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ABSTRACT

As advances in technology allow for the collection, storage,
and analysis of vast amounts of data, the task of screening and
assessing the significance of discovered patterns is becoming
a major challenge in data mining applications. In this work,
we address significance in the context of frequent itemset
mining. Specifically, we develop a novel methodology to
identify a meaningful support threshold s∗ for a dataset, for
which the number of itemsets with support at least s∗ yields
a substantial deviation from what would be expected in a
random dataset with the same number of transactions and
the same individual item frequencies. These itemsets can
then be flagged as statistically significant with a small false
discovery rate.

Our methodology hinges on a Poisson approximation; we
show that the distribution of the number of itemsets with
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support greater than some appropriate threshold smin is ap-
proximately Poisson in a random dataset. We obtain this
result through a novel application of the Chen-Stein approx-
imation method, which is of independent interest. Based
on this approximation, we develop an efficient parametric
multi-hypothesis test for identifying the threshold s∗. A cru-
cial feature of this approach is that, unlike most previous
work, it takes into account the entire dataset rather than in-
dividual discoveries. It is therefore able to better distinguish
between significant observations and random fluctuations.
We present extensive experimental results to substantiate the
effectiveness of our methodology.

Categories and Subject Descriptors. H2.8 [Database Ap-
plications]: Data Mining

General Terms. Algorithms, Measurement

Keywords. frequent itemset mining; statistical significance;
multi-hypothesis test; Poisson approximation; False Disco-
very Rate

1. Introduction

The discovery of frequent itemsets in transactional datasets
is regarded as a fundamental primitive that arises in the min-
ing of association rules and in many other scenarios [16,27].
In its original formulation, the problem requires that given a
dataset D of transactions over a set of items I, and a sup-
port threshold s, all itemsets X ⊆ I with support at least s
(i.e., contained in at least s transactions) be returned. These
high-support itemsets are referred to as frequent itemsets.

Since the pioneering paper by Agrawal et al. [2], a vast
literature has flourished proposing variants of the problem,
studying foundational issues, and presenting novel algorith-
mic strategies or clever implementations of known strategies
(see, e.g., [12,13]), but many problems remain open [15]. In
particular, assessing the significance of the discovered item-
sets, or equivalently, flagging statistically significant discov-
eries with a limited number of false positive outcomes, is still

1



poorly understood and remains one of the most challenging
problems in this area.

The classical framework requires that the user decide what
is significant by specifying the support threshold s. Unless
specific domain knowledge is available, the choice of such a
threshold is often arbitrary [16, 27], and may lead to a large
number of spurious discoveries (false positives) that would
undermine the success of subsequent analysis.

In this paper, we develop a rigorous and efficient novel ap-
proach for identifying statistically significant frequent item-
sets. Specifically, we flag as significant a population of
itemsets extracted with respect to a certain threshold, if some
global characteristics of the population deviate considerably
from what would be expected if the dataset were generated
with no correlations between individual items. We also en-
force that the returned family of significant itemsets feature
a small False Discovery Rate (FDR) [4].

1.1 The model

The significance of a discovery in our framework is as-
sessed based on its deviation from what would be expected
in a random dataset in which individual items are placed in-
dependently in transactions. Formally, let D be a dataset of
t transactions on a set I of n items, where each transaction
is a subset of I. Let n(i) be the number of transactions that
contain item i and let fi = n(i)/t be the frequency of item
i in the dataset. The support of an itemset X ⊆ I is de-
fined as the number of transactions that contain X . Among
all possible

(
n
k

)
itemsets of size k (k-itemsets) we are inter-

ested in statistically significant ones, that is, itemsets whose
supports are significantly higher, in a statistical sense, than
their expected supports in a dataset where individual items
are placed independently in transactions.

Following [25], we consider a probability space of datasets
with the same number of transactions t, on the same set
of items I as D, and in which item i is included in any
given transaction with probability fi, independent of all other
items and all other transactions. A similar model is used
in [22] and [23] to evaluate the running time of algorithms
for frequent itemsets mining.

Let D̂ denote a random dataset from this probability space.
Given a support of an itemset in D, the null hypothesis H0

is that this support is drawn from the distribution of D̂. The
alternative hypothesis H1 is that the support is not drawn
from that distribution, and in particular that there is a positive
correlation between the occurrences of the individual items
in that itemset. An alternative H0 model, proposed in [11],
considers a sample space of all arrangements of n items to
m transactions that satisfies the exact item frequencies and
transaction lengths as D. Conceivably, the technique of this
paper could be adapted to this latter model as well.

1.2 Multi-hypothesis testing

To demonstrate the importance of correcting for multiplic-

ity of hypotheses, consider a simple real dataset of 1,000,000
transactions over 1,000 items, each with frequency 1/1000.
Assume that we observed that a pair of items (i, j) appears
in 7 transactions. Is the support of this pair statistically
significant? To evaluate the significance of this discovery
we consider a random dataset where each item is included
in each transaction with probability 1/1000, independent of
all items. The probability that the pair (i, j) is included in a
given transaction is 1/1,000,000, thus the expected number of
transactions that include this pair is 1. A simple calculation
shows that the probability that (i, j) appears in 7 transac-
tions is about 0.0001. Thus, it seems that the support of
(i, j) in the real dataset is statistically significant. However,
each of the 499,500 pairs of items has probability 0.0001 to
appear in 7 transactions in the random dataset. Thus, even
under the assumption that items are placed independently in
transactions, the expected number of pairs with support at
least 7 is about 50. If there were only about 50 pairs with
support at least 7, returning the pair (i, j) as a statistically
significant itemset would likely be a false discovery since its
frequency would be better explained by random fluctuations
in observed data. On the other hand, assume that the real
dataset contains 300 pairs each with support at least 7. The
probability of that event in the random dataset is less than
2−300. Thus, it is very likely that the support of most of these
pairs would be statistically significant. A discovery process
that does not return these pairs will result in a large number
of false negative errors. Our goal is to design a rigorous
methodology which is able to distinguish between these two
scenarios.

In a simple statistical test a null hypothesis H0 is tested
against an alternative hypothesis H1. A test consists of a re-
jection (critical) region C such that if the statistic (outcome)
of the experiment is in C the null hypothesis is rejected, and
otherwise the null hypothesis is not rejected. The signifi-
cance level of a test, α = Pr(Type I error), is the probability
of rejecting H0 when it is true (false positive). The power
of the test, 1 − Pr(Type II error), is the probability of cor-
rectly rejecting the null hypothesis. The p-value of a test is
the probability of obtaining an outcome at least as extreme
as the one that was actually observed, under the assumption
that H0 is true.

In a multi-hypothesis statistical test, the outcome of an
experiment is used to test simultaneously a number of hy-
potheses. In the context of frequent itemsets, if we test for
significant itemsets of size k, then we are testing simultane-
ously

(
n
k

)
null hypotheses. Each null hypothesis corresponds

to the support of a given itemset not being statistically sig-
nificant. A natural generalization of the significance level
to multi-hypothesis testing is the Family Wise Error Rate
(FWER), which is the probability of incurring at least one
Type I error in any of the individual tests. If we have m
simultaneous tests and we want to bound the FWER by α,
then the Bonferroni method tests each null hypothesis with
significance level α/m. While controlling the FWER, this
method is too conservative in that the power of the test is
too low, giving many false negatives. There are a number of
techniques that improve on the Bonferroni method, but for
large numbers of hypotheses all of these techniques lead to
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tests with low power (see [8] for a good review).

The False Discovery Rate (FDR) was suggested by Ben-
jamini and Hochberg [4] as an alternative, less conservative
approach to control errors in multiple tests. LetV be the num-
ber of Type I errors in the individual tests, and let R be the
total number of null hypotheses rejected by the multiple test.
Then we define FDR = E[V/R] to be the expected ratio
of erroneous rejections among all rejections (with V/R = 0
when R = 0). Designing a statistical test that controls for
FDR is not simple, since the FDR is a function of two ran-
dom variables that depend both on the set of null hypotheses
and the set of alternative hypotheses. Building on the work
of [4], Benjamini and Yekutieli [5] developed a general tech-
nique for controlling the FDR in any multi-hypothesis test
(see Theorem 3).

1.3 Our Results

In this paper we address the classical problem of mining
frequent itemsets with respect to a certain minimum support
threshold, and provide a rigorous methodology to establish
a threshold that can guarantee, in a statistical sense, that the
returned family of frequent itemsets contains significant ones
with a limited false discovery rate. Our methodology cru-
cially relies on the following Poisson approximation result,
which is the main theoretical contribution of the paper.

Consider a datasetD of t transactions on a set I of n items
and let D̂ be a corresponding random dataset according to
the our random model described in Section 1.1. Let Qk,s

be the number of itemsets of size k with support at least s
with respect toD, and let Q̂k,s be the corresponding random
variable for D̂. We show that there exists a minimum support
value smin (that depends on the parameters of D and on
k), such that for all s ≥ smin the distribution of Q̂k,s is
well approximated by a Poisson distribution. Our result
is based on a novel application of the Chen-Stein Poisson
approximation method [3].

The minimum support smin provides the grounds to devise
a rigorous method for establishing a support threshold for
mining significant itemsets, both reducing the overall com-
plexity and improving the accuracy of the discovery process.
Specifically, for a fixed itemset size k, we test a small num-
ber of support thresholds s ≥ smin, and measure the p-value
corresponding to the null hypothesis H0 that the observed
value Qk,s comes from a Poisson distribution of suitable ex-
pectation. From the tests we can determine a threshold s∗
such that, with user-defined confidence level α, the number
of itemsets with support at least s∗ is not sampled from a
Poisson distribution and is therefore statistically significant.
The fact that the number of itemsets with support at least s∗ is
statistically significant does not imply necessarily that each
of the itemsets is significant. However, our test is also able
to guarantee a user-defined upper bound β on the expected
ratio of false discoveries among all discoveries (FDR).

To grasp the intuition behind the above approach, recall
that a Poisson distribution models the number of occurrences

among a large set of possible events, where the probability
of each event is small. In the context of frequent itemset
mining, the Poisson approximation holds when the probabil-
ity that an individual itemset has support at least smin in D̂
is small, and thus the existence of such event in D is likely
to be statistically significant. We stress that our technique
discovers statistically significant itemsets among those of
relatively high support. In fact, if expected supports of indi-
vidual itemsets vary in a large range, there may exist itemsets
with very low expected supports in D̂ which may have statis-
tically significant supports in D. These itemsets would not
be discovered by our strategy. However, any mining strat-
egy aiming at discovering significant, low-support itemsets
is likely to incur high costs due to the large (possibly expo-
nential) number of candidates to be examined, although only
a few of them would turn out to be significant.

We validate our theoretical results by mining significant
frequent itemsets from a number of real datasets that are
standard benchmarks in this field. Also, we compare the per-
formance of our methodology to a standard multi-hypothesis
approach based on [5], and provide evidence that the latter
often returns fewer significant itemsets, which indicates that
our method has higher power.

1.4 Related Work

A number of works have explored various notions of signif-
icant itemsets and have proposed methods for their discovery.
Below, we review those most relevant to our approach and
refer the reader to [15, Section 3] for further references. The
paper [1] relates the significance of an itemsetX to the quan-
tity ((1− v(X))/(1−E[v(X)])) · (E[v(X)]/v(X)), where
v(X) represents the fraction of transactions containing some
but not all of the items of X , and E[v(X)] represents the
expectation of v(X) in a random dataset where items oc-
cur in transactions independently. This ratio provides an
empirical measure of the correlation among the items of X
that, according to [1], is more effective than absolute support.
In [9,10,26], the significance of an itemset is measured as the
ratioR between its actual support and its expected support in
a random dataset. In order to make this measure more accu-
rate for small supports, [9, 10] proposes smoothing the ratio
R using an empirical Bayesian approach. Bayesian analysis
is also employed in [24] to derive subjective measures of sig-
nificance of patterns (e.g., itemsets) based on how strongly
they “shake” a system of established beliefs. In [17], the
significance of an itemset is defined as the absolute differ-
ence between the support of the itemset in the dataset, and
the estimate of this support made from a Bayesian network
with parameters derived form the dataset.

A statistical approach for identifying significant itemsets is
presented in [25], where the measure of interest for an itemset
is defined as the degree of dependence among its constituent
items, which is assessed through a χ2 test. Unfortunately, as
reported in [9,10], there are technical flaws in the applications
of the statistical test in [25]. Nevertheless, [25] pioneered the
quest for a rigorous framework for addressing the discovery
of significant itemsets.
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A common drawback of the aforementioned works is that
they assess the significance of each itemset in isolation, rather
than taking into account the global characteristics of the
dataset from which they are extracted. As argued before, if
the number of itemsets considered by the analysis is large,
even in a purely random dataset some of them are likely to
be flagged as significant if considered in isolation. A few
works attempt at accounting for the global structure of the
dataset in the context of frequent itemset mining. The authors
of [11] propose a Markov chain-based approach to generate
a random dataset that has identical transaction lengths and
identical frequencies of the individual items as the given real
dataset. The work suggests comparing the outcomes of a
number of data mining tasks, frequent itemset mining among
the others, in the real and the randomly generated datasets
in order to establish whether the real datasets exhibit any
significant global structure. However, such an assessment is
carried out in a purely qualitative fashion without rigorous
statistical grounding.

The problem of spurious discoveries when mining signif-
icant patterns is studied in [6]. The paper is concerned with
the discovery of significant pairs of items, where significance
is measured through the p-value, that is, the probability of
occurrence of the observed support in a random dataset. Sig-
nificant pairs are those whose p-values are below a certain
threshold that can be suitably chosen to bound the FWER, or
to bound the FDR. The authors compare the relative power of
the two metrics through experimental results, but do not pro-
vide methods to set a meaningful support threshold, which
is the most prominent feature of our approach.

Beyond frequent itemset mining, the issue of significance
has also been addressed in the realm of discovering associ-
ation rules. In [14], the authors provide a variation of the
well-known Apriori strategy for the efficient discovery of
a subset A of association rules with p-value below a given
cutoff value, while the results in [19] provide the means of
evaluating the FDR in A. The FDR metric is also employed
in [29] in the context of discovering significant quantitative
rules, a variation of association rules. None of these works
is able to establish support thresholds such that the returned
discoveries feature small FDR.

1.5 Benchmark datasets

In order to validate the methodology, a number of
experiments, whose results are reported in Section 4, have
been performed on datasets which are standard benchmarks
in the context of frequent itemsets mining. The main charac-
teristics of the datasets we use are summarized in Table 1. A
description of the datasets can be found in the FIMI Repos-
itory (http://fimi.cs.helsinki.fi/data/),
where they are available for download.

1.6 Organization of the Paper

The rest of the paper is structured as follows. Section 2
presents the the Poisson approximation result for the random

Dataset n [fmin; fmax] m t

Retail 16470 [1.13e-05 ; 0.57] 10.3 88162
Kosarac 41270 [1.01e-06 ; 0.61] 8.1 990002
Bms1 497 [1.68e-05 ; 0.06] 2.5 59602
Bms2 3340 [1.29e-05 ; 0.05] 5.6 77512
Bmspos 1657 [1.94e-06 ; 0.60] 7.5 515597
Pumsb∗ 2088 [2.04e-05 ; 0.79] 50.5 49046

Table 1: Parameters of the benchmark datasets: n is the
number of items; [fmin, fmax] is the range of frequen-
cies of the individual items; m is the average transaction
length; and t is the number of transactions.

variable Q̂k,s. The statistical tests are presented in Section 3,
and experimental results are reported in Section 4. Section 5
ends the paper with some concluding remarks.

2. Poisson Approximation for Q̂k,s

The Chen-Stein method [3] is a powerful tool for bounding
the error in approximating probabilities associated with a
sequence of dependent events by a Poisson distribution. To
apply the method to our case, we fix parameters k and s, and
define a collection of Bernoulli random variables {ZX |X ⊂
I, |X| = k}, such that ZX = 1 if the itemset X appears in
at least s transactions in the random dataset D̂, and ZX = 0
otherwise. Also, let pX = Pr(ZX = 1). We are interested
in the distribution of Q̂k,s =

∑
X:|X|=k ZX .

For each set X we define the neighborhood set of X ,

I(X) = {X ′ | X ∩X ′ 6= ∅, |X ′| = |X|}.
If Y 6∈ I(X) thenZY andZX are independent. Adapting [3,
Theorem 1] to our case we have:

Theorem 1. Let U be a Poisson random variable such that
E[U ] = E[Q̂k,s] = λ <∞. The variation distance between
the distributions L(Q̂k,s) of Q̂k,s and L(U) of U is such that∥∥∥L(Q̂k,s)− L(U)

∥∥∥ = sup
A
|Pr(Q̂k,s ∈ A)−Pr(U ∈ A)|

≤ b1 + b2,

where

b1 =
∑

X:|X|=k

∑
Y ∈I(X)

pXpY

and

b2 =
∑

X:|X|=k

∑
X 6=Y ∈I(X)

E[ZXZY ].

It is easy to see that the quantities b1 and b2 in the above
theorem are both decreasing in s. Therefore, if b1 + b2 <
ε for a given s, then the same upper bound will hold for
every s′ > s. Consequently, a given Poisson approximation
for Q̂k,s, established through the above theorem, extends to
Q̂k,s′ with s′ > s.

We can derive analytic bounds for b1 and b2 in many situ-
ations. Specifically, suppose that we generate t transactions
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in the following way. For each item x, we sample a random
variableRx ∈ [0, 1] independently from some distributionR.
Conditioned on the Rx’s, each item x occurs independently
in each transaction with probabilityRx. In what follows, we
provide specific bounds for this situation that depend on the
moment E[R2s] of the random variable R.

Theorem 2. Consider an asymptotic regime where as n→
∞, we have k, s = O(1) with s ≥ 2, E[R2s] = O(n−a) for
some constant 2 < a ≤ 2s, and t = O(nc) for some positive
constant c. If

c ≤ (k − 1)(a− 2) + min(2a− 6, 0)
2s

,

then the variation distance between the distributions
L(Q̂k,s) and L(U) of Q̂k,s and U satisfies∥∥∥L(Q̂k,s)− L(U)

∥∥∥ = sup
A
|Pr(Q̂k,s ∈ A)−Pr(U ∈ A)|

= O(1/n).

PROOF. Applying Theorem 1 gives∥∥∥L(Q̂k,s)− L(U)
∥∥∥ ≤ b1 + b2

where

b1 =
∑

X:|X|=k

∑
Y ∈I(X)

pXpY

and

b2 =
∑

X:|X|=k

∑
Y 6=X∈I(X)

E[ZXZY ].

We now evaluate b1 and b2. Letting ~R denote the vector
of the Rx’s, we have that for any set X of k items

Pr(ZX = 1 | ~R) ≤
(
t

s

) ∏
x∈X

Rs
x.

Since theRx’s are independent with common distributionR,

pX = E[Pr(ZX = 1 | ~R)] ≤
(
t

s

)
E[Rs]k.

Using Jensen’s inequality, we now have

b1 =
∑

X:|X|=k

∑
Y ∈I(X)

pXpY

≤

((
n

k

)2

−
(
n

k

)(
n− k
k

))(
t

s

)2

E[Rs]2k

≤
(
n

k

)2
(

1−
(
n−k

k

)(
n
k

) )(t
s

)2

E[R2s]k

=
(
n

k

)2
(

1−
k−1∏
i=0

n− k − i
n− i

)(
t

s

)2

E[R2s]k

= Θ(nk)2 ·Θ(1/n) ·O(n2cs) ·O(n−ka)

= O(nk(2−a)+2cs−1)

We now turn our attention to b2. Consider sets X 6= Y of
k items, let g = |X ∩ Y |, and suppose that g > 0. Then if
ZXZY = 1, there exist disjoint subsetsA,B,C ∈ {1, . . . , t}
such that 0 ≤ |A| ≤ s, |B| = |C| = s − |A|, all of the
transactions inA contain bothX andY , all of the transactions
in B contain X , and all of the transactions in C contain Y .
Therefore,

E[ZXZY | ~R] ≤
s∑

i=0

(
t

i; s− i; s− i

)( ∏
x∈X∪Y

Ri
x

)

×

(∏
x∈X

Rs−i
x

)∏
y∈Y

Rs−i
y


=

s∑
i=0

(
t

i; s− i; s− i

)( ∏
x∈X∩Y

R2s−i
x

)

×

( ∏
x∈X−Y

Rs
x

) ∏
y∈Y−X

Rs
y

 .

Applying independence of the Rx’s and Jensen’s inequality
gives

E[ZXZY ] = E[E[ZXZY | ~R]]

≤
s∑

i=0

(
t

i; s− i; s− i

)
E[R2s−i]gE[Rs]2(k−g)

≤
s∑

i=0

t2s−iE[R2s]
g(2s−i)

2s E[R2s]k−g

=
s∑

i=0

t2s−iE[R2s]k−ig/2s

≤ O(1)
s∑

i=0

n(2s−i)c−a(k−ig/2s)

= O(n2sc−ak)
s∑

i=0

ni( ag
2s−c)

= O
(
n2sc−ak+max{0,s( ag

2s−c)}
)

It follows that

b2 ≤
k−1∑
g=1

(
n

g; k − g; k − g

)
O
(
n2sc−ak+max{0,s( ag

2s−c)}
)

= O(n2k+2sc−ak)
k−1∑
g=1

n−gO
(
nmax{0,s( ag

2s−c)}
)

Now, for 2sc/a < g < k, we have (using the fact that a ≥ 2)

n−gnmax{0,s( ag
2s−c)} = ng( a

2−1)−sc ≤ n(k−1)( a
2−1)−sc.

Thus, b2 = O(n2k+sc−ak+(k−1)( a
2−1)). (Here we are using

the fact that our choice of c satisfies c ≤ (k − 1)(a− 2)/2s
to ensure that n(k−1)( a

2−1)−cs = Ω(1).)
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Now, we have b1 = O(1/n) since c ≤ (k−1)(a−2)/2s ≤
k(a− 2)/2s, and b2 = O(1/n) since c ≤ [k(a− 2) + (a−
4)]/2s. Thus, b1 + b2 = O(1/n).

2.1 A Monte Carlo method for determining smin

The above section gives a rigorous analytical proof that
there exists a meaningful range for the support s such that
the number of itemsets of size k with support s or larger can
be approximated by a Poisson variable. In practice, in order
to avoid the inevitable slack due to the use of asymptotics
in Theorem 2, we establish the minimum support smin for
the validity of the Poisson approximation via a simple Monte
Carlo simulation which estimates the values b1 and b2 as
defined in Theorem 1.

For clarity, we use the notation b1(s) and b2(s) to indicate
explicitly that both quantities are functions of the support
s. Suppose that for a chosen ε, 0 < ε < 1, we want to
determine smin = min{s ≥ 1 : b1(s) + b2(s) ≤ ε}.
Let s̃ be the maximum expected support of any k-itemset
(we expect s̃ < smin). We generate ∆ random datasets and
extract, from each such dataset, all k-itemsets of support at
least s̃. Let W be the set of itemsets extracted in this fashion
from all the generated datasets. It is easy to see that for each
s ≥ s̃we can estimate b1(s) and b2(s) by computing for each
X ∈ W the empirical probability pX of the event ZX = 1,
and for each pairX,Y ∈W , withX ∩Y 6= ∅, the empirical
probability pX,Y of the event (ZX = 1) ∧ (ZY = 1). Note
that for itemsets not inW these probabilities are estimated as
0. Then, if it turns out that b1(s̃) + b2(s̃) > ε, we let smin be
the minimum s > s̃ such that b1(s) + b2(s) ≤ ε. Otherwise,
if b1(s̃) + b2(s̃) ≤ ε, we repeat the above procedure starting
from s̃/2. It can be shown (details omitted for lack of space)
that for ∆ = O(log(1/δ)/ε), the output s̃ of the Monte-Carlo
process satisfies

Pr(b1(s̃) + b2(s̃) ≤ ε) ≥ 1− δ.

We remark that the information mined from the random
datasets can also be used to obtain an estimate λ̂(s) of the
expected number λ(s) of itemsets with support at least s
for every s ≥ smin, that is the expectation of the Poisson
distribution of Q̂k,s. We denote the set of values {λ(s) :
s ≥ smin} by the vector

−→
λ . These values are needed to

perform our statistical tests illustrated in the next section.

For each dataset D of Table 1 and for itemset sizes k =
2, 3, 4, we determined the minimum value smin so that the
sum b1 + b2 is at most ε = 0.01 for a corresponding random
dataset D̂. The values of smin we obtained are reported in
Table 2 (we added the prefix “Rand” to each dataset name,
to denote the fact that the dataset is random and features the
same parameters as the corresponding real one).

Algorithm 1 FindPoissonThreshold
Input: k,n,t, ∆, frequencies of individual items, ε.
Output: smin = min{s ≥ 1 : b1(s) + b2(s) ≤ ε}

1: s̃← highest expected support of a k-itemset;
2: W ← ∅;
3: for i← 1 to ∆ do
4: D̂i ← random dataset with parameters n,t, and fre-

quencies of individual items;
5: W ←W ∪

{
frequent k-itemsets in D̂i w.r.t. s̃

}
;

6: if (s̃ == highest expected support of a k-itemset) then
7: smax ← max

X∈W,D̂i

{
support of X in D̂i

}
+ 1;

8: for all s : s̃ ≤ s ≤ smax do
9: for all X ∈W do

10: pX(s)← empirical probability of {ZX = 1};
11: for all X,Y ∈W : X ∩ Y 6= ∅ do
12: pX,Y (s)← empirical probability of {ZX,Y = 1};
13: b1(s)←

∑
X,Y ∈W ;Y ∈I(X)

pX(s)pY (s);

14: b2(s)←
∑

X,Y ∈W ;X 6=Y ∈I(X)

pX,Y (s);

15: if b1(s̃) + b2(s̃) ≤ ε then
16: smax ← s̃− 1;s̃← s̃/2; goto 2;
17: smin ← min {s > s̃ : b1(s) + b2(s) ≤ ε};
18: return smin;

3. Establishing a support threshold for mining
statistically significant frequent itemsets

In this section we describe our testing methodology for
determining a support threshold s∗ such that the family of
frequent itemsets with respect to s∗ are statistically signifi-
cant with a controlled FDR. At the end of the section (Sub-
section 3.1), we briefly describe a standard multi-comparison
test to identify significant itemsets with small FDR, which
will be employed in Section 4 as a comparison point to assess
the benefits of our methodology.

Let D be the input dataset and k a fixed itemset size. As
before, we use Qk,s to denote the number of itemsets of size
k of support at least s in D, and Q̂k,s to denote the corre-
sponding random variable for D̂. We seek a support threshold
s∗ such that the observed value Qk,s∗ is significantly large
compared to the expected value of Q̂k,s∗ , in the sense that
the probability that such a large deviation occurs in a random
dataset is bounded by a pre-selected constant α.

Let smin be the minimum support such that the Poisson
approximation for the distribution of Q̂k,s holds for s ≥ smin,
and let smax be the maximum support of an item in D. Our
testing methodology performs h = blog2(smax− smin)c+ 1
comparisons. The null hypothesisHi

0 in the i-th comparison,
for 0 ≤ i < h, is that the observed value Qk,si , with s0 =
smin and si = smin + 2i for 1 ≤ i < h, is drawn from the
same Poisson distribution as Q̂k,si

. For every 0 ≤ i < h
we fix a confidence level αi and reject the null hypothesis
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smin

Dataset k = 2 k = 3 k = 4
RandRetail 9237 4366 784
RandKosarak 273266 100543 20120
RandBms1 268 23 5
RandBms2 168 13 4
RandBmspos 76672 15714 2717
RandPumsb∗ 29303 21893 16265

Table 2: Minimum support smin for which the Poisson
approximation for Q̂k,s holds (i.e., b1 + b2 < 0.01) for
k = 2, 3, 4 in random datasets with the same values of
n, t, and with the same frequencies of the items as the
corresponding benchmark datasets.

Hi
0 if the p-value of Qk,si

is smaller than αi. If the αi’s are
chosen so that

∑h−1
i=0 αi = α, the union bound shows that

the probability of rejecting any true null hypothesis is less
than α.

Suppose we set s∗ as the minimum of the si’s for which
the null hypothesis Hi

0 was rejected. The probability that
this number of itemsets of size k with support at least si

were observed in a random dataset is bounded by α, thus
the size of this set is statistically significant. While this
approach is a useful starting point in itself, it does not imply
necessarily that all of these frequent itemsets are statistically
significant. In fact, some of them are likely to occur with
high support even underHi

0, and hence they would represent
false discoveries. In order to ensure that the FDR is below a
specified level β, we can further amend the above procedure
as follows.

Fix suitable values β0, β1, . . . , βh−1 such that∑h−1
i=0 β

−1
i ≤ β. For 0 ≤ i < h, let λi = E[Q̂k,si

].
We modify the test described above by rejecting the i-th
null hypothesis Hi

0 if the probability that a Poisson random
variable with expectation λi takes a value as large as the
observed Qk,si is at most αi, and Qk,si ≥ βiλi. Again,
we set s∗ as the minimum of the si’s for which the null
hypothesis Hi

0 was rejected. We now prove that with this
variation the FDR of the family of frequent itemsets of size
k mined with threshold s∗ is upper bounded by β.

We denote byF(k)(si) the family of itemsets of size k with
support at least si in D, and note that |F(k)(si)| = Qk,si .
Let Vi be the number of false discoveries if Hi

0 were the first
null hypothesis rejected, in which case F(k)(si) would be
returned as the family of significant itemsets. Let Ei be the
condition “Hi

0 is rejected” or equivalently, “the p-value of
Qk,si is smaller than αi andQk,si ≥ βiλi”. If a discovery is
false positive then its distribution is as in the null hypotheses
Hi

0. Thus, the distribution of Vi is stochastically bounded by
that of a Poisson variableXi with expectationλi, conditioned
on the events Ei, Ēi−1, . . . , Ē0. Therefore,

FDR =
h−1∑
i=0

E

[
Vi

Qk,si

]
Pr(Ei, Ēi−1, . . . , Ē0)

≤
h−1∑
i=0

E[Xi | EiĒi−1, . . . , Ē0]
βiλi

Pr(Ei, Ēi−1, . . . , Ē0)

=
h−1∑
i=0

∑
j jPr(Xi = j, Ei, Ēi−1, . . . , Ē0)

βiλi

≤
h−1∑
i=0

λi

βiλi
≤

h−1∑
i=0

1
βi
.

Since
∑h

i=1 αi ≤ α, and
∑h

i=1 β
−1
i ≤ β we obtain a test

that identifies with confidence 1 − α a minimum support
s∗ such that |F(k)(s∗)| is significant. Moreover, the FDR
among the individual itemsets of F(k)(s∗) is bounded by β.
The pseudocode Test 1 specifies more formally our test to
determine the support threshold s∗.

Test 1
Input: smin, maximum item support smax,

−→
λ ,

α0, . . . , αh−1 s.t.
∑h−1

i=0 αi = α, and β0, . . . , βh−1 s.t.∑h−1
i=0 β

−1
i = β

Output: s∗ such that Qk,s∗ is significant with confidence
1− α, and the FDR of the itemsets of F(k)(s∗) is ≤ β

1: Compute F(k)(smin);
2: i← 0; si ← smin; h← blog2(smax − smin)c+ 1;
3: while i < h do
4: Compute Qk,si

;
5: psi ← Pr(Poisson(λi) ≥ Qk,si);
6: if (psi ≤ αi) and Qk,si ≥ βiλi then
7: return s∗ ← si;
8: si+1 ← smin + 2i+1; i← i+ 1;
9: return s∗ ←∞;

3.1 A standard multi-comparison test

To assess the effectiveness of our new approach we will
compare it against the following standard multi-comparison
test based on the state-of-the-art technique of [5].

THEOREM 3 (BENJAMINI AND YEKUTIELI [5]).
Assume that we are testing for m null hypotheses. Let
p(1) ≤ p(2) ≤ · · · ≤ p(m) be the ordered observed p-values
of the m tests. For control of FDR at level β, define

` = max

{
i ≥ 0 : p(i) ≤

i

m
∑m

j=1
1
j

β

}
, (1)

and reject the null hypotheses of tests (1), . . . , (`).

As before, let D denote the input dataset consisting of t
transactions over n items. Let s be a given support threshold
and k a fixed itemset size. After mining the frequent k-
itemsets F(k)(s) we test, for each X ∈ F(k)(s), the null
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hypothesisHX
0 that the observed support ofX inD is drawn

from a Binomial distribution with parameters t and fX (the
product of the individual frequencies of the items of X),
setting the rejection threshold as specified by condition (1),
with parameters β and m =

(
n
k

)
. The itemsets of F(k)(s)

whose associated null hypothesis is rejected can be returned
as significant with FDR upper bounded by β.

The pseudocode Test 2 summarizes the test described
above.

Test 2
Input: s, t, vector ~f of frequencies of items in D, β.
Output: family of significant itemsets with FDR ≤ β;

Compute F(k)(s);
m←

(
n
k

)
;

for all X ∈ F(k)(s) do
sX ← support of X in D;
fX ← Πi∈Xfi;
p(X) ← Pr(Bin(t, fX) ≥ sX);
P ← P ∪

{
p(X)

}
;

Let p(1), p(2), . . . , be the sorted sequence of the values
p(X), with X ∈ F(k)(s);

` = max
{

0, i : p(i) ≤ i
m

Pm
j=1

1
j

β
}

;

return
{
X : p(X) = p(i), 1 ≤ i ≤ `

}
;

4. Experimental Results

In this section, we report on a number of experiments de-
vised to validate and show the potential of our approach.
In Subsection 4.1, we apply our methodology to the bench-
mark datasets of Table 1. In Subsection 4.2, we compare
the obtained results against those returned by the standard
procedure to bound the FDR described in Subsection 3.1.

4.1 Experiments on benchmark datasets

We first apply our methodology to the benchmark datasets
of Table 1. Specifically, for each dataset and for k = 2, 3, 4,
we apply Test 1 to identify a support threshold s∗ such that the
number of k-itemsets that appear in at least s∗ transactions
represent a significant deviation from what would be ex-
pected in a random dataset, with significance level α = 0.05,
and with FDR of the returned family of itemsets at most
β = 0.05. The results are displayed in Table 3, where, for
each benchmark dataset and for k = 2, 3, 4, we show: the
minimum support s∗, if any, for which the corresponding null
hypothesis was rejected; the number of itemsets Qk,s∗ with
support at least s∗; the expected number λ(s∗) of itemsets
with support at least s∗ in a corresponding random dataset;
and the ratio r = λ(s∗)/Qk,s∗ .

We also conducted an almost identical set of experiments,
which are not reported in tabular form here for the sake of
brevity, where we maintained the confidence level α = 0.05
for the selection of s∗, but did not control the FDR (setting

all βi’s to 0 in Test 1). These experiments behaved as one
would expect; we observed some decrease in the support
threshold required for rejection of the null hypothesis, and
a consequent increase in the number of flagged itemsets, at
the expense of some increase in the rate of false positive
discoveries.

We observe that for most pairs (dataset,k) the number of
significant frequent k-itemsets obtained is small, focusing on
the most frequent significant itemsets. The results provide
evidence that our methodology not only defines significance
on statistically rigorous grounds, but also provides the min-
ing task with suitable support thresholds that avoid explosion
of the output size (the widely recognized “Achilles’ heel” of
traditional frequent itemset mining). This crucially relies on
the identification of a region of “rare events” provided by the
Poisson approximation. As discussed in Section 1.3, the dis-
covery of significant itemsets with low support (not returned
by our method) would require the extraction of a large (pos-
sibly exponential) number of itemsets, that would make any
strategy aiming to discover these itemsets unfeasible. In-
stead we provide an efficient method to identify with high
confidence level the family of most frequent itemsets that are
statistically significant without overwhelming the user with
a huge number of discoveries.

There are, however, a few cases where the number of item-
sets returned is still considerably high. Their large number
often serves as a sign that the results call for further analysis,
possibly using clustering techniques [28] or searching for
closed representatives for these itemsets [21]. For example,
considering dataset Bms1 with k = 4 and the corresponding
value s∗ = 5 from Table 3. Extracting the closed itemsets
of support greater or equal to s∗ in that dataset revealed the
presence of a closed itemset of cardinality 154 that appears
more than 7 times in the dataset. This itemset, whose oc-
currence by itself represents an extremely unlikely event in a
random dataset, accounts for more than 22M itemsets among
the 27M reported as significant.

It is interesting to observe that the results obtained for
dataset Retail provide further evidence for the conclusions
drawn in [11], which suggests random behavior for this
dataset (although the random model in that work is slightly
different from ours, in that the family of random datasets
also maintains the same transaction lengths as the real one).
Indeed, no support threshold s∗ could be established for min-
ing significant k-itemsets with k = 2, 3, while the support
threshold s∗ identified for k = 4 yielded only 6 itemsets.
However, the conclusion drawn in [11] was based on a quali-
tative assessment of the discrepancy between the numbers of
frequent itemsets in the random and real datasets, while our
methodology confirms the findings on a statistically sound
and rigorous basis.

Observe also that for some other pairs (dataset,k) our tests
do not find any support threshold useful to identify statisti-
cally significant itemsets. This is an evidence that, for the
specific k and for the supports considered by our tests, these
datasets do not present a significant deviation from a corre-
sponding random dataset.
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k = 2 k = 3 k = 4
Dataset s∗ Qk,s∗ λ(s∗) r s∗ Qk,s∗ λ(s∗) r s∗ Qk,s∗ λ(s∗) r

Retail - - - - - - - - 848 6 0.01 0.0017
Kosarak - - - - - - - - 21144 12 0.01 0.0008
Bms1 276 56 0.19 0.0034 23 258859 0.06 2 ×10−7 5 27M 0.05 2× 10−9

Bms2 168 429 0.73 0.0017 13 36112 0.25 7 ×10−6 4 714045 0.01 1 ×10−8

Bmspos - - - - 16226 22 0.01 0.0005 2717 891 0.38 0.0004
Pumsb∗ 29303 29 0.05 0.0017 21893 406 0.35 0.0009 16265 6293 1.37 0.0002

Table 3: Results for Test 1 with α = 0.05, β = 0.05.

In order to assess its robustness, we applied our method-
ology to random datasets. Specifically, for each benchmark
dataset of Table 1 and for k = 2, 3, 4, we generated 100
random instances with the same parameters as those of the
benchmark, and applied Test 1 to each instance searching for
a support threshold s∗ for mining significant itemsets. As
expected, the test was not able to reject any null hypothesis,
hence it did not determine s∗, in all cases but for 2 of the 100
instances of the random dataset with the same parameters as
dataset Pumsb∗ with k = 2. However, in these two cases,
mining at the identified support threshold only yielded as few
as 1 and 2 itemsets, respectively.

4.2 Comparison with the Standard FDR Test (Test 2)

We compare the number of itemsets extracted using the
threshold s∗ provided by Test 1, with the number of itemsets
flagged as significant using the standard method described in
Section 3.1 using the same threshold s∗. In both cases we
imposed a bound β = 0.05 on the FDR.

The results are displayed in Table 4, where for each pair
(dataset,k), we report the cardinality of the family R of sig-
nificant itemsets returned by the method of Section 3.1, and
the ratio r = |R|/Qk,s∗ , where Qk,s∗ is the number of sig-
nificant itemsets returned by our methodology. We observe
that in some cases the method of Section 3.1 identifies a small
fraction of the itemsets flagged as significant by Test 1. In-
deed, in two cases more than 90% of the significant itemsets
returned by our methodology are not flagged as significant by
the standard method. Since we imposed a bound β = 0.05
on the FDR for both tests, the itemsets not identified by the
method of Section 3.1 correspond in large part to significant
itemsets. Test 1 succeeds in identifying these itemsets, since
it evaluates the significance of the entire set of itemsets of
support s∗ comparing Qk,s∗ to Q̂k,s∗ . In contrast, Test 2
has to control for testing of significantly more hypothesis
(corresponding to the significance all possible k-itemsets),
thus the power of the test (1-Pr(Type-II error)) is signifi-
cantly smaller. These results demonstrate the advantage of
our technique compared to the standard approach for multi-
hypothesis tests that control FDR.

5. Conclusions

The main technical contribution of the paper is the proof
that in a random dataset where items are placed indepen-

k = 2 k = 3 k = 4
Dataset |R| r |R| r |R| r

Retail - - 3 1.0 6 1.0
Kosarak - - - - 12 1.0
Bms1 60 0.984 64367 0.249 219706 0.008
Bms2 429 1.0 25906 0.717 60927 0.085
Bmspos - - 24 1.0 891 1.0
Pumsb∗ 29 1.0 406 1.0 6288 0.999

Table 4: Results using Test 2 to bound the FDR with β =
0.05 for itemsets of support ≥ s∗.

dently in transactions, there is a minimum support smin such
that the number of k-itemsets with support at least smin is
well approximated by a Poisson distribution. The expecta-
tion of the Poisson distribution and the threshold smin are
functions of the number of transactions, number of items,
and frequencies of individual items.

This result is at the base of a novel methodology for min-
ing frequent itemsets which can be flagged as statistically
significant incurring a small FDR. In particular, we use the
Poisson distribution as the distribution of the null hypothesis
in a novel multi-hypothesis statistical approach for identify-
ing a suitable support threshold s∗ ≥ smin for the mining
task. We control the FDR of the output in a way which takes
into account global characteristics of the dataset, hence it
turns out to be more powerful than other standard statistical
tools (e.g., [5]). The results of a number of experiments,
reported in the paper, provide evidence of the effectiveness
of our approach.

To the best of our knowledge, our methodology represents
the first attempt at establishing a support threshold for the
classical frequent itemset mining problem with a quantitative
guarantee on the significance of the output.
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