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ABSTRACT 
We consider the  following problem,  which arises in the  con- 
t ex t  of d is t r ibu ted  Web computa t ions .  An  aggregator aims 
to combine  specific d a t a  from n sources. The  aggregator  
contacts  all sources at once. The  t ime  for each source to 
re turn  its da t a  to the  aggregator  is independent  and iden- 
t ically d is t r ibuted  according to a known distr ibut ion.  The  
aggregator  at  some point  s tops wai t ing for d a t a  and re turns  
an answer depending  only on the  d a t a  received so far. If  
the  aggregator  re turns  the  aggregated informat ion  from k of 
the  n sources at t ime  t it obta ins  a reward Rk (t) tha t  grows 
wi th  k and decreases wi th  t. The  goal of the  aggregator  is 
to maximize  its expec ted  reward. 

We prove tha t  for cer ta in  broad  families of dis t r ibut ions  and 
broad classes of reward functions,  the  op t imal  plan for the  
aggregator  has a simple form and hence can be easily com- 
puted.  
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tavis ta ,  Inc. 

~Suppor ted  in par t  by an Alfred P. Sloan Research Fel- 
lowship and N S F  grants  CCR-9983832, CCR-0118701, and 
CCR-0121154. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made  or distributed for profit or commercial  advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
PODC 2002, July 21-24, 2002, Monterey, California, USA. 
Copyright 2002 ACM 1-58113--485-1/02/0007...$5.00. 

1. INTRODUCTION 
We consider the  following problem: an aggregator aims to 
combine specific d a t a  from n sources. The  aggregator  con- 
tac ts  all sources simultaneously.  The  t ime  for each source to 
re turn  its d a t a  to the  aggregator  is independen t  and iden- 
t ically d is t r ibu ted  according to a known distr ibut ion.  The  
aggregator at some point stops waiting for data and returns 
an answer depending only on the data received so far. If 
the aggregator returns the aggregated information from k of 
the rt sources at time t it obtains a reward Rk (t) that grows 
with k and decreases with t. 

At first blush this p rob lem might  seem artificial; however 
it is qui te  c o m m o n  in the  Web contex t  where results  are 
composed from many  sources and there  is often a conflict 
be tween re turn ing  fast results  versus re tu rn ing  good results. 

Here are some examples:  

• Search engines. Curren t  general  search engines (A1- 
taVista ,  Google, Inktomi ,  etc.) index a corpus of hun- 
dreds of millions of Web pages by main ta in ing  a large 
collection of inver ted files d i s t r ibu ted  in various ways 
among  mul t ip le  machines.  Often,  when a query  is re- 
ceived, a central  control ler  must  aggregate  d a t a  from 
several machines.  The  goal of the  control ler  is to op- 
t imize the  user experience,  which depends  on two fac- 
tors. The  first is the  quan t i ty  of informat ion  received; 
we will s tar t  wi th  the  s implifying assumpt ion  tha t  this  
depends  only on the  number  of machines  who have 
responded to the  control ler 's  query. (Practically,  ig- 
noring some machines  is equivalent  to a reduc t ion  in 
the  size of the  corpus.)  The  second is the  amoun t  of 
t ime the  user has to wait  for the  response.  We wish to 
design an a lgor i thm for de te rmin ing  an op t imal  plan 
for the  controller.  Of  course in real i ty the  s i tua t ion  
is more complex:  different machines  may  be experi-  
encing different loads, or some machines  may  be down 
al together ,  wi thou t  the  control ler ' s  knowledge. 

• Metasearch engines and peer-to-peer (P2P)  search. The  
s i tua t ion  here is similar except  t ha t  the  control ler  now 
waits for results f rom mul t ip le  search engines. In the  
P 2 P  scenario the  number  of sources may  not  even be 
known a priori. 

• Portal  pages. Personal ized por tM pages (Excite ,  Ly- 
cos, Yahoo) in tegra te  all sort of personal ized informa- 
tion, each provided  by a different server: s tock quotes,  
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news, weather,  horoscopes, movie schedules, etc. There  
is a conflict here be tween re turn ing  the  page quickly 
and having the  most  upda ted  informat ion from each 
of these servers. The  aggregator  may  decide to re turn  
out-of-date  informat ion a n d / o r  not  fill cer ta in  fields in 
the  interest  of responding in a t imely  fashion. 

• Page construction from cached components. Compa-  
nies such as Akamai  provide network caching services 
whereby certain objects  such as images are cached on 
mult iple  servers located all over the  world. W h e n  a 
user requests  a page including an "Akamaized" ob- 
ject ,  the  object  is re turned  from the  most  appropr ia te  
cache. In more advanced implementa t ions  most  of the  
page is s tored on an Akamai  server in the  form of a col- 
lection of objects  and only min imal  requests  are made  
to a central  server. The  issue here is tha t  the  objects  
have an expirat ion date.  In some si tuat ions the  cache 
server must  decide whether  to re turn  a page contain-  
ing some expired objects,  wait  for updates ,  or t ime out  
the  user request  al together.  

Our  work relies on using s ta t is t ical  proper t ies  from the  lit- 
e ra ture  of systems reliability: increasing failure rate and de- 
creasing failure rate. We provide a weak example  of our 
results here, a l though the  s t a t ement  may  be more  meaning-  
ful only after all the  definit ions and framework have been 
established. Suppose each reward funct ion Rk(t)  equals 
rk (1--Z(t)) ,  where the  constants  rk > 0 represent  the  undis- 
counted rewards and 1 - Z(t)  is a discount  factor re la ted to 
the  t ime  waited. Also, let the  funct ion Z(t)  be a cumula t ive  
dis t r ibut ion funct ion for some probabi l i ty  distr ibut ion.  Note  
tha t  Z(t)  is not  actual ly  used as the  d is t r ibut ion  of a r andom 
variable; this is jus t  a convenient  way to specify the  shape of 
the  function. Indeed,  one of our  impor t an t  contr ibut ions  is 
to recognize tha t  interest ing results arise in this se t t ing by 
considering the  shape of the  reward funct ion as a probabi l i ty  
distr ibut ion.  As an example,  a na tura l  special case tha t  is 
often used in Markov decision processes [4, 13] is where the  
reward has exponential decay; t ha t  is, Rk(t)  = rke -~t for 
some fixed '3'. Recal l  t ha t  F is the  cumula t ive  d is t r ibut ion  
funct ion of the  re turn  t ime  of each source. Let  F0 represent  
the  cumulat ive  d is t r ibut ion  for the  first t ime  of any of the  n 
sources. One result  we obta in  is the  following: 

Again,  the  general  problem si tuat ion uni t ing the  above sce- 
narios is tha t  an aggregator s imultaneously makes requests  
to n sources and at some t ime t decides to re turn  a response 
in order to obta in  a reward Rk(t)  tha t  depends  on the  num- 
ber  k of sources tha t  have responded by t ime t. The  goal 
of the  aggregator  is to maximize  the  expected  reward ob- 
tained.  In full generality, this p roblem is qui te  complex; the  
form of the  solution depends  on the  reward functions,  the  
rules governing machine responses, and the  type  of solution 
desired (approximat ion  or exact) .  For this paper ,  we have 
focused on several specific goals t ha t  guide us. First ,  in or- 
der to provide a ma thema t i ca l  f ramework for the  problem, 
we initially focus on a na tura l  probabil is t ic  model,  where 
the  re turn  t ime for each of the  n sources is independent  and 
identically d is t r ibuted (i.i.d.) according to a cumula t ive  dis- 
t r ibut ion  funct ion F known to the  controller.  

Second, we are interested in s i tuat ions where we can develop 
plans tha t  are optimal for the  aggregator.  The  problem of 
designing fast, on-line general  approximat ion  algor i thms for 
this scenario is clearly interest ing and a worthy problem for 
future work. Our  hope, however, is to find a broad class of 
instances where comput ing  an opt imal  solution is possible. 

Third ,  we are interested in s i tuat ions where we can develop 
a plan for the  aggregator  t ha t  is simple. Whi le  simplici ty is 
a relat ive notion, we may  describe it formally here as follows. 
The  plan can be thought  of as a series of b inary  funct ions 
Pk(t) ,  where Pk(t) is 1 if the  aggregator  should re turn  wi th  
k responses at t ime t and 0 otherwise.  One na tura l  measure  
of the  complexi ty  of Pk(t) is the  number  of transition points, 
where to is a t ransi t ion point  if for every e > 0 there  exist 
points  x, y in the  ne ighborhood [to - e ,  to +c] such tha t  Pk (x) 
and Pk (Y) take on different values. Intuit ively,  the  op t imal  
plan changes around to. A priori there  is no reason tha t  the  
number  of t ransi t ion points  must  be finite (indeed, it is not  
clear tha t  the  set of t ransi t ion points  needs to be countable) .  
A simple plan will have few t ransi t ion points.  In this work 
we find s i tuat ions where each Pk(t) has a single t rans i t ion  
point.  

T h e o r e m :  If F has increasing failure rate,  Z has decreasing 
failure rate,  and the  sum of the  failure rates for F0 and Z 
is decreasing, then  in the  op t imal  plan for each k there  is 
a single t rans i t ion  point.  Specifically, on receiving the  k th  
response the  aggregator  should ei ther  re turn  immedia te ly  
or wait  for the  next  response. Similarly, if F has decreasing 
failure rate,  Z has increasing failure rate,  and the  sum of the  
failure rates for F0 and Z is increasing, then  in the  opt imM 
plan for each k there  is a single t rans i t ion  point.  W i t h  k 
responses, the  receiver should wait  up to some t ime  tk for 
another  response before giving up. 

Hence, for ex t remely  large classes of re turn  dis t r ibut ions  and 
reward functions, the  op t imal  plan is incredibly simple. Us- 
ing this fact, one can generMly calculate  the  op t imal  plan 
numerical ly  if given the  re turn  d is t r ibut ion  in an appropri-  
ate form. Ano the r  possible appl icat ion of these results is to 
allow an aggregator  to learn a near -opt imal  plan effectively 
even if the  under lying dis t r ibut ions  are unknown. The  ag- 
gregator  uses a learning a lgor i thm to discover the  best  plan; 
it can narrow the  space of plans to consider by focusing 
only on plans wi th  a single t rans i t ion  point  if the  aggre- 
gator  knows or suspects  the  condit ions of the  theorem are 
satisfied. 

We also provide several addi t ional  theorems.  For example,  
we provide a result  tha t  has fewer restr ict ions on the  distri-  
butions,  but  instead restr icts  the  behavior  of the  values rk. 
We also examine  the  cases where different sources may  have 
different values or different response times. In these settings,  
the  op t imal  plan also has a simple form, wi th  one t rans i t ion  
point  per  subset  of sources. Finally, we present an a rgument  
showing tha t  making  another  na tura l  weaker assumpt ion  on 
the  dis t r ibut ions  of the  response t imes is insufficent for our  
results. 

1.1 Previous work 
The  concepts  of increasing failure ra te  and decreasing failure 
ra te  are uti l ized pr imari ly  in the  l i tera ture  of systems relia- 
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bility, where they are used to describe the lifetime of system 
components [12, 15, 16, 19]. The lifetime distribution may 
affect the proper strategy for scheduling maintenance. In 
this sense, the idea that  these distributions can yield algo- 
rithmic implications has been known for some time [16]. 

The problem we examine here fits naturally into the scheme 
of Markov decision processes [4, 13]; there is an underly- 
ing Markov reward process, and one wants to maximize the 
reward. Indeed, it specifically fits into the framework of op- 
timal stopping theory, where one wishes to find the optimal 
time to stop a process in order to maximize a reward [6, 
8]. For example, the well-known secretary problem, where 
an employer interviews n secretaries and must decide af- 
ter each interview whether or not to hire that person on the 
spot, exemplifies the problem framework of optimal stopping 
theory. The reward function for the secretary problem de- 
pends on the variation; the employer may wish to maximize 
the probability of finding the best secretary, or optimize for 
some other criterion (see, e.g., [1]). We note that  in order 
to keep this work self-contained, we eschew using notation 
or language specific to optimal stopping theory. 

What  is novel in our work is the connection between re- 
liability theory and this natural  stopping problem, and in 
particular the interesting relationships between the return 
time distribution and the shape of the reward discounting 
function. There is very little other prior work that builds 
on this natural  connection. Most recently, properties of in- 
creasing failure rate distributions were used by Boyan and 
Mitzenmacher in the context of another scheduling and plan- 
ning problem, crossing town by bus [5]. This paper extended 
previous work by Datar and Ranade [7], which considered 
the question under the assumption that  the arrival distribu- 
tion for buses to a stop were exponential distributions. The 
main result of Boyan and Mitzenmacher is to show that  
the weaker assumption that  bus arrival distributions have 
increasing failure rate results in simple plans for the opti- 
mal solution, which can then be calculated using numerical 
methods. 

After completing this work, we found additional prior work 
from the statistical community that  utilized the connection 
between stopping times for aggregation problems and reli- 
ability properties of distributions [17, 18, 9]. In all of this 
prior work, however, the reward function used in the anal- 
ysis was Rk ( t )  = rk -- ct for some constant c or in some 
cases R k ( t )  = rk -- c(t) for a convex c(t). That is, their dis- 
count was additive over time, while ours is multiplicative. 1 
While the flavor of the work is similar, all of our results 
are new. Moreover, some of our generalizations appear to 
have no parallel in this previous work. While it is arguable 
which model is more accurate, we believe that  each may be 
appropriate in different situations. 

Our work also has some of the flavor of problems for on- 
line Mgorithms in the face of uncertainty, including machine 
breakdown [2, 3, 10, 11]. Our aggregator must decide when 
to stop in the face of uncertain response time. Again, our 

l i t  might seem one could move from multiplicative to ad- 
ditive discounts by placing an appropriate logarithm, but  
because we seek to maximize the expected reward, this does 
not appear to be the case. 

goals here are different than in this previous work, as we 
focus on what probabilistic assumptions are necessary for 
the optimM plan to have a simple, calculable form. 

2. DEFINITIONS AND BASIC L E M M A S  
We begin by providing standard probabilistic definitions and 
some simple lemmas. Consider a cumulative probability dis- 
tr ibution F ( t )  with density function f ( t )  = F ' ( t ) .  For con- 
venience we will generally assume that  F and f are non-zero, 
continuous, and differentiable over all positive real numbers, 
although our results hold more generally. 

We consider the case where F has increasing failure rate. 2 
At an intuitive level, an event has increasing failure rate if 
the longer you've waited for it, the more likely it 's just  about 
to happen. More formally, we have the following. 

DEFINITION 1. For a nonnegative random variable X with 
cumulat ive distribution func t ion  (cdf) F ( t ) ,  we define the 
corresponding survival function to be l~(t) = 1 - F ( t ) .  The 
failure rate of X is defined as r ( t )  = f ( t ) / F ( t ) .  

DEFINITION 2. A nonnegative random variable X with 
func t ion  (cdf) F ( t )  is said to have increasing failure rate 
(or be I F R )  i f  the failure rate r ( t )  is increasing. Equiva- 
lently, X is I F R  i f  log F( t )  is concave on the support of  1 ~. 
That  is, l~(t) is logconcave. 

We may say that  F is IFR instead of X is IFR where the 
meaning is clear. Also note the function r( t )  satisfies 

r ( t ) - -  f(t___)__ lim P r ( t < X _ < t + A t  I X > t )  
F ( t )  ~ t~o  A t  ' 

that  is, r( t )  represent the probability that  the event corre- 
sponding to X is about to occur, given that  it has not oc- 
curred already. This explains our previously given intuition. 
Exponential, normal, and uniform distributions are for ex- 
ample all IFR, as are gamma distributions corresponding to 
the sum of exponential distributions. 

Similarly, we have the following: 

DEFINITION 3. A nonnegative random variable X with 
func t ion  (cdf) F ( t )  is said to have decreasing failure rate 
(or be D F R )  i f  the failure rate r ( t )  is decreasing. Equiva- 
lently, X is D F R  i f  log F( t )  is convex on the support of  1 ~, 
or l~(t) is logconvex. 

Exponential distributions are also DFR; since the failure 
rate for exponential distributions is constant (another way 
of saying the distribution is memoryless), they are both IFR 
mad DFR. Another class of interesting distributions that  

2Here we follow the perhaps unfortunate but  apparently 
standard practice and use "increasing" to mean "non- 
decreasing" and "decreasing" to mean "non-increasing" 
throughout. So a constant function is both increasing and 
decreasing, and having increasing failure rate really means 
the failure rate is non-decreasing, even though IFR is the 
standard term. 
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fall into the  D F R  class is cer ta in  power-law distr ibut ions,  
for example  dis t r ibut ions  where /e(t)  = ~ for c~ > 0. 

Power-law dis t r ibut ions  have appeared  in several contexts  in 
recent  work, as they  model  phenomena  wi th  heavy tails. A 
heavy- ta i led  response t ime d is t r ibut ion  may  make sense in 
s i tuat ions where there  is some probabi l i ty  a machine  is tem-  
porar i ly  down, in which case there  is a non-t r iv ia i  possibil i ty 
tha t  it may  be a long t ime  before a response is heard.  

Before proceeding,  we s ta te  a few short  l emmas  about  I F R  
and D F R  dis t r ibut ions  tha t  prove useful in the  sequel. 

LEMMA 1. I f  X l , Z 2 , . . . , X n  are IFR (resp. DFR) ran- 
dom variables, then min(X1,  X 2 , . . . ,  X~ ) is IFR (resp. DFR).  

PROOF. If rj( t )  is the  failure ra te  for X j ,  then  ~ = 1  r j ( t )  
is the  failure rate  for m i n ( X 1 , X 2 , . . .  ,X~) .  The  result  fol- 
lows. []  

LEMMA 2. I f  F is IFR (resp. DFR),  then l~(t + x) / l~( t )  
is decreasing (resp. increasing) in t for  a fixed x > O. 

PROOF. We prove for the  case where F is IFR;  the  o ther  
case is ent irely similar. The  der ivat ive of F( t  + x ) / F ( t )  with  
respect  to t is 

l~(t + x ) f ( t )  - l~( t ) f ( t  + x) 
(p(t))2. 

If F is IFR,  then  

f ( t  + x )  > f ( t )  
F ( t  + x) - F ( t ) '  

from which we may  conclude the  derivat ive is non-posi t ive  
and hence the  theorem holds. []  

Finally, we recall tha t  we are interes ted in the  complexi ty  
of the  plan, where the  complexi ty  is measured  in te rms  of 
transition points. 

DEFINITION 4. A plan has a transition point at t ime t 
with k responding sources i f  for  every e > 0 there exist times 
x, y in the neighborhood [ t - e ,  t+e ]  such that with k respond- 
ing sources the plan returns at t ime x but waits at time y. 

3. SIMPLE PLANS FOR CLASSES OF DIS- 
TRIBUTIONS AND REWARDS 

In this section, we prove our result  in the  case where the  cu- 
mula t ive  d is t r ibut ion  funct ion F for the  response t ime  from 
each individual  source is IFR.  For convenience,  from here on 
we denote  by Fj  the  cumula t ive  d is t r ibut ion  funct ion for the  
next  response given tha t  j sources have already responded.  
Of  course f and f j  are the  corresponding densi ty  functions. 
For nota t ional  convenience we may  th ink  of /~n as being 1 
everywhere;  tha t  is, the  corresponding random value is infi- 
nite. 

LEMMA 3. I f  F is IFR (respectively DFR),  then F~ is also 
IFR (respectively DFR). 

PROOF. This  follows immedia te ly  from L e m m a  1, since 
f j(t)/ . f f ' j( t)  = ( n -  j ) f ( t ) / F ( t ) .  [] 

Let  Rj ( t )  = r~2(t) ,  where r0 _< r l  _< r 2 . . .  _< rn are 
constants  and Z( t )  is the  survival  funct ion of a probabil-  
i ty distr ibut ion.  Recall  t ha t  the  r j  can be considered the  
undiscounted reward for re tu rn ing  when j sources have been 
heard from, and Z( t )  is a mul t ip l ica t ive  discount  account ing 
for t ime. We emphasize  again tha t  because Z( t )  is a survival  
funct ion does not  imply the  reward R j  (t) is random;  we are 
merely specifying the  shape of the  reward funct ion in a con- 
venient  manner .  For convenience we assume the  suppor t  of 
all d is t r ibut ions  is all posi t ive real numbers .  Let  z(t)  be the  
corresponding densi ty funct ion for the  cumula t ive  dis tr ibu-  
t ion funct ion Z(t) .  

Finally, note  tha t  if F ( t )  and Z(t)  are survival  functions,  
then  so is their  p roduc t  F( t )Z ( t ) .  Abusing  notat ion,  we let 
F .  Z be the  cumula t ive  d is t r ibut ion  funct ion associated wi th  
the  survival  funct ion l~(t)Z(t) .  The  failure ra te  associated 

wi th  the  d is t r ibut ion  Fj  - Z is the  sum y~(t) + Fj(t) Z(t) " 

THEOREM 1. I f  F has increasing failure rate, Z has de- 
creasing failure rate, and Fm • Z has decreasing failure rate, 
then in the optimal plan for  each number of responses j > 
m - 1 there is a single transition point. Moreover, on re- 
ceiving the j t h  response the aggregator should either return 
immediately or wait for  the next response. 

We have s ta ted  Theorem i in a general  way, so tha t  it may  
apply  once some number  of responses have been obta ined  
even if it does not  apply  for fewer responses. In part icular ,  
since Fn( t )  is identically one, the  theorem always holds for 
n - 1 responses if F is I F R  and Z is D F R .  

PROOF. We begin by not ing a useful fact. Since y~(t) F~ (t) = 

(n -- j j ~ ,  ~ f(t) F is IFR,  Z is D F R ,  and the  failure rate  asso- 

ciated with  the  d is t r ibut ion  Fj  - Z is the  sum F~(t) + 2 ( 0 '  

we have tha t  if F j  • Z is D F R ,  so is Fk • Z for all k _> j .  This  
fact allows us to do a backwards induction.  

Let  rrVj (t) be the  expected  payoff to the  aggregator  using the  
op t imal  s t ra tegy  from t ime  t given tha t  j sources have re- 
sponded. Clearly V~(t) = R~(t) ;  the  op t imal  s t ra tegy  when 
all sources have been heard  must  be to re turn  immediately.  
We show via a backward induct ion  from j = n down to m 
the  following: 

• At  any t ime  t, the  op t imal  s t ra tegy  having j responses 
is e i ther  to wait  for the  next  arrival, or to re turn  im- 
mediately.  

• The  funct ion Wj( t )  = V j ( t ) / 2 ( t )  is increasing in t. 

The  above are bo th  t rue  for j = n. The  first par t  of the  
induct ion  will also go th rough  for j = m - 1, and hence the  
induct ion  yields the  theorem. 
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To begin ,  for any  fixed t consider  vt(u) to  be  t h e  va lue  ob- 
t a i n e d  by  t he  aggrega to r  if, s t a r t i n g  a t  t ime  t, it chooses t he  
policy of wa i t ing  un t i l  t ime  u _> t a n d  t h e n  r e t u r n i n g  w h e n  
it  has  a l ready  h e a r d  f rom j sources.  T h e  o p t i m a l  pol icy 
m u s t  be  of th i s  form (since t he  d i s t r i b u t i o n  is k n o w n  a h e a d  
of t ime,  r a n d o m n e s s  c a n n o t  help t he  aggregator ) .  T h e n  

jf ~ V. I x ' f J (X)dx  I~J(u)~"  " vt(u) = j+l~ ) ~  + 

T h e  first  t e r m  on t h e  r igh t  h a n d  side co r re sponds  to  t he  con-  
t r i b u t i o n  shou ld  a n  a r r iva l  h a p p e n  before  u, a n d  t h e  second 
t e r m  co r r e sponds  to  t he  c o n t r i b u t i o n  if no  a r r iva l  h a p p e n s  
before  u. 

N o w  

dvt 
du 

p j ( u )  , , v5+1(~)  f j ( u )  f ~ ( u ) R s ( ~  ) _ _ _  
l~j(t) - Fj(t-=--) l~j(t) r , z (u )  

f j  (u )Z(u) [Wj+l  (u) -- rj] - r jPj  (u )z (u)  
ies(t)  

We show t h a t  t he  n u m e r a t o r  of t h e  f inal  r igh t  h a n d  side 
above  is non-pos i t i ve  for all u in some in te rva l  t < u < u*, 
a n d  n o n - n e g a t i v e  for all u _> u* (where  u* m a y  t ake  on  
t h e  va lue  co). I t  follows t h a t  t he  m a x i m u m  value for v is 
ach ieved  e i the r  w h e n  u = t or in  t he  l imi t  as u goes to  
infinity. T h a t  is, t h e  o p t i m a l  s t r a t e g y  is e i t he r  to  r e t u r n  
i m m e d i a t e l y  or wai t  for t he  nex t  arrival .  

Suppose  u* is t he  i n f imum of all values  such  t h a t  

f j(u*)2(u*)[Wj+~(u*) - r31 - r3F3(u*)z(u*) _> O. 

Equiva lent ly ,  u* is t he  i n f imum of all values  such  t h a t  

f j (u*)  z(u*) 
P~(u*)  [ w s + l ( u * )  - r j ]  _> r~ 2 ( ~ * )  

T h e  left h a n d  side above  is increas ing  in u*, as F j  is IFR ,  
Wj+l(u*) > rj+l > rj, a n d  Wj+i is inc reas ing  by  t h e  in- 
duc t ive  hypo thes i s .  T h e  r igh t  h a n d  side is decreasing,  as Z 
is D F R .  Hence  for all u > u , 

z(~)  
Fj(u)fJ(u) [ W j + l  (u)  - r3] _> rj Z(u) ' 

or equivalent ly ,  for u _> u*, 

f j  ( u ) 2 ( u ) [ W j + l ( U )  - rj] - r jFj  (u)z(u) > O. 

Hence  t he  de r iva t ive  of dvt/du is n o n - n e g a t i v e  over  some 
in te rva l  u > u* a n d  non-pos i t i ve  for u < u*, as was to  be  
shown.  

T h e  above  a r g u m e n t  says t h a t  a t  any  t i m e  t, t h e  o p t i m a l  
s t r a t e g y  is e i the r  to  r e t u r n  i m m e d i a t e l y  or wai t  for a n o t h e r  
response.  Let  tj be  t he  i n f i m um  of all values  of t such  t h a t  i t  
is b e t t e r  to  wai t  for t he  ( j  + 1)st  source  a t  t i m e  t. I t  m u s t  be  
t h e  case t h a t  for every  t > t j  t h e  aggrega to r  shou ld  wai t  for 
a n o t h e r  r e sponse  a n d  for every  t < t j  t h e  aggrega to r  shou ld  
r e t u r n  immedia te ly .  

I t  follows t h a t  

( 5 Vj(t) = max Re(t), Vj+i(x dx . 
=t 

Equivalent ly ,  

W3(t) = 

( : max rs' : t  2(t) Fs(t ) ] 

( ~ YJ+l ( t+x)  f j ( t W X ) d x ~  = 
m a x  r j ,  =o 2(t) Fj(t)  / 

+x) +x) +x) + ) 
\ J ~ : 0  2( t )  ~ ( t )  F , ( t +  dx 

Now the  express ion  w i t h i n  t he  in tegra l  is inc reas ing  in t: 
Z(t+x) F~ (t-l-x) 

Wj+l( t  + x) is by  t h e  i n d u c t i o n  hypothes i s ;  z(t) Fs(t) 

is by  L e m m a  2 a n d  t h e  fact  t h a t  F j  • Z is D F R ;  a n d  ]~(t+~) Fj (t--t-x) 
is s ince Fj  is IFR.  I t  follows t h a t  t h e  in tegra l  is inc reas ing  
in t a n d  hence  so is Wi(t) ,  comple t i ng  t he  induc t ion .  [ ]  

3.1 Decreasing Failure Rate Return Times 
Natura l ly ,  we ask w h e t h e r  t h e  above  resu l t  can  be  e x t e n d e d  
in t h e  a l t e r n a t i v e  case where  sources  have  a decreas ing  fail- 
u re  ra te .  Such  a mode l  is r ea sonab le  in th i s  se t t ing ;  i t  m a y  
be  t h a t  once  we have  no t  h e a r d  f rom a source,  t h e r e  is rea-  
son  to  bel ieve it  is busy  or b r o k e n  a n d  m i g h t  no t  r e s p o n d  
for some t ime.  We prove  a resu l t  s imi lar  to  T h e o r e m  1. We  
also p rov ide  a second resu l t  t h a t  loosens t h e  r e s t r i c t ions  on  
F a n d  Z,  b u t  requi res  a d d i t i o n a l  r e s t r i c t ions  on  t h e  values  
r j .  

THEOREM 2. I f  F has decreasing failure rate, Z has in- 
creasing failure rate, and Fm• Z has increasing failure rate, 
then in the optimal plan for each number of responses j >_ 
m - i there is a single transition point. Specifically, an ag- 
gregator with j responses should wait only until some time 
t 5 for another response. 

PROOF. 
"reversed."  
show: 

T h e  p roof  follows T h e o r e m  1, w i t h  t h e  d i rec t ions  
T h e  goal  of t he  b a c k w a r d s  i n d u c t i o n  is now to  

• W i t h  j sources,  t he  o p t i m a l  s t r a t e g y  is to  wai t  on ly  
un t i l  some t i m e  tj for a n o t h e r  response .  

• T h e  func t ion  Wj( t )  = ½(t) /2( t )  is dec reas ing  in t. 

T h e  above  are  b o t h  t r u e  for j = n (here  t~ = -cx~). T h e  
first  p a r t  of t h e  i n d u c t i o n  will also go t h r o u g h  for j = m - 1, 
a n d  hence  t he  i n d u c t i o n  yields t he  t heo rem.  

S imi lar ly  to  T h e o r e m  1, we have  t h a t  if F j  • Z is IFR,  so is 
Fk • Z for all k _> j u n d e r  these  condi t ions .  

Following T h e o r e m  1, for any  fixed t aga in  let  vt(u) be  t h e  
va lue  o b t a i n e d  by  t he  aggrega to r  if, s t a r t i n g  a t  t i m e  t, i t  
chooses t h e  pol icy of wa i t ing  un t i l  t i m e  u _> t a n d  t h e n  
r e tu rn ing .  As in T h e o r e m  1 we find 

dvt f j (u )Z(u)[Wj+l (u)  - rj] - r j f  j (u)z (u)  
du ff'j ( t ) 
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Suppose ty is the infimum of all values such that dv, -~- < 0. 
Equivalently, 

f3(ty) z ( t J  
FAq) [ W ~ + ~ ( t j )  - r3] _> r~ 2(t~)" 

The left hand side above is decreasing in ty, as Fj is DFR, 
Wy+i _> rj+~ > r3, and Wj+t is decreasing by the inductive 
hypothesis. The right hand side is increasing, as Z is IFR. 
Hence for all u _> ty, 

f¢(u)2(u)[W~+~(u)  - r j  - r~P~(u)z(u)  k O. 

Hence the derivative of dvt/du is non-negative over some 
interval u > tj and non-positive for u _< tj. Hence vt first 
increases to t3 and then decreases, from which we conclude 
there is a point t3 that the aggregator should wait until  be- 
fore returning. Further note that  the numerator of dvt/du is 
independent of t, and hence the value t3 is in fact indepen- 
dent of t; that  is, the value t3 completely summarizes the 
optimal plan for the aggregator when it has j responses. 

We now need to show that  Wy (t) is decreasing up to ty. To 
determine the sign of the derivative of W3(t), we begin by 
considering the value of W~ (t + A) - Wy (t), where t and t + A 
are less than t j; indeed, we will think of A > 0 as going to 
0. 

w~ (t + zx) - w ,  (t) : 

ft~ f j  (x)V3+~ (x) A) dx 
: t + a  Pj(t + A)2(t  + 

- jf~ f'(~)Y'+~(~)d 
F j ( t ) 2 ( t )  x ( 1 )  

+ R3(t~)F3(t3) F~(t + A)2(t + A) - F3( t )2 ( t )  " 

Let us examine the first two terms on the right hand side. 
Note 

• t~ f j (x)Vj+l(x)  
=t F¢( t )2 ( t )  d x =  

j t~-t f j ( x  + t) Fj(x  + t ) 2 ( z  + t) 
Ws+l(z + t) 

P j ( x  + t) F~( t )2 ( t )  = 0  

The product inside the integral is decreasing in t for a fixed 
x by Lemma 2 and our assumptions on Fj and Z. Hence 

• t~ fJ(x)Vi+l(X) Zx f t j  f j ( x )V j+l (x ) ,  
= * + a F J t + A ) 2 ( t + A )  ~ -].=t F~( t )2( t )  a x =  

~x t~- t -A f j ( x + t  +A)Wj+I(X-~ t + A ) Z ( x + t  + A ) d  x 
=0 Fd(t + A)Z( t  + A) 

f t~-t  f~(x  + t)W¢+~(x + t ) 2 ( x  + t) 
- = 0  Fy(t)Z(t) dx xtj - - t  _< _ f j ( x  + t )Wj+l(x  + t )Z (x  

: t ~ - t - a  F~(t)2(t) + t) dx 

Now consider (W3 (t + A) - W 5 ( t ) ) /A in the limit as A goes 

to 0 (from the right). 

Wj( t  + A)  - Wj( t )  [ t j  fj(x_)Wj+_l(x)2(X) dx < -  
- J~=t~-a Fs( t )Z( t )A  

1 ( 
+ K  \ F ~ ( t + A ) Z ( t + A ) -  Fj( t )Z( t )  ] "  

Taking the limit gives 

dWj(t)  < f j ( t~)Ws+l(t j )2( ty  ) 
dt - F¢(t)2(t)  

+ (R~( tJ l~3( t j ) ( f j ( t )2 ( t )  + Pj(t)z(t))  
( F j ( t ) 2 ( t ) )  2 

where we have replaced the limiting terms by the appropri- 
ate derivatives. Recall that  

f j ( t j )Wj+l ( t j )Z ( t j )  = r j f j ( t j )Z ( t j )  + r jz ( t j )Fj( t j ) ,  

and Rj (t) = r jZ( t ) ,  so simplying the above yields 

dWj(t)  < r~F~(t j )2( t~)  { fs(t) z(t) fs(t3) z ( t j  ) 
dt - 13j(t)~(t) ' ~ ~ + 2 ( t )  - 1~(t5) - 2 ( t j .  " 

Hence dWd~t(t) is non-positive if 

f j ( t j )  + z(tj)  f j ( t )  z(t) > O. 
Fj(t¢) Z ( t j  - Ps(t)  - 2 ( t )  - 

Since the failure rate of Fj • Z is increasing, the above holds, 
and the induction goes through. [] 

If the reward function has exponential decay, then Theo- 
rem 1 and Theorem 2 both hold for any number of responses 
if the return distribution times are exponential. We there- 
fore obtain the following corollary: 

COROLLARY 1. I f  Z(t)  and F(t)  are given by exponential 
distributions, then the optimal strategy for the aggregator is 
to always wait for k sources to respond for some k. 

PROOF. In this case, Theorem 1 says that for each num- 
ber of responding sources we return immediately or wait 
forever, while Theorem 2 says that for each number of re- 
sponding sources we wait until  some fixed time and return. 
Both can only hold if for j responding sources we either al- 
ways return immediately or always wait for another source, 
independent of the time passed. Hence the aggregator al- 
ways waits for a fixed number of sources to respond. [] 

This corollary can also be proved directly using the algebraic 
properties of the exponential distribution, but the above 
proof based on first principles is appealing. 

Our second theorem for this case (inspired by [18]) places 
restrictions on the values rk. In stopping time nomenclature, 
it is an example of an infinitesimal stopping rule [14], where 
the stopping rule is easily expressed in terms of the input 
parameters. 

THEOREM 3. I f  F has decreasing failure rate and Z has 
r~+l is decreasing in increasing failure rate, and moreover r~ 
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j for  j _> k, then in the optimal plan there is a time t j  for  
each j _> k so that an aggregator with j responses should 
wait only until time t~ for  another response. Here t j  is the 

first time such that -~:-~-~.~ ( - ~ A  - 1) < ~ tj  cx~ i f  Fj(tj)  -- z( t j ) ,  or = 
rto such time exists. 

PROOF. Again  the  proof  follows a reverse induction.  Re- 
call 

dvt f j ( u )Z (u ) [Wj+l (u )  - rj] - r jF j (u ) z (u )  
du 1~j ( t ) 

This  is posi t ive whenever  

f j ( u )  ( W j + l ( u )  1 ) >  z(u) 
l~Au) \ r5 - Z ( u )  

Let t j  be the  first t ime  where 

fs(t3) (r~+~ _ 1)  > z(t3) 
Pj( t , )  \ rj - 2( tD" 

(If no such t ime  exists, we take t j  = c~.) We claim tha t  the  
op t imal  plan is to wait  unti l  t ime  t j  and then  stop. Since 
Wi+m(u) _> r3+1, Fy has decreasing failure rate,  and Z has 

d v t  increasing failure rate,  at  all t imes  u _< t i we have tha t  -H- 
is positive.  Hence we should always wait  unti l  t ime  t j .  

We now claim tha t  t j + l  _< t j .  This  holds t r ivial ly when 
j = n - 1 ,  and holds for o ther  values o f j  f rom the  defini t ion 

~+1 is decreasing in j and ~ > - ~  Since t3+l < a s  r j  F j ( x )  - -  F j + l ( X  ) " - -  

t j ,  by a reverse induct ion  Wj+l ( t i )  = ri+l.  This  implies 
the  aggregator  need not  wait  past  t ime  t i for an opt imal  
schedule. []  

4. RELATED CASES 
Up to this point ,  we have considered the  case where all 
sources were indist inguishable,  bo th  in t e rms  of the  dis tr ibu-  
t ion of their  response t ime  and the  value of their  response. 
I t  is na tura l  to ask if we can generalize to less s t r ingent  
cases. We show tha t  Theorems  1 and 2 can be  general ized 
na tura l ly  if e i ther  the  dis t r ibut ions  are different or the  value 
corresponding to individual  sources are different, as we show 
below. In these cases, however, there  may  be  a t rans i t ion  
point  for each possible subset  of sources, so the  size to repre- 
sent the  op t imal  plan may  grow exponent ia l ly  in the  number  
of sources n. This  may  still be sui table  in some si tuat ions,  
where the  number  of sources is small  (in the  tens) bu t  there  
may  be some variabi l i ty  in e i ther  response t ime  or the  value 
of answers. For convenience,  we s ta te  our  results as varia- 
t ions of Theo rem 1 only. 

To begin,  consider the  case where for a subset  S of sources 
there  is an associated value Rs( t )  = r s Z ( t ) .  For example,  
each source e could have its own corresponding value r~, 
and the  value r s  would be  the  sum of the  r~ for the  set. 
Of  course the  r s  should be increasing, in the  sense tha t  if 
S C T then  r s  _< rT.  All sources are governed by the  same 
dis t r ibut ion  for the  response t ime. 

THEOREM 4. Consider the setting where R s ( t )  = r s Z ( t ) ,  
the rs  are increasing, F has increasing failure rate, Z has 
decreasing failure rate, and Fm•  Z has decreasing failure 

rate. In the optimal plan for  each set of respondents S with 
ISI > m - 1 there is a single transition point. On receiving 
a response the aggregator should either return immediately 
or wait for  the next response. 

PROOF. Let Vs(t)  be the  expec ted  payoff to the  aggre- 
gator  using the  op t imal  s t ra tegy  given tha t  at t ime  t all 
the  sources in S have been heard  from. We use a similar 
backward induct ion  as in Theo rem 1. Consider  any set S 
of sources of size j < n. Let  7- be the  set of all sets of the  
form {S} t2e for some e ~ S, and V~-(t) = ~ T e T  VT(t)/IT-I" 
Then,  following Theo rem 1, consider  vt(u) to be  the  value 
obta ined  by the  aggregator  if, s ta r t ing  at  t ime t, it chooses 
the  policy of wai t ing unt i l  t ime u _> t for some fixed set S. 
We have 

vt(u) f ~  V 'xXfJ(X) dx + l~j(u) "~ " " 
= :~ ~ J ~ S  ;,(t-----S ~ u ) "  

The  proof  now follows Theo rem 1, wi th  VT-(x) and W~-(x) 
replacing VVj+i(x) and Wj+l(X) as appropr ia te .  T h e  point  
is tha t  if each W T ( t )  is decreasing, so is the i r  average. []  

In the  second case, the  re turn  value funct ion R j  (t) = rj  Z( t )  
depends  only on the  number  of sources, bu t  the  re tu rn  t ime  
dis t r ibut ion  F~ for each source e may  vary, under  the  con- 
s t ra int  tha t  all d is t r ibut ions  are IFR.  We let Fs be the  dis- 
t r ibu t ion  of the  t ime  unti l  the  first response for all sources 
excluding those in S, and similarly define f s  appropriately.  

THEOREM 5. Consider the setting where each return dis- 
tribution F~ has increasing failure rate, Z has decreasing 
failure rate, and Fs • Z has decreasing failure rate for  some 
subset S of the sources. In the optimal plan for  each set 
of respondents T satisfying S C_ T there is a single tran- 
sition point. Moreover, on receiving a response the aggre- 
gator should either return immediately or wait for  the next 
response. 

PROOF. Following Theo rem 1, consider vt(u) to be  the  
value obta ined  by the  aggregator  if, s ta r t ing  at  t ime  t, it 
chooses the  policy of wai t ing unti l  t ime  u >_ t for some fixed 
set Q. We have 

f ~  fQ(x)  FQ(u)  R vt(u) = = t V j + m ( x ) ~  dx + FQ(t) 3(u)" 

There  is now a backwards induct ion  on supersets  of S tha t  
goes th rough  exact ly  as in Theorem 1. [] 

We do not  have a proof  for the  case when  b o t h  the  response 
t imes  and the  values may  vary across sources. The  p rob lem 
in this case is t ha t  as t ime  changes which source is most  
likely to re turn  may  change, and this may  then  affect the  
value of wai t ing for the  next  response. Hence it is not  clear if 
in fact bo th  response t imes  and response values vary  tha t  the  
op t imal  plan continues to have such a nice form; a s t ronger  
condi t ion may  be required.  

The  above theorems may  be more useful in set t ings where we 
have many  sources but  a small  number  of types  of sources. 
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For example,  suppose we have a small  set of ex t remely  valu- 
able sources and a larger set of less valuable  sources, where 
all sources have the  same response t ime  dis tr ibut ion.  If the  
value to the  aggregator  is jus t  a funct ion of the  number  of 
ex t remely  valuable  and less valuable  sources tha t  have been 
heard  from, then  we may use Theorem 4. In this case, the  
op t imal  plan will have one t ransi t ion point  associated with  
each pair  (x, y), where x is the  number  of ex t remely  valu- 
able sources and y is the  number  of less valuable  sources 
tha t  have responded.  In this case the  size of the  op t imal  
plan in no longer exponent ia l  in the  number  of sources. 

5. A C O U N T E R E X A M P L E  FOR A W E A K E R  
DISTRIBUTION PROPERTY 

For completeness,  we provide a counterexample  to show tha t  
some s t rong condi t ion is necessary for our theorems to apply. 
In all of our theorems,  the  case where we have heard from n -  
1 sources is the  easy first step of our backward induction.  In 
Theorem 1, for example,  jus t  the  fact t ha t  F has increasing 
failure rate  and Z has decreasing failure ra te  is sufficient to 
guarantee  tha t  there  is only one t rans i t ion  point  when n - 1 
sources have responded.  Our  counterexample  shows tha t  a 
weaker condi t ion on the  response t imes than  Theorem 1 fails 
to guarantee  tha t  opt imal  plans have only a single t ransi t ion 
point  even with  n - 1 responses. 

The  mean  residual life of X at t ime  t is defined as m x  (t) = 
E [ X  - t ] X > t]. We define rex( t )  to be 0 where F ( t )  = 0. 
The  random variable X is said to have decreasing mean 
residual life or be D M R L  if rex( t )  is decreasing. I t  is easy 
to show tha t  if X is I F R  then  it is DMRL,  but  the  reverse 
need not  hold. We here show tha t  if the  response t ime  dis- 
t r ibut ions  for sources have decreasing mean  residual life, the  
opt imal  plan may  have more than  one t ransi t ion point  for 
each number  of sources heard  from. 

For our counterexample ,  we use the  fact tha t  the  uniform 
dis t r ibut ion  over the  range [0, 2] O [4, 12] is DMRL.  Call this 
d is t r ibut ion  D. We consider a simple problem with  two 
sources wi th  response t ime dis t r ibut ion  D. The  reward is 
governed by an exponent ia l  decay over t ime. W i t h  no re- 
sponses, the  reward is always 0. W i t h  one response, at  t ime 
t the  reward is e -t .  W i t h  two responses, at t ime  t the  reward 
is 10e - t .  The  idea of this counterexample  is tha t  by making  
the reward large for receiving two response, we encourage 
the  aggregator  to wait  if it has received a single response 
up to the  gap where responses will not  arrive. At  the  same 
time, the  gap dissuades an aggregator  from wait ing if one 
response comes in early enough. 

The  following four facts are easy to verify using computa t ion  
and a case analysis, as shown in the  Appendix .  

• At  t ime 4 and higher, if the  aggregator  has one re- 
sponse, it should always wait for a second. 

• At  t ime 2, if the  aggregator  has one response, it should 
re turn  ra ther  t han  wait  at least two t ime  units for the  
next  response. 

• For t imes in the  range [0.5, 2], if the  aggregator  receives 
a first response, the  expec ta t ion  for the  aggregator  is 

larger if it waits unti l  t ime 2 for the  second response 
and then  re turns  at t ime  2 if it fails to arrive. 

• For t imes  in the  range [0, 0.4], if the  aggregator  receives 
a first response, the  expec ta t ion  for the  aggregator  is 
larger if it re turns  immedia te ly  ra ther  t han  waits unti l  
t ime  2 for a second response. 

More specifically, there  are in fact two t rans i t ion  points,  one 
at about  0.406 and one at 2. 

A l though  the  suppor t  of the  response d is t r ibut ion  is not  all 
posi t ive numbers  in our  example,  we could easily modify  
the  d is t r ibut ion  to have this property,  keeping the  densi ty  
in por t ions  outs ide the  intervals sui tably smM1. Also, we 
could use dis t r ibut ions consist ing of more disjoint intervals 
to make the  op t imal  schedule even more complex.  

6. CONCLUSION 
We have in t roduced the  na tura l  p roblem of aggregation,  
which arises in Web search engines as well as o ther  dis- 
t r ibu ted  systems. The  aggregat ion parad igm appears  qui te  
general; we believe it will prove a foundat ional  f ramework for 
several applications.  Our  focus in this work has been to de- 
t e rmine  appropr ia te  probabil is t ic  assumpt ions  under  which 
the  op t imal  plan for the  aggregator  has a simple form. 

Our  work suggests many  fur ther  quest ions for future s tudy;  
we list some possibilities. I t  would be  interest ing to know 
how complex an opt imM solution can be, or if there  is a na tu-  
ral way to t ie  the  complexi ty  of the  response dis t r ibut ions to 
the  complexi ty  of the  op t imal  plan. Proving  the  existence of 
and designing algor i thms for finding approximate ly  op t imal  
plans wi th  low complexi ty  in te rms  of the  number  of transi-  
t ion points  would also be useful. Designing on-line systems 
tha t  deal  proper ly  wi th  widely heterogeneous sources, e i ther  
exact ly  or wi th  approx imate  algori thms,  may be possible; 
the  full plan would not  need to be computed  in advance,  
bu t  p roper  responses might  be calculated on the  fly. Ex-  
tending  results to cases where response t ime dis t r ibut ions  
may  be correlated in non- t r iv ia l  ways might  be impor tan t  
for pract ical  applications.  
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Appendix: A Counterexample 
For our counterexample, we use the fact that the uniform 
distribution over the range [0, 2] k) [4, 12] is DMRL. Call this 
distribution D. We consider a simple problem with two 
sources with response time distribution D. The reward is 
governed by an exponential decay over time. With no re- 
sponses, the reward is always 0. With one response, at time 
t the reward is e -t. With two responses, at time t the re- 
ward is 10e -t. The idea of this counterexample is that by 

making the reward large for receiving two response, we en- 
courage the aggregator to wait up to the gap where responses 
will not arrive if it has received a single response. The gap 
will dissuade an aggregator from waiting, however, if one 
response comes in early enough. There are two transition 
points, one at about 0.406 and one at 2. We simply show 
that  there are at least two transition points. 

First, we show that  at time 4 and higher, if the aggregator 
has one response, it should always wait for a second. In the 
language of Theorem 1, for t _> 4 the aggregator should wait 
if 

f j ( t )  z(t) 
~ ( t )  [ws+l(t)  - rj] > 2(t)" 

f j ( t )  > 1 z(t)  In this case ~ _ ~, W j + z ( t ) - r j  > 9, and ~ = 1. 

Hence the aggregator should wait. 

Second, at time 2, if the aggregator has one response, it 
should return rather than waiting at least two time units 
for the next response. The reward by returning is e -z. If 
the aggregator waits, from the above paragraph it should 
wait until  the second arrival. Comparing the rewards we 
find 

--2 ft 12 ~_ e _> e-tdt. 
=4 

Third, consider the case where the aggregator has one re- 
sponse at a time u in the range [0, 2]. We compare rewards 
if the adversary waits until  time 2 and if it returns imme- 
diately. If it returns immediately, the reward is e -~.  If it 
waits, the reward is 

( ~ t  2 - - e l 0  _ t d t ) +  8 _~ 
=4 10 - u l ~ - u  e 

Graphing the two results numerically shows that  it is better 
to wait for times in the range [0.407, 2] but return for times 
in the range [0.405, 2]. 
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