are attackers. Thus, the Carousel
scalable logger can be viewed as a form of randomized ad-
mission control where a random group of sources is admit-
ted and logged in each phase. Another useful interpretation
of our work is that while a Bloom filter of sizeM cannot
usefully remove duplicates in a population ofN >> M ,
the Carousel algorithm provides a way of recycling a small
Bloom filter in a principled fashion to weed out duplicates
in a very large population.
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