
Probability Surveys

Vol. 6 (2009) 1–33
ISSN: 1549-5787
DOI: 10.1214/08-PS141

A survey of results for deletion channels

and related synchronization channels∗

Michael Mitzenmacher†

Harvard University, School of Engineering and Applied Sciences
e-mail: michaelm@eecs.harvard.edu

Abstract: The purpose of this survey is to describe recent progress in the
study of the binary deletion channel and related channels with synchroniza-
tion errors, including a clear description of open problems in this area, with
the hope of spurring further research. As an example, while the capacity
of the binary symmetric error channel and the binary erasure channel have
been known since Shannon, we still do not have a closed-form description
of the capacity of the binary deletion channel. We highlight a recent result
that shows that the capacity is at least (1 − p)/9 when each bit is deleted
independently with fixed probability p.

AMS 2000 subject classifications: Primary 94B50; secondary 68P30.
Keywords and phrases: Deletion channels, synchronization channels,
capacity bounds, random subsequences.

Received November 2008.

Contents

1 Introduction . 2
2 The ultimate goal: A maximum likelihood argument 4
3 Shannon-style arguments . 6

3.1 How the basic argument fails . 7
3.2 Codebooks from first order Markov chains 8

4 Better decoding via jigsaw puzzles . 12
5 A useful reduction for deletion channels 16
6 A related information theoretic formulation 17
7 Upper bounds on the capacity of deletion channels 19
8 Variations on the deletion channel . 22

8.1 Sticky channels . 22
8.2 Segmented deletion and insertion channels 24
8.3 Deletions over larger alphabets 26

9 Trace reconstruction . 27
10 Conclusion . 29
References . 30

∗This is an original survey paper.
†Supported in part by NSF grant CCF-0634923.

1

http://www.i-journals.org/ps
http://dx.doi.org/10.1214/08-PS141
mailto:michaelm@eecs.harvard.edu

M. Mitzenmacher/Deletion channels and related synchronization channels 2

1. Introduction

The binary symmetric channel, where each bit is independently received in
error with probability p, and the binary erasure channel, where each bit is
erased with probability p, enjoy a long and rich history. Shannon developed the
fundamental results on the capacity of such channels in the 1940’s [43], and in
recent years, through the development and analysis of low-density parity-check
codes and related families of codes, we understand how to achieve near-capacity
performance for such channels extremely efficiently [4, 30, 40].

Now consider the following channel: n bits are sent, but each bit is indepen-
dently deleted with fixed probability p. This is the binary independently and
identically distributed (i.i.d.) deletion channel, which we may refer to more suc-
cinctly as the binary deletion channel or just the deletion channel where the
meaning is clear. A deletion channel should not be confused with an erasure
channel. With an erasure channel, when n bits are sent, n symbols are received;
a third symbol, often denoted by ’ ?’, is obtained at the receiver to denote an
erasure. In contrast, with a deletion channel, there is no sign of which bits have
been deleted. For example, if 10101010 was sent, the receiver would obtain 10011
if the third, sixth, and eighth bits were deleted, and would obtain 10?01?1? if
the bits were erased.

What is the capacity of this channel? Surprisingly, we do not know. Currently,
we have no closed-form expression for the capacity, nor do we have an efficient
algorithmic means to numerically compute this capacity. Not surprisingly, this
lack of understanding of channel capacity goes hand in hand with a lack of good
codes for the deletion channel.

More generally, channels with synchronization errors, including both inser-
tions and deletions as well as more general timing errors, are simply not ade-
quately understood by current theory. Given the near-complete knowledge we
have channels with erasures and errors, in terms of both the channel capacity
and codes that can nearly achieve capacity, our lack of understanding about
channels with synchronization errors is truly remarkable.

On the other hand, substantial progress has been made in just the last few
years. A recent result that we will highlight is that the capacity for the binary
deletion channel is at least (1−p)/9 for every value of p [15, 37]. In other words,
the capacity of the deletion channel is always within a (relatively small) constant
factor of the corresponding erasure channel, even as the deletion probability p
goes to 1! As the erasure channel gives a clear upper bound on the capacity,
this result represents a significant step forward; while in retrospect the fact that
these capacities are always within a constant factor seems obvious, the fact that
this factor is so small is somewhat surprising.

The purpose of this survey is to describe recent progress along with a clear
description of open problems in this area, with the hope of spurring further
research. The presentation is necessarily somewhat biased, focusing on my own
recent research in the area. Results to be presented will include capacity lower
bound arguments [13, 14, 15, 37], capacity upper bound arguments [8], codes and
capacity bounds for alternative channel models [28, 35, 36], and related problems

M. Mitzenmacher/Deletion channels and related synchronization channels 3

such as trace reconstruction [20]. Background information can be found in, for
example, [2, 5, 7, 23, 26, 27, 42, 44]. The survey by Sloane on correcting single
deletions [44], in particular, gives useful insight and demonstrates the complexity
of even the simplest problem related to deletions. There are also several older
relevant works on the deletion channel or related problems, including [9, 10,
18, 45, 46, 48, 50]. Finally, other recent work in the setting of channels with
synchronization errors includes [11, 12, 16, 49].

Before beginning, it is worth asking why this class of problems is impor-
tant. From a strictly practical perspective, such channels are arguably harder
to justify than channels with errors or erasures. While codes for synchronization
have been suggested for disk drives, watermarking, or general channels where
timing errors may occur, immediate applications are much less clear than for
advances in erasure-correcting and error-correcting codes. However, this may
be changing. In the past, symbol synchronization has been handled separately
from coding, using timing recovery techniques that were expensive but rea-
sonable given overall system performance. Indeed, even the model we suggest
assumes some high-level synchronization, as both sender and receiver know that
n bits are being sent in a transmission; still, the model appears most natural and
appropriate, and there is clear goal in handling transmission sizes n efficiently
and with a high coding rate. With recent improvements in coding theory, it may
become increasingly common that synchronization errors will prove a bottleneck
for practical channels. Because we are currently so far away from having good
coding schemes for even the most basic synchronization channels, in practice
coding is rarely if ever considered as a viable solution to synchronization. If
efficient codes for synchronization problems can be found, it is likely that ap-
plications will follow. If such codes are even a fraction as useful as codes for
erasures or errors have been, they will have a significant impact. The work we
describe on capacity lower bounds demonstrates that there is more potential
here than has perhaps been realized.

Of course, coding theory often has applications outside of engineering, and
channels with deletions and insertions prove no exception, appearing naturally in
biology. Symbols from DNA and RNA are deleted and inserted (and transposed,
and otherwise changed) as errors in genetic processes. Understanding deletion
channels and related problems may eventually give us important insight into
these genetic processes.

But regardless of possible applications, scientific interest alone provides com-
pelling reasons to tackle these channels. While the deletion channel appears
almost as natural and simple as the binary erasure and error channels, it has
eluded similar understanding for decades, and appears to hide a great deal of
complexity. The fact that we know so little about something so apparently ba-
sic is quite simply disturbing. Besides the standard questions of capacity and
coding schemes for this and related channels, there appear to be many fur-
ther easily stated and natural related variations worthy of study. Finally, the
combinatorial structure of these channels brings together information theory,
computer science, and combinatorics in ways that should lead to interesting
cross-fertilization of probabilistic techniques and ideas among the fields.

M. Mitzenmacher/Deletion channels and related synchronization channels 4

2. The ultimate goal: A maximum likelihood argument

Rather than start with what has been done recently, we ambitiously begin with
what could, if it was well enough understood, be the final word on the subject
of capacity for the deletion channel: maximum likelihood decoding. Maximum
likelihood decoding simply means finding the most likely codeword given the re-
ceived sequence and the codebook. If one could suitably analyze maximum like-
lihood decoding, and simultaneously determine near-optimal codebooks, then it
might be possible to obtain very tight bounds on the capacity of the deletion
channel. At the very least, progress in this direction would likely surpass pre-
vious results. Moreover, there are many open questions on the combinatorics
of random sequences and subsequences related to this approach that seem in-
teresting in their own right, even if they do not lead directly to near-optimal
coding schemes.

Maximum likelihood decoding has a natural formulation in the setting of
deletion channels. When the channel sends n bits, we aim for a codebook with
2Cn strings that allows successful decoding with high probability; this would
gives us a lower bound of C for the capacity. When n bits are sent and m bits
are received over an i.i.d. deletion channel, every set of n−m bits is equally likely
to have been deleted. It follows that when considering a received sequence, the
probability that it arose from a given codeword is proportional to the number
of different ways it is contained as a subsequence in that codeword. Formally,
let X = x1x2 . . . xn represent the codeword and Y = y1x2 . . . ym represent
the received word. We use X to signify “X was sent” and Y to signify “Y
was received” where the meaning is clear, so that we write Pr(X | Y) for
Pr(X sent | Y received). Also, let #S(X, Y) be the number of times the string
Y appears as a subsequence of X. (Recall that a subsequence of X need not
consist of a contiguous set of characters of X; that is called a substring.) Then

Pr(X | Y) = Pr(Y | X)
Pr(X)

Pr(Y)
= #S(X, Y)dn−m(1 − d)m Pr(X)

Pr(Y)
.

Hence as long as codewords are a priori equally likely to be sent, then given the
received sequence, we have Pr(X | Y) is proportional to #S(X, Y).

We therefore have a simple maximum likelihood decoding algorithm for the
deletion channel: take the received sequence, count how many times it appears
as a subsequence of each codeword, and output the codeword with the largest
count. This is not meant to be a practical algorithm, as with a codebook of size
exponential in n this counting process is not efficient, but as we are (at least
for now) interested just in capacity results, efficiency is not important. There
are two questions to answer. Given a codebook, can we analyze this decoding
process to bound the probability of failure? How large can we make C so that
maximum likelihood decoding will give the correct answer with high probability?

These questions appear quite complicated, and much of the survey will sug-
gest weaker approaches that attempt to approximate this maximum likelihood
approach. To highlight some of the challenges, let us ignore the issue of the

M. Mitzenmacher/Deletion channels and related synchronization channels 5

choice of codebook and simply consider random codebooks where each string
in the codebook is initially chosen uniformly from all n bit strings. While we
will see in later sections that choosing codebooks in this way is generally not
a good idea in this setting, even this version of the problem yields interesting
open questions. For successful decoding, if X was the codeword sent, Y was the
string received, and W is any other codeword, we want that

Pr(#S(X, Y) > #S(W, Y) | X) = o(2−Cn). (2.1)

We could then take a union bound over all codewords W (excluding X) to show
the overall failure probability was vanishing, or o(1).

We emphasize the subtle importance on the conditioning on X being sent;
the received string Y is not just a subsequence of X, but a subsequence of X
obtained via deletions. Hence the probability of Y being received given that X
is sent is itself proportional to #S(X, Y).

The natural approach to proving equation (2.1) would be as follows:

1. Find (or bound) the distribution of #S(X, Y) conditioned on X being
sent, where Y is the received string.

2. Find (or bound) the distribution of #S(W, Y) where Y and W are random
strings of the appropriate length.

3. Use the distributions to show that #S(X, Y) > #S(W, Y) with suitably
high probability.

Currently, there do not appear to be known bounds on either #S(X, Y) or
#S(W, Y) that appear to lead significantly in the right direction. There is some
related work on pattern matching (see, e.g., [29][Chapter 7]), where the disti-
bution of the number of times a fixed-length string is a subsequence of another
string has been considered. But here the subsequence grows linearly with the
size of the string. The problems of determining these particular distributions ap-
pear open, and would seem to be interesting problems in the combinatorics of
random strings in their own right. One can imagine other similar related combi-
natorial questions. For example, if we thinking about changing the conditioning
above, we might ask about

Pr(#S(X, Y) > #S(W, Y) | |Y | = m, Y is a uniformly chosen subsequence of X).

Or slightly further afield, we might ask the distribution of |{y : #S(X, y) > 0}|;
that is, what is the distribution of the number of distinct subsequences of a
random string. Interestingly, the answers to these questions also do not seem to
be known.

To gain insight into these distributions it seems natural to use the fact that
given strings A and B, we may set up a dynamic programming formulation to
count #S(A, B) efficiently. The dynamic programming formulation for counting
subsequences is well-known; see, for example, [19] for general background on
problems related to substrings and subsequences. Let #S(Ak, Bj) be the number
of times the prefix of length j of B is a subsequence of the prefix of length k of

M. Mitzenmacher/Deletion channels and related synchronization channels 6

A. We have

#S(Ak, Bj) = #S(Ak−1, Bj) + I[ak = bj]#S(Ak−1, Bj−1), (2.2)

where I[ak = bj] = 1 if ak = bj and 0 otherwise. The challenge in this simple-
looking recurrence is that the I[ak = bj] are fiercely dependent. If instead they
were independent random bits, then rewriting equation (2.2) (including the
indices, and using Sk,j for #S(Ak, Bj)) would give

Sk,j = Sk−1,j + Rk,jSk−1,j−1,

where the Rk,j are unbiased, independent random bits. In matrix form, letting
Sk be the column vector associated with the ith row of Sk,j, we would have

Sk = MkSk−1

where each random matrix Mk is 1 along the diagonal and has random 0-1 entries
just below the diagonal. Generally such random recurrences lead to lognormal or
power law distributions [24, 34], and we expect similar behavior here, although
the dependencies appear to make the resulting analysis much more challenging.

Open Questions:

• Determine the distribution of #S(X, Y) when X and Y are independent,
uniform bit strings of length n and m, respectively.

• Determine the distribution of #S(X, Y) when X is a uniform bit string of
length n and Y is obtained from X by passing through a deletion channel.

• Determine the distribution of the number of distinct subsequences of a bit
string X chosen uniformly at random.

• Generalize the above questions, where appropriate, to more general dis-
tributions for X.

• Determine techniques for analyzing recurrences with the form of equa-
tion (2.2).

• Find appropriate codebooks for maximum likelihood decoding for the dele-
tion channel, and analyze the performance of these codebooks.

3. Shannon-style arguments

Given our discussion of the maximum likelihood approach above, one might
wonder why the basic approach of Shannon [43] fails for the deletion channel.
After all, it works perfectly well for the binary symmetric channel and the binary
erasure channel.

For context, let us recall one form of the standard Shannon argument for the
binary symmetric channel. Codewords are chosen uniformly at random from all
n-bit strings, and decoding is done by finding the codeword whose Hamming
distance from the received string is closest to the expected number of errors.
Shannon’s argument shows that this approach provides a code, and hence a

M. Mitzenmacher/Deletion channels and related synchronization channels 7

Fig 1. Example of the greedy algorithm for checking subsequences.

lower bound for the capacity, that is essentially optimal. The key to proving
this lower bound is to show that with high probability, the Hamming distance
between the received string and the codeword sent is near its expectation, and
all other codewords besides the one actually sent are sufficiently far from the
expected distance from the received codeword.

At the heart of this argument are three important steps:

1. a method for choosing a codebook,
2. a notion of what a typical input/output pair from the channel looks like,

and
3. a method for decoding a received codeword.

3.1. How the basic argument fails

Let us consider what happens when we try generalize the standard Shannon ar-
gument to the deletion channel. Codewords are again be chosen independently
and uniformly at random. A typical codeword has roughly pn deletions. The
natural decoding approach is to determine if the received sequence is a subse-
quence of exactly one codeword; if this is the case, then decoding is successful,
and otherwise it fails. This choice of codewords and decoding scheme leads to a
very weak lower bound on the capacity, which we henceforth denote by Cp. In
particular, the bound is non-zero only when p < 0.5.

To see this, we first note that there is a simple greedy approach to determining
if a string B is a subsequence of a string A. Reading from left to right, simply
take the first character of B, and match it with the leftmost appearance of
this character in A; then take the second letter of B, and match it with the
subsequent leftmost appearance of this character in A; and so on down the line
(see Figure 1).

Now consider what happens when the deletion probability p is larger than
0.5. The random codeword X is sent over the channel, yielding a string Y with
on average n(1 − p) bits. For large enough n, Y will have fewer than n/2 bits
with high probability, as can be shown using standard Chernoff bounds (see,
e.g., [38]). Consider any other codeword W , which was chosen uniformly at
random independently from X and Y , and consider how the greedy algorithm
above behaves when checking if Y is a subsequence of W . For each bit of Y to
be matched, on average we will need two bits of W to match it; specifically, the
number of bits of W needed to match a bit of Y is geometrically distributed

M. Mitzenmacher/Deletion channels and related synchronization channels 8

with mean two. It follows again via Chernoff bounds that with high probability
only about 2n(1 − p) < n bits of W are needed by the greedy algorithm to
confirm that Y is a subsequence of W . That is, each other codeword has Y
as a subsequence with high probability when p > 0.5, and this basic Shannon
argument gives no useful lower bound on the channel capacity.

Given our previous discussion of maximum likelihood, it would seem natural
to consider improved decoding methods. However, work in the mid 1990’s first
focused on the step of finding a better codebook. While there was earlier work
on the deletion channel and related channels, we take this work as our starting
point for discussion of recent developments for deletion channels.

3.2. Codebooks from first order Markov chains

The work of Diggavi and Grossglauser [6, 7] improves on the näıve Shannon
argument, using the insight that choosing codewords uniformly at random does
not seem to be the right approach for the deletion channel. Indeed, this insight
pervades much of the subsequent work after their paper. Instead, they consider
codewords generated randomly by a first order Markov process, which yields
codewords consisting of blocks (or, equivalently, runs) of alternating 0’s and 1’s,
with the lengths geometrically distributed. More concretely, a codeword starts
with a bit chosen uniformly at random. Subsequently, we construct the code-
word by having each new bit be the same as the previous bit with probability γ
(independently for each bit). We will generally have γ > 1/2, giving longer con-
tiguous blocks of 0’s and 1’s, although this is not a requirement of the analysis.
Intuitively, using such codewords make a great deal of sense: if bits are going to
be deleted, sending multiple copies of a bit, as in a repetition code, should be
helpful. In the context of decoding using the greedy algorithm to determine if
the received sequence is a subsequence of a codeword, longer blocks intuitively
can be better because it makes it harder for the received string to be a subse-
quence of another codeword, as now long blocks of 0’s and 1’s in the received
string would have to align with the corresponding blocks of another codeword.
We summarize the more formal argument of [6] here.

The idea is to again analyze the behavior of the greedy algorithm on a pair
W and Y , where Y is the received string and W is a codeword independent of
the transmitted string X. The analysis is based on a few key lemmas. The first
lemma says that the received string Y can be thought of as having arisen itself
from a first order Markov chain, with a different parameter.

Lemma 3.1. The received string Y behaves as a random string given from a
first order Markov chain with parameter

q = 1 − 1 − γ

1 + p(1 − 2γ)
.

Proof. We think of the received string Y as being generated as follows: as bits
of X are being generated, undeleted bits pass through to the received sequence.
By symmetry the first bit of Y will be either 0 or 1 each with probability

M. Mitzenmacher/Deletion channels and related synchronization channels 9

1/2. The process generating the received sequence is clearly Markovian. To
determine the probability that a bit of Y is the same as the previous bit, note
that the number of bits of X that are deleted after the jth undeleted bit is
k with probability pk(1 − p). The corresponding probability that the (j + 1)st
undeleted bit (assuming it exists) is the same as the jth if k bits are deleted after
the jth bit is easily found to be (1+(2γ−1)k+1)/2 using standard methods. We
therefore have that Y behaves like a first order Markov chain with parameter q
where

q =

∞
∑

k=0

pk(1− p)
1 + (2γ − 1)k+1

2
=

1

2
+

1

2

(1 − p)(2γ − 1)

1 − p(2γ − 1)
= 1− 1 − γ

1 + p(1 − 2γ)
.

The second lemma is merely a generalization of the argument for the behavior
of the greedy algorithm in this setting. We ignore the first bit of W and Y (which
match with probability 1/2; ignoring it does not affect the asymptotics), and
consider how many bits the greedy algorithm takes in matching subsequent bits.
Here, there are two cases.

Lemma 3.2. Consider a codeword W and a received string Y . Then (except
for the first bit), the number of bits required to match each bit using the greedy
algorithm has the following distribution: if a bit of Y is the same as the previous
bit, a match takes 1 bit with probability γ, and i bits for i ≥ 2 with probability
(1−γ)2γi−2; otherwise, a match takes i bits for i ≥ 1 with probability (1−γ)γi−i.

Proof. Suppose we are matching the kth bit of Y after having matched the
(k − 1)st bit. When these bits are the same, the next bit in W examined by the
greedy algorithm is also the same with probability γ; otherwise, we must wait
for the next “switch” in the Markov chain for W , giving the next match after i
bits with probability (1− γ)2γi−2. If the kth and (k − 1)st bits of Y differ, and
the next “switch” in the Markov chain for W occurs after i bits with probability
(1 − γ)γi−i.

The resulting analysis is reasonably straightforward, although the expressions
that arise are somewhat unwieldy. Given p and γ, one can obtain high proba-
bility bounds on the length of a received sequence Y (around its expectation
(1 − p)n) and derive an expression on the distribution of the number of times
successive bits differ using Lemma 3.1. Then, using Lemma 3.2, we can bound
the probability that Y is a subsequence of a codeword W , using the standard
Chernoff bound methodology. By applying the union bound, we find that the
inverse of this probability essentially tells us the number of codewords we can
have while still decoding successfully with high probability, providing a bound
on the rate. We thereby obtain an expression to find the best parameter γ given
the deletion probability p. This expression can be evaluated numerically to find
a non-trivial lower bound on the capacity for every p < 1.

Specifically, we have the following bound from [7][Corollary 4.2]

M. Mitzenmacher/Deletion channels and related synchronization channels 10

Theorem 3.1. The capacity Cp for the deletion channel with deletion probabil-
ity p satisfies

Cp ≥ sup
0<γ<1,δ>0

[

−(1 − p) log2((1 − q)A + qB) − δ

ln 2

]

,

where A = (1−γ)e−δ

1−γe−δ , B = (1−γ)e−2δ

1−γe−δ + γe−δ , and q = 1 − 1−γ
1+p(1−2γ)

.

We wrap up with some final considerations. The analysis of the greedy algo-
rithm used here can be extended to other block length distributions. This ex-
tension (along with other small improvements) was studied in [14], where other
distributions were used to obtain better bounds for high deletion rates. Specifi-
cally, the authors show that a “Morse-coding” approach, where blocks take on
one of two lengths, either short or long, yields improved capacity bounds for
p ≥ 0.35. This result raises again the question of what is the right block distri-
bution, both specifically for arguments based on the greedy algorithm and for
other approaches for obtaining capacity bounds.

We now detail another possible improvement to the greedy approach that,
although not apparently effective, raises some further interesting questions. Sup-
pose we try to improve our decoding algorithm by considering not just whether
a received string Y is a subsequence of another codeword W , but how many
bits of W are needed for Y to be covered according to the greedy algorithm.
If Y is a subsequence of the first αn bits of the actual codeword X for some
α < 1 with high probability, then we could immediately improve our analysis,
requiring that a failure occur only when Y is a subsequence of the first αn bits
of some other codeword W .

We prove that this approach in fact fails in the case where the codewords are
chosen uniformly at random. Unfortunately, our argument does not appear to
generalize naturally to the case where codewords are generated by first order
Markov chains, although experiments strongly suggest the result should. This
remains an open question.

We establish some notation. Consider the greedy algorithm working on strings
X and Y , where Y was obtained from X via deletions. If xi = yj was not
deleted, let G(i) be the difference between i and the number of bits needed
to cover up to yj by the greedy algorithm. If xi was deleted, let G(i) be the
difference between i and the number of bits needed to cover up to yk, where
k < i is the largest index for which yk was not deleted. For convenience, we
introduce an initial gap G(0) = 0; implicitly, we assume a 0th character that
was not deleted. For example, for the sequences X = 0110101 and Y = 111, if
the second, third, and seventh bits were not deleted, the sequence of gaps G(i)
would be 0, 1, 0, 0, 1, 2, 3, 2. The final gap, 2, gives the number of bits from the
end of X where the greedy subsequence algorithm matches the last bit of Y .

Our goal will be to show that the gap G behaves like a simple Markov chain,
according to the following lemma:

Lemma 3.3. When X is chosen uniformly at random from all n-bit sequences,
and Y is obtained by deleting bits independently with probability p, then G(i)

M. Mitzenmacher/Deletion channels and related synchronization channels 11

behaves as follows:

G(i + 1) =

G(i) + 1 with probability p
G(i) − c with probability (1 − p)/2c+1, 0 ≤ c ≤ G(i) − 1

0 with probability (1 − p)/2G(i).

We prove this lemma below. The Markov chain that models the gap behavior
is very similar to the one-dimensional Markov chain on the number line with a
boundary at 0 that moves right with probability p and left with probability 1−p.
While the gap can move down by more than one on any step, when the gap is
large the expected increase in the gap is approximately 2p−1, and the variance
in the change of the gap at each step is bounded. This similarity suggests the
following theorem, which can be proven using standard techniques.

Theorem 3.2. The gap G(n) is (2p − 1)n + o(n) with high probability when
p > 1/2; is O(log n) with high probability when p < 1/2; and is O(

√
n logn)

with high probability when p = 1/2.

Lemma 3.3. We first claim that, conditioned on the state G(i) = j (with j ≤ i),
bits xi−j+1, . . . , xi remain uniform over all possible bit sequences. This can be
proven by induction on i. It is true when i = 0. Suppose that it is true for
i ≤ k. If xk+1 is deleted, then G(k + 1) = G(k) + 1, regardless of the value
of xk+1, and the induction holds. If xk+1 is not deleted, then since inductively
bits xk−G(k)+1, . . . , xk are uniform, regardless of the value of xk+1, the number
of bits needed to cover xk+1 is a geometrically distributed random variable,
truncated at G(k) + 1. The probability that G(k + 1) = j conditioned on the
value of G(k) is thus independent of the value of xk+1, completing the induction.

The lemma now follows. If G(i) = j, with probability p bit xi+1 is deleted,
and in this case G(i + 1) = j + 1. Otherwise, regardless of the value of xi+1,
the number of bits of X starting from xi−j+1 to cover xi+1 is a geometrically
distributed random variable, truncated at j+1. This gives the distribution for
G(i + 1) stated in the lemma.

This argument highlights an intriguing threshold behavior. When p > 1/2, a
received string Y will require on approximately 2(1 − p)n bits of X when the
greedy algorithm is run on X and Y . Of course, the same is true the greedy
algorithm is run with Y and another codeword W , or on X and another random
string Z of length (1−p)n; there is, in this regard, no distinction. This contrasts
with the case where p < 1/2, where the greedy algorithm will detect that Y is
a subsequence of X using nearly all n bits of X, but will with high probability
fail on pairs of strings Y and W , or on pairs X and Z, where again W is
another codeword and Z is a random string. Experimentally, there appears to
be a similar threshold behavior when codewords are generated by a first order
Markov chain; above some deletion threshold, the greedy algorithm behaves
essentially the same on random subsequences and purely random strings, but it
seems harder to prove this more general result.

While the following related open questions on the behavior of the greedy
algorithm are perhaps now of less immediate interest to the analysis of the

M. Mitzenmacher/Deletion channels and related synchronization channels 12

deletion channel given the improved decoding methods to be considered in the
next section, they remain interesting combinatorial questions.

Open Questions:

• Find optimal block distributions for generating codewords for the analysis
of the capacity of the deletion channel based on the greedy algorithm.

• Find optimal codebooks for the deletion channel based on the greedy al-
gorithm.

• Generalize Lemma 3.3 to determine the behavior of the gap when the
string X is generated by a first-order Markov chain.

4. Better decoding via jigsaw puzzles

We have seen that the choice of codebook makes a significant difference in
the power of decoding using the greedy algorithm. Even so, there are clear
limitations of this approach that suggest that it could never reach the capacity
promised by the maximum likelihood approach. Moreover, it is not clear how
to extend the greedy approach when there are both insertions and deletions. In
such cases, the received string need not be a subsequence of the codeword (nor
vice versa).

We now consider a different decoding approach that allows for much stronger
capacity lower bounds for the deletion channel, as presented in [15]. Further,
the approach also naturally handles a certain class of insertions, specifically
duplications: a bit that passes through the channel might be deleted, or might
be duplicated a number of times. While more general insertion channels could
conceivably also be tackled utilizing this approach, the analysis becomes much
more tractable when considering only duplications.

To begin, consider a maximal block at the receiver. The bits of that block
came from, or correspond to, one or more blocks from the sender. For example,
the block 000 at the receiver could come from a single block 00000 from the
sender. Alternativley, it could have come from the sequence of blocks 001100
from the sender, if the two 1 bits and one of the 0 bits were deleted. (For
concreteness, we say that the first block from the sender corresponding to the
block at the receiver is the block from which the first bit in the received block
came. So here, we assume that the first received zero in the block was indeed
one of the first two zeroes, and that in the subsequent block of ones after these
six bits, at least one bit is not deleted.) We will call the sequence of blocks in the
codeword corresponding to a block at the receiver the type of the received block.
Now, given the original codeword and the deletions that occurred, we can think
of the codeword and the received sequence as being described by an ordered
collection of ordered pairs (ti, ki), where ki is the length of the ith block in the
received sequence and ti is its corresponding type. (Naturally, one also needs to
consider whether the blocks are of 0 bits or 1 bits, but once one knows whether
the first received block consists of zeroes or ones, the parity of all further blocks

M. Mitzenmacher/Deletion channels and related synchronization channels 13

Fig 2. Examples of types, and how they relate to received blocks and the sequence of deletions.

is known, so we can ignore this issue in the analysis.) Examples of (type,block)
pairs, with both the type and block expressed as bit strings, is given in Figure 2.

Given this framework, we can consider the requirements for decoding. Recall
that in the standard Shannon argument for the symmetric binary error channel,
we can require that the number of errors is close to its expectation, as this
will be true with high probability. In this setting, loosely speaking, we can
instead require that the number of pairs (t, k) in the description of the codeword
and received string be close to its expectation, as this will be true with high
probability.

Let us temporarily assume that the number of pairs (t, k) in the description
of the codeword and received string is exactly equal to its expectation (rounded
appropriately), so that we exactly know the number of (t, k) pairs for every
(t, k). Then to decode, it suffices to match the types to the block lengths of the
received string in such a way that we obtain a codeword. If only one codeword
results from this type of matching, then we have a successful decoding.

In [15] the analogy is made between decoding this way and a jigsaw puzzle.
Pictorially, we can represent this as in Figure 3. A pair (t, k) can be represented
by a tile that corresponds to a block in the received sequence (at the bottom)
and the corresponding type for the pair (at the top). To decode, the tiles must be
arranged in such a way that the string of concatenated blocks at the bottom cor-
responds to the received sequence, and the string of concatenated corresponding
types forms a codeword. It is worth emphasizing that, with the jigsaw-puzzle
approach, it is no longer the case that the received string be a subsequence of
only a single codeword, as in the greedy approach. Instead, it has to be a subse-
quence of a single codeword in, essentially, “the right way,” although there may
be several arrangements of the tiles that lead to that codeword.

Although the above argument was expressed as though we knew the number
of appearances of each possible pair (t, k) in the description, all we really know
is that these numbers are concentrated around their expectation. This is han-

M. Mitzenmacher/Deletion channels and related synchronization channels 14

Fig 3. Examples of different ways that the jigsaw puzzle tiles might cover a substring of the
received string. Each tile configuration gives a different possible codeword, and the codewords
are then scanned for a match.

dled by simply utilizing the jigsaw-puzzle approach over multiple sets of pieces,
where each set of pieces corresponds to an enumeration of the number of pairs
(t, k) in a description of the codeword and received string consistent with this
concentration. In the asymptotics, the effect of all of these cases does not change
the overall capacity.

We briefly sketch a high-level argument showing how this leads to an expres-
sion for a capacity lower bound. Let P be the distribution of block lengths at
the sender, so that Pj is the probability a block at the sender has length j,
and similarly let Q be the corresponding distribution of block lengths at the
receiver. (The argument requires P and Q to satisfy some basic requirements;
distributions with exponentially decreasing tails suffices.) Hence the number of
blocks at the sender is (up to lower order terms) n

∑

j
jPj

, and the number of

blocks at the receiver is (up to lower order terms) n(1−p)
∑

j
jQj

. Let K represent a

random block (or, more precisely, its length) in the received string, and T the
type corresponding to this block. The number of codewords considered by the
jigsaw-puzzle decoding process can be upper bounded as follows: over all of the
Qkn(1−p)
∑

j
jQj

blocks of length k, there are (again, up to lower order terms)

2

Qkn(1−p)
∑

j
jQj

H(T | K=k)

ways of assigning the appropriate types to these blocks. Taking the product over
all values of k gives an upper bound of

2

n(1−p)
∑

j
jQj

∑

QkH(T | K=k)

= 2

n(1−p)
∑

j
jQj

H(T | K)

possible codewords; this is an upper bound, as many of these possible codewords
will be repeated, arising from multiple different combinations. For example,
consider a substring 001100110011 of a codeword sent over a deletion channel

M. Mitzenmacher/Deletion channels and related synchronization channels 15

that leads to blocks 0011 at the receiver. There can be many different ways
of assigning types to the blocks 00 and 11 at the receiver that can lead to the
matching substring 001100110011 from the sender, which causes us to overcount
the possible codewords that can arise. Avoiding or reducing this overcounting
of possible codewords could improve the resulting capacity bound.

Standard techniques give that (with high probability) each possible codeword
has probability

2
− n
∑

j
jPj

H(P)

of being generated. Hence, by a union bound, if we start with 2Cn codewords, the
probability of another codeword other than the original codeword sent arising
from jigsaw-puzzle decoding is

(

2
C+

(1−p)
∑

j
jQj

H(T | K)− 1
∑

j
jPj

H(P)
)n

,

which vanishes as long as the exponent is negative.
All of this can be formalized, leading to the following lower bound for the

capacity:

Cp ≥ 1
∑

j jPj
H(P) − (1 − p)

∑

j jQj
H(T | K),

for any suitable distribution P .
The authors test both geometric distributions P and the “Morse-code” based

distributions of [14] in this framework. Here, geometric distributions appear to
do slightly better across the board. As an example, the calculated lower bound
for the capacity of the deletion channel when p = 0.9 is 0.012378. This result
over two orders of magnitude better than that given the argument using the
greedy algorithm of [6], and is rather striking given that the obvious upper
bound on the capacity based on the erasure channel is 0.1.

Like Shannon’s original arguments, this approach shows the existence of a
code with a given capacity, but does not give an explicit codebook nor an algo-
rithmically efficient decoding algorithm. As we discuss further below, designing
efficient algorithms for deletion channels remains quite open for further research.

Open Questions:

• Improve the analysis of jigsaw puzzle decoding by reducing or avoiding
the overcounting of possible codewords generated by taking all consistent
combinations of types.

• Find better distributions, or a method for finding near-optimal distribu-
tions, for codebooks for the jigsaw-puzzle analysis.

• Extend the jigsaw-puzzle approach to find lower bounds for capacity under
more general models of insertions.

• Find a variant of jigsaw-puzzle decoding that is efficiently implementable.

M. Mitzenmacher/Deletion channels and related synchronization channels 16

5. A useful reduction for deletion channels

The arguments thus far provide lower bounds that, in the end, rely on a non-
trivial calculation for each specific deletion probability p. An interesting alter-
native path was suggested in [37] by building a correspondence between deletion
channels and a novel insertion-deletion channel dubbed a Poisson-repeat chan-
nel. This correspondence is given in the form of a reduction, whereby any de-
coding algorithm for any Poisson-repeat channel can be turned into a decoding
algorithm for any deletion channel. Using this reduction, we can obtain lower
bounds on the capacity of all deletion channels simply by finding a lower bound
on the capacity of any Poisson-repeat channel. Specific Poisson-repeat channels
can then be analyzed using the previously established machinery of Section 4.

While the bounds obtained in this fashion are not particularly good for
smaller values of p, they appear quite good for large values of p. Indeed, one
benefit of this approach is that it allows us to consider the behavior of deletion
channels as the deletion probability p goes to 1.

A Poisson-repeat channel with parameter λ on binary inputs of length n can
be defined as follows: as each bit passes through the channel, it is replaced by
a discrete Poisson number of copies of that bit, where the number of copies has
mean λ and is independent for each bit. Notice that such a channel may incur
deletions when the number of copies is zero, and that the channel fits into the
class of deletion-duplication channels of Section 4 for which numerical capacity
lower bounds can be found.

What is the relationship between a deletion channel with parameter p and
a Poisson-repeat channel with parameter λ? Suppose that we have a deletion
channel. Before sending a message, independently replace each bit sent with a
random number of copies, according to an Poisson random variable with mean
λ/(1−p). Because of the properties of the discrete Poisson distribution, the num-
ber of copies of a bit that arrive at the receiver has exactly a Poisson distribution
with mean λ, and the number of copies is independent for each bit. Therefore
our deletion channel will now behave exactly as a Poisson-repeat channel with
mean λ on the original input. A code for any Poisson-repeat channel thereby
gives us a code for any deletion channel. (More precisely, we have a procedure
that includes a random replacement step; using standard arguments, this shows
the existence of a fixed code with the desired rate.) Because each bit of the
input must be blown up by a expected factor of λ/(1 − p), we find that if the
capacity of the Poisson-repeat channel with parameter λ is Lλ, then

Cp ≥ Lλ(1 − p)/λ.

A pictorial representation of this reduction is given in Figure 4.
Using calculations from the arguments of Section 4, we find that L1 > 0.1171,

and in fact we can do slightly better with L1.79/1.79 > 0.1185. The result can
be more pleasantly if somewhat less accurately expressed by Cp ≥ (1 − p)/9.

In retrospect, it seems clear that there should be a lower bound for Cp that
scales with 1−p, since one could deterministically replace each bit to be sent by

M. Mitzenmacher/Deletion channels and related synchronization channels 17

Fig 4. How to turn a codebook and decoding algorithm for a Poisson-repeat channel into a
code for the deletion channel.

1/(1−p) bits, and “on average” each bit would pass through once. In effect, the
reduction involving the Poisson-repeat channel codifies this intuition; however,
the scaling does not appear to have been proven previously to [37].

While this reduction has been used to obtain a capacity lower bound, it is
worth noting that it could also be used to derive efficient encoding and decoding
algorithms for the deletion channel: an algorithm for encoding and decoding on
any Poisson-repeat channel would immediately give a corresponding algorithm
for the deletion channel for all values of p. While it is likely that such a code
would only offer reasonable rates for large values of p, the prospect remains
interesting. Indeed, perhaps asymptotically as p goes to 1 essentially the best
we can do is to turn the deletion channel into a Poisson-repeat channel by
duplicating each bit a suitably large number of times.

Open Questions:

• Improve the lower bounds for the capacity of Poisson-repeat channels.
• Find an efficient encoding and decoding algorithm for a Poisson-repeat

channel with parameter 1 (or some other fixed parameter).
• Prove or disprove the following conjecture: There exists a λ such that

lim
p→1

Cp/(1 − p) = Lλ/λ.

• Find a similar reduction that provides stronger results in the regime where
p approaches 0.

6. A related information theoretic formulation

The lower bound results presented thus far have been derived via an algorithmic
approach, based on designing a decoding scheme and using combinatorial analy-
sis to determine its performance. Can we re-frame these results in a more purely
information-theoretic context? Such a framework could allow the powerful tools
of information theory to be more easily applied to these problems.

Recently, Drinea and Kirsch [13] have provided an alternative, information-
theoretic analysis to obtain lower bounds on the capacity of the deletion channel

M. Mitzenmacher/Deletion channels and related synchronization channels 18

that may prove a promising path further work. The starting point for their
analysis is the work by Dobrushin, who generalized Shannon’s theorem to show
that for a broad class of channels with synchronization errors, including deletion
channels, the information and transmission capacities are equal [9]. As before,
they assume that codewords are generated according to a distribution on the
block lengths. Their insight begins with the recognition that the channel can
be viewed as a joint renewal process; each time a block at the receiver ends, a
corresponding block at the sender must also have ended, and therefore it is as
though the whole process restarts. While this idea is essentially implicit in to
the type-based arguments of Section 4, it is utilized here differently, in order to
directly derive bounds on the information capacity. By directly working with
the information capacity, they avoid some of the technical issues that arise in
analyzing a specific decoding algorithm.

The main result of this approach is an alternative and seemingly simpler
proof of the lower bounds described in Section 4. The proof is certainly likely to
be much more intuitive and natural to those who prefer information-theoretic
formulations to algorithmic ones. But a further advantage is that the proof sheds
light on how the lower bound can be improved, providing a clear direction for
future progress. Specifically, in the terms used previously in the discussion of
types, where P is the distribution of block lengths at the sender and Q is the
corresponding distribution of block lengths at the receiver, they prove that the
mutual information in fact converges to

1
∑

j jPj
H(P) − (1 − p)

∑

j jQj
H(T | K) + EP,Q. (6.1)

The first two terms correspond exactly to the lower bound of [15]. The last
term EP,Q is a non-negative expression that corresponds to the uncertainty in
where the blocks from the sender from which a block at the receiver was derived.
This expression is derived in the following manner: let X(n) be the first n bits
of the sequence sent, Y (n) be the corresponding received sequence, and K(n)
be the lengths of the types in the instantiation of the deletion channel. Using
the standard information-theoretic equalities to derive

I(X(n) ; Y (n)) = H(X(n)) − H(X(n) | Y (n))

= H(X(n)) − H(X(n), K(n) | Y (n)) + H(K(n) | X(n), Y (n)),

the authors show the three information theoretic terms respectively converge to
the three term of equation (6.1). In algorithmic terms, EP,Q corresponds to the
loss from jigsaw-puzzle decoding that stems from using pieces that correspond
to a single block at the receiver. Instead of considering the type of a single
block at a receiver in the jigsaw-puzzle decoding, suppose each tile represented
a pair of consecutive blocks at the receiver, along with the possible bit sequence
that pair of blocks could have arisen from at the sender. By considering pairs
(or larger groups) of blocks under jigsaw-puzzle decoding, one could naturally
reduce the overcounting of possible codewords, and obtain a better bound. This

M. Mitzenmacher/Deletion channels and related synchronization channels 19

proves quite complex in terms of the calculations required and was not pursued
in [15].

While this additional expression EP,Q does not at this point have a formal
lower bound, in [13] the authors study it by simulation, and show that non-trivial
improvements in the capacity lower bounds remain possible. Because they find
an exact expression for the information capacity (albeit in terms that are not
yet directly calculable), in a strong sense this work shows the limits of what
is possible using independent and identically distributed (i.i.d.) block lengths
to generate codewords. It is not clear, however, that one could not obtain even
better lower bounds by allowing more general methods to generate a codebook.

Open Questions:

• Using the information-theoretic formulation of [13], bound EP,Q to derive
improved lower bounds for the deletion channel.

• Find ways to more formally connect the information-theoretic analysis and
the algorithmic analysis for the lower bound.

• Consider random codebooks for the deletion channel that are not con-
structed by using i.i.d. block lengths. Can one show that more general
methods can lead to higher transmission capacity?

7. Upper bounds on the capacity of deletion channels

Given the advances that have occurred in finding lower bounds for the capac-
ity of deletion channels, it seems natural to consider upper bounds. Our lower
bounds might, after all, be approaching their natural limit. Unfortunately, very
little is known about upper bounds for the deletion channel; past upper bounds
have focused on other error models. For example, Ullman provides combinato-
rial upper bounds on the capacity for multiple synchronization errors, but the
bounds deal with both insertion and deletion errors, and have zero probabil-
ity of error [45]. Until recently, the only formal upper bound specifically for the
deletion channel that we are aware of is the trivial upper bound from the erasure
channel of 1 − p.

A first attack on question of upper bounds was recently undertaken in [8].
The authors first provide an upper bound approach based on a transformation
that allows one to instead bound a memoryless channel’s capacity per unit cost.
(See similarly the results for sticky channels below in Section 8.1.) Binary input
strings are transformed into a sequence of run lengths, so the string 0010111
would be represented as 2, 1, 1, 3. The output can also be viewed as a sequence
of run lengths. In order to turn the deletion channel into a memoryless channel,
the output is enhanced with side information: if an entire run of the input is
deleted, a run length of 0 is given at the output. For example, if the input
0010111 led to an output of 001111, the corresponding output run lengths with
side information would be 2, 1, 0, 3, instead of the actual block lengths 2, 4.

In this setting, it makes sense to define the cost of a symbol for the new
channel to simply be the corresponding number; i.e. the symbol 2 has a cost of

M. Mitzenmacher/Deletion channels and related synchronization channels 20

two, as it corresponds to two bits of the input. Then the capacity per unit cost
of the new channel with side information gives an upper bound on the capacity
of the deletion channel. Standard techniques [1] then give that the capacity C
can be bounded by

C ≤ sup
x

I(x)

x
,

where I(x) = D(P (x), Q) is the information divergence between the output
distribution on input x and Q is any distribution over the positive integers. It
remains a technical challenge to choose a near-optimal distribution Q over the
infinite domain and numerically determine bounds; this is discussed further in
[8]. Some results using this approach are presented below.

Another question considered in [8] is the value of the asymptotic bound as p
goes to 1. Recall that a capacity lower bound of c1(1− p) with c1 = 0.1185 was
obtained, as described in Section 5. An asymptotic upper bound of the form
c2(1 − p) as p goes to 1 provides corresponding limits on how far such results
can be taken.

The upper bound utilizes some of the insights of the lower bound argument.
Specifically, we can again introduce side information in this setting, by having
a marker every a/(1 − p) bits for some constant a. Then, asymptotically, one
expects to receive on average a bits between markers, and the number of bits
between markers has, approximately, a Poisson distribution. The markers again
make this a discrete memoryless channel, with input symbols consisting of se-
quences of a/(1 − p) bits and output symbols consisting of a sequence of bits,
the number of which has an approximately Poisson distribution.

This channel appears difficult to analyze, especially given the space of input
symbols, which again correspond to 2a/(1−p) possible sequences. A technical
argument reduces the problem to a more manageable state space. One can
consider outputs of up to only k bits for a finite and not too large k at the cost
of only a small overestimate of the constant c in the upper bound. Under the
assumption that the output is only k bits, it can be shown that one need only
consider input sequences consisting of at most k alternating blocks of zeroes and
ones. That is, any input symbol can be effectively represented by its starting
bit and a j-dimensional vector (q1, q2, . . . , qj), with 1 ≤ j ≤ k, and qi > 0
being the fraction of the a/(1− p) bits in the ith alternating block. Since we
are considering asymptotic upper bounds, we can allow the qi to take on any
positive real values. With this framework, we now again have a setting where
we can upper bound the capacity by the information divergence by a suitable
numerical optimization. The current best result using this approach gives an
asymptotic upper bound of 0.7918(1 − p) as p goes to 1, leaving a significant
gap between the asymptotic upper and lower bounds.

An even more recent attack by Fertonani and Duman [17] gives an alternate
approach to achieving bounds that improves upon the results of [8]. They use a
variety of auxiliary channels aided by side information in order to achieve their
bounds. For example, one channel they consider is a deletion channel enhanced
by the following side information: for each consecutive group of r bits obtained

M. Mitzenmacher/Deletion channels and related synchronization channels 21

Table 1

Comparison of lower bounds from [15] (LB) with upper bounds from [8] (DMP) and from
[17] (FD). Entries denoted ∗ are worse than the 1 − d bound.

p LB DMP

0.05 0.7283 0.816 0.826
0.10 0.5620 0.704 0.689
0.15 0.4392 0.6188 0.579
0.20 0.3467 0.5507 0.491
0.25 0.2759 0.4943 0.420
0.30 0.2224 0.4466 0.362
0.35 0.1810 0.4063 0.315
0.40 0.1484 0.3711 0.275
0.45 0.1229 0.33987 0.241
0.50 0.1019 0.31082 0.212
0.55 0.08432 0.28382 0.187
0.60 0.06956 0.25815 0.165
0.65 0.05686 0.2331 0.144
0.70 0.04532 0.2083 0.126
0.75 0.03598 0.183 0.108
0.80 0.02727 0.157 0.091
0.85 0.01938 0.1298 0.073
0.90 0.01238 0.0999∗ 0.049
0.95 0.00574 0.064∗ 0.025

at the receiver, the receiver also learns how many bits of the original sequence
were transmitted in order for those r bits to be obtained. Equivalently, at every
multiple of r bits at the receiver, the receiver learns how many bits were deleted
to that point. A similar channel the authors study is one where there is an
immutable marker (that contains no other information, and that cannot be
deleted) sent every ℓ bits by the transmitter, so that the receiver knows when
each consecutive group of ℓ bits was sent. In particular, when ℓ = 1, the channel
in this case reduces to the erasure channel. Through clever manipulation and
numerical calculations, the authors obtain capacity upper bounds that translate
into upper bounds on the deletion channel.

The results of [17] include asymptotic results both as p goes to 1 and p goes
to 0. They provide an asymptotic upper bound of 0.49(1 − p) as p goes to 1,
still leaving a significant gap with the lower bound of 0.1185(1− p) but closing
the gap substantially over [8]. They also given an upper bound of 1 − 4.19p
as p goes to 0, improving over the trivial 1 − p upper bound for an erasure
channel. Finally, a comparison of the upper bounds for specific values of p and
the corresponding lower bounds is shown in Table 7, taken from information
in [8, 17]. While the gap is closing, there remains significant room between the
upper and lower bounds.

Open Questions:

• Improve upon the bounds of [17], either by developing more sophisticated
channels with side information or by improving the numerical calculation
methods to allow tighter bounds to be obtained.

M. Mitzenmacher/Deletion channels and related synchronization channels 22

• Design new capacity upper bound approaches specifically designed for
channels with both insertions and deletions.

• Tighten the gaps for the asymptotic behavior for the deletion channel as
p goes to 0 and p goes to 1.

8. Variations on the deletion channel

Given that the i.i.d. binary deletion channel has proven so hard to analyze, it
seems worthwhile to ask if there are reasonable ways to modify the problem
that would allow meaningful progress. We describe here some variations of the
deletion channel, why they may be interesting, and some recent results for them.

8.1. Sticky channels

As we have seen, the block structure of the codewords and the received sequences
appear quite useful in analyzing channels with synchronization errors. If we
no longer allow deletions, but only allow duplications of symbols sent over the
channel, then the block structure at the sender and receiver will be the same. We
use the term sticky channels to refer to the class of channels that independently
duplicates each transmitted symbol a random number of times at the receiver,
according to some fixed distribution on the positive integers. As an example
of a sticky channel, when typing at an electronic keyboard, if the key is held
too long, multiple copies of the pressed symbol can appear even though only
one copy of the symbol was intended. Sticky channels were studied in [36],
although other repetition errors have been studied in previous works, such as
[11, 12]. In part, the motivation for sticky channels is the difficulty of handling
general insertion/deletion channels; in some sense, this should be the easiest
class of insertion/desertion channels to study. Another reason to consider sticky
channels is that they can serve as a testing ground for ideas for capacity bounds
or practical codes. Techniques that perform well generally should handle the
easy case of sticky channels well.

As with the upper bound argument of [8], a key step in [36] is to think of the
block lengths themselves as being the symbols. For example, suppose that the
input to the sticky channel was:

0011000101101111001011.

We could instead think of the message as a sequence of block lengths:

2 2 3 1 1 2 1 4 2 1 1 2.

With a sticky channel, the receiver will not only obtain a bit string that can be
interpreted as a sequence of block lengths, but the receiver will also have the
same number of symbols as the sender.

In terms of capacity, we can relate the capacity of the original sticky channel
to the capacity per unit cost of the derived channel. Thinking of our symbols

M. Mitzenmacher/Deletion channels and related synchronization channels 23

as integers, we again assign the symbol (integer) i a cost of i in this derived
channel, since it corresponds to i bits in the sticky channel. It is then intuitively
clear that the capacity of the sticky channel is equal to the capacity per unit cost
of the derived channel. A more formal argument proving this correspondence is
given in [36].

This correspondence allows us to find a lower bound on the capacity of the
sticky channel by finding a lower bound on the capacity per unit cost of the
derived channel. If the transition probability matrix Pij of the derived channel
is finite, then because the symbol costs are all positive, there are numerical
methods for computing the capacity using a variation of the Blahut-Arimoto
algorithm [21]. This approach does not provide an actual coding scheme, but
yields a distribution of block lengths from which the capacity per unit cost can
be derived.

Since this numerical approach requires the transition probability matrix Pij

to be finite, we can only handle a finite number of input and output symbols.
This means the block lengths for the sticky channel input must be limited, so
that we have a run-length limited code. Similarly, the block lengths at the output
must be limited. For some channels, such as one where each bit is duplicated with
probability p, this limit arises naturally once we constrain the input block length.
For some channels, such as one where each bit is duplicated a geometrically
distributed number of times, this is not the case. However, we can similarly limit
the output block length, collapsing all outputs above some maximum length to
the maximum length in order to effectively truncate the matrix P . The numerical
calculations are straightforward and fast, so these limits can be set quite high,
and we would not expect them to affect the capacity calculation significantly.
There is no general formal proof of this that we know of, however. Hence, while
the approach does give a formal lower bound, and intuitively this bound can be
made very tight by taking a suitably large limits on the input and output block
lengths, formally obtaining a corresponding upper bound currently can require
significant additional work.

For the specific case where each bit is independently duplicated exactly once
with probability p, [36] gives very tight bounds on the capacity. Generally, the
bounds match to the third decimal place. The formal upper bound utilizes the

same general technique for deletion channel upper bounds in [8]: bound supx
I(x)

x
numerically.

It is worth noing that technically the techniques described for sticky channels
hold more generally for channels defined by a finite transition probability matrix
Pij, where Pij is the probability that a maximal block of i contiguous equal
symbols at the sender yields a corresponding block of length j ≥ 1 copies of the
symbol at the receiver. That is, we could consider bits being deleted as well as
inserted, as long as there is a guarantee that no block from the sender is ever
completely deleted.

Open Questions:

• Find a simpler approach for giving formal upper bounds on the capacity of

M. Mitzenmacher/Deletion channels and related synchronization channels 24

sticky channels. Possibly, the approach should be connected to the method
of obtaining a lower bound by taking a finite truncation of the matrix P .

• Develop efficient encoding and decoding schemes that give near-capacity
performance for sticky channels. Specifically, one can start with the chan-
nel where each bit is independently duplicated with probability p.

• Derive a closed-form expression for the capacity of a sticky channel. Again,
one can start with the channel where each bit is independently duplicated
with probability p.

8.2. Segmented deletion and insertion channels

Part of the difficulty inherent in the deletion channel is that, eventually, there
will be large blocks of deletions. With constant error probability, codewords
with length n will have a patch of Ω(log n) consecutive deletions somewhere
with high probability. Finding a large missing block appears to be a significant
part of the challenge in designing codes for the deletion channel.

This suggests that we consider adding an additional assumption restricting
how deletions occur to prevent long blocks of consecutive deletions. Liu and
Mitzenmacher [28] consider a variation of a deletion channel satisfying a seg-
mentation assumption: the input is grouped in consecutive segments of b con-
secutive bits, and there is at most one error in each segment. For example, if
segments consist of eight bits, and at most one deletion occurs per segment, on
the input

0001011100101111,

it would be possible that the fourth and eleventh bits were deleted, so that the
received sequence would be

00001110001111,

but not that last two bits were deleted, leaving

00010111001011.

To be clear, from the receiver’s point of view the segments are implicit, and no
segment markers appear in the received sequence (as shown in Figure 5). If one
had markers, then one could just use a code for correcting single deletions within
each segment. That is, each segment of length b would be a codeword from a
1-deletion correcting code, and the codewords could be decoded one at a time
using the marker boundaries. 1-deletion correcting codes are covered in Sloane’s
survey [44]; the most well known such codes are the Varshamov-Tenengolts (VT)
codes [46]. While 1-deletion correcting codes are not the answer in this setting,
they provide direction for a solution.

Besides being motivated by the difficulty of the i.i.d. deletion channel, the
segmentation assumption captures the idea that many synchronization errors
are due to small drifts in clock synchronization. There might then naturally be
a minimal gap between deletions, as the slow drift may require some minimal

M. Mitzenmacher/Deletion channels and related synchronization channels 25

Fig 5. An example of a segmented deletion channel. In particular, there are no markers
denoting segment boundaries at the receiver.

amount of time before the timing error translates into another bit error. The
segmentation assumption captures this model, and is in fact more general.

Deterministic, linear-time, zero-error codes with relatively high rates are pos-
sible under the segmentation assumption [28]. The codes utilize 1-deletion codes
of length b with certain additional properties; codewords for the segmentation
channel are obtained by concatenating codewords of this subcode. The addi-
tional properties are specially selected so that one can decode by reading the
received sequence left to right without losing synchronization.

We provide the theorem describing the code properties. First, we require some
notation. For a b-bit string u, let D1(u) be the set of all (b− 1)-bit strings that
can be obtained by deleting one bit from u. We also use D1(S) = ∪u∈SD1(u). A
zero-error 1-deletion correcting code C must satisfy for any u, v ∈ C, with u 6= v,
D1(u)∩D1(v) = ∅. For a string x of length k > 1, let prefix(x) be the first k−1
bits of x, and similarly define suffix(x) be the last k− 1 bits of x. For a set S of
strings let prefix(S) = ∪x∈Sprefix(x) and define suffix(S) similarly.

Theorem 8.1. Consider the segmented deletion channel with segment length b.
Let C be a subset of {0, 1}b with the following properties:

• for any u, v ∈ C, with u 6= v, D1(u) ∩ D1(v) = ∅;
• for any u, v ∈ C, with u 6= v, prefix

(

D1(u)
)
⋂

suffix
(

D1(v)
)

= ∅;
• any string of the form a∗(ba)∗ or a∗(ba)∗b, where a, b ∈ {0, 1}, is not in

C.

Then, using C as the code for each segment, there exists a linear time decoding
scheme for the segmented deletion channel that looks ahead only O(b) bits to
decode each block.

Since the constraints are expressed on pairs of possible strings, by treating
each possible bit-string as a vertex and placing an edge between every pair
of nodes that cannot both simultaneously be in C, the problem of finding a
large code C reduces to an independent set problem, in a manner similar to
other 1-deletion code problems [44]. For small b, solutions to the independent
set problem can be found by exhaustive computation; for larger b, heuristic
methods can be applied to find large independent sets. As an example, for
b = 8, or equivalently at most one deletion per byte, a code with rate over 44%
was found exhaustively, and for b = 16, a code with rate over 59% was found
by a heuristic search [28]. Rates appear to improve as b increases.

Liu and Mitzenmacher also consider insertions under the segmentation as-
sumption. Finally, they present a more advanced scheme that experimentally

M. Mitzenmacher/Deletion channels and related synchronization channels 26

yields a higher rate but is more expensive computationally and not zero-error.
However, if the segmentation assumption holds in real systems, the deterministic
approach already seems well suited to implementation.

Open Questions:

• Find expressions for the capacity for segmented deletion or insertion chan-
nels, either in the zero-error setting or the setting where errors are allowed.

• Find better methods for finding maximum independent sets in graphs that
arise in the study of deletion codes and related codes.

• Provide codes that allow for higher rates for segmented deletion channels,
by trading off computational effort and code rate.

8.3. Deletions over larger alphabets

Thus far we have focused on the case of a binary alphabet. Some of the work
generalizes naturally to larger alphabets (see, e.g., [7, 13]). However, for signifi-
cantly larger alphabets, codes based on blocks of the same repeated symbol do
not appear to be the appropriate approach. Indeed, for very large alphabets,
one could simply embed a sequence number in the sent symbol itself. In some
sense, this is what is already done in the Internet today, where packets con-
tain sequence numbers significantly smaller than the standard packet size, and
deletions thereby become more easily handled erasures.

From a theoretical standpoint, however, it is interesting to consider what
can be done in the case of deletions over larger alphabets. There may also be
practical settings where such coding techniques would apply; in a system where
symbols (or packets) consist of for example 64 bits, encoding a sequence number
may be too costly.

In [35], a verification-based methodology used previously for channels over
q-ary alphabets with errors [31] is suggested in the setting of channels with
deletions, transpositions, and random insertions. The framework borrows heav-
ily from that of low-density parity-check (LDPC) codes. For convenience, let us
think of q as being a power of 2, so that symbols are bit strings and exclusive-
ors (XORs) are the natural operation. The main ideas are the following: first,
we assume each message symbol sent appears to be a random symbol from a
q-ary alphabet, by XORing some mutually agreed upon (pseudo)-random value
to each symbol. Second, we establish an encoding based on constraints of the
form that the XOR of certain collections of symbols take on a given, agreed
upon (pseudo)-random value.

To see the benefit of this, suppose each constraint consists of an XOR of
six symbols (as in a 3-6 LDPC code). Consider an algorithm that simply con-
siders all combinations of six arrived symbols and checks if the XOR of their
values is the value given by some constraint. Since each symbol value appears
random, for q sufficiently large the probability that any combination of six re-
ceived symbols besides the “right” six is small and can be ignored. Specifically,

M. Mitzenmacher/Deletion channels and related synchronization channels 27

if symbols are uniform over the q-ary alphabet, then the probability a collec-
tion of six symbols takes on the constraint value is 1/q, which in the example
setting of 64-bit symbols is 2−64. As long as the number of combinations of
six received symbols is substantially less than 264, the probability of mistak-
enly identifying the symbols associated with a constraint is quite small. Once
symbols are identified, their locations can be determined, and once five symbols
corresponding to a constraint are determined, the sixth can be determined as
well. A suitable LDPC-style analysis determines the rate achievable using such
a scheme.

Using more sophisticated analyses based on analyses of similar LDPC codes,
one can show that this verification-based coding can achieve rates arbitrarily
close to optimal, at the expense of complexity. As shown in [35], when deletions
occur with probability p, a rate of (1 − ǫ)(1 − p) is possible with decoding

complexity nO(1/ǫ2) log q.
While the approach of [35] appears far from suitable for real implementa-

tions, it is possible that the underlying ideas could prove useful. Metzner has
suggested improved techniques using similar ideas that appear efficient enough
to be potentially practical [32].

Open Questions:

• Design practical implementations of verification-based decoding for dele-
tion channels or other channels.

• Find ways to lower the probability of error for verification-based decoding
so that it performs well for smaller alphabets.

9. Trace reconstruction

Up to this point, we have been focusing on deletions in the setting of codes,
where there is a codebook chosen by the sender and the receiver. To conclude this
survey, we consider a different but related class of problems, consisting of natural
variations of the problem where we do not control the input. Such problems can
generally referred to as trace reconstruction problems, and include the following
canonical example. A binary string X = x1x2 . . . xn yields a collection of traces
Y 1, Y 2, . . . , Y m, where each Y i is independently obtained from X by passing
X through a deletion channel under which each bit is independently deleted
with fixed probability δ. Given the traces (and the value of n and δ), we wish
to reconstruct the original string X exactly with high probability. The question
is how many traces are necessary for reconstruction. Here one can consider the
problem over worst-case inputs X, or over random inputs X. Combinatorial
variations of trace reconstruction were considered by Levenshtein [26, 27], but
study of the above variation was recently initiated by Batu, Kannan, Khanna,
and McGregor [2] (see also [22]).

The problem can naturally be extended to consider broader classes of errors,
but even the case of only deletions has potential real-world implications. For
example, in a sensor network, an array of sensors could be used to record a

M. Mitzenmacher/Deletion channels and related synchronization channels 28

sequence of events, with each event corresponding to a 1 (positive outcome)
or 0 (negative outcome). Noise or mechanical imperfections may cause some
sensors to fail to detect each event, giving rise to deletions in each individual
sensor’s trace. Reconstructing the correct sequence of events from a collection
of individually inaccurate sensors where each sensor independently misses each
event with fixed probability corresponds to the trace reconstruction problem
with deletions. Trace reconstruction also seems natural in biological settings;
one may have several samples of DNA sequences from descendants of a common
ancestor, and the goal is to reconstruct as well as possible the DNA sequence of
the ancestor.

Recently, it has been shown that when X is chosen uniformly at random,
there exists a universal constant γ such that for δ < γ, reconstruction is possible
with polynomially many traces with high probability (over both X and the
traces) [20]. The polynomial can be taken to be independent of δ, and the
reconstruction itself also takes polynomial time. Previous work for the case of
random X has required sub-constant deletion probabilities (e.g., [2]). However,
the reconstruction result for constants up to γ is purely theoretical, in that the
polynomial obtained is prohibitive for a practical implementation. Perhaps the
most natural open question in this space is to design a practical algorithm for
constant deletion probabilities. However, the study of these problems is still in
its infancy, and there are many other related questions to consider.

A natural direction is to consider approximate trace reconstruction, where a
small number of errors would be tolerated. Tradeoffs between accuracy and the
number of traces required have yet to be explored.

As a different direction, there are natural coding-theoretic analogues of the
trace reconstruction problem. Consider a channel consisting of k independent
deletion subchannels. That is, the sender’s binary message is simultaneously sent
through k independent deletion subchannels, with each bit being deleted with
probability p in each channel, and the receiver obtains the output from all k sub-
channels. What is the capacity of this channel? This problem appears unstudied,
even in the case where k = 2. The corresponding problem with erasure channels
is trivial; for the corresponding problem on the binary symmetric error channel,
the capacity is easily calculated, and density evolution techniques can be used to
design practical near-optimal codes [33, 41]. For deletion channels, the problem
appears much more difficult. Maximum likelihood approaches would naturally
apply, since the likelihood of an initial string X given two independent outputs
Y1 and Y2 is given by

Pr(X | Y1, Y2) = Pr(Y1, Y2 | X)
Pr(X)

Pr(Y1, Y2)
= Pr(Y1 | X)Pr(Y2 | X)

Pr(X)

Pr(Y1, Y2)

and is therefore proportional to the product of #S(X, Y1) · #S(X, Y2). (The
result extends for larger k.) This brings us back to the problems discussed at
the beginning of this survey, namely understanding maximum likelihood on the
deletion channel, even in the case where the codewords are assumed to be chosen
independently and uniformly at random.

M. Mitzenmacher/Deletion channels and related synchronization channels 29

Open Questions:

• Consider the limits of trace reconstruction for random strings and worst-
case strings. What is the maximum deletion probability that can be tol-
erated with a polynomial number of traces? What is the tradeoff between
the deletion probability and the number of traces need for reconstruction?

• Extend the results of [20] to channels with insertions, transpositions,
and/or other errors.

• Find practical algorithms that perform well on trace reconstruction in
practice, and prove rigorous statements about their performance.

• Develop an appropriate framework for approximate trace reconstruction,
and prove results in that framework.

• Consider lower bounds for the number of traces required for trace recon-
struction. (See [20, 47] for some lower bound results.)

• Prove capacity bounds in the coding setting for deletion channels where
multiple independent traces can be obtained.

10. Conclusion

The area of synchronization contains many open problems that appear to hold
significant challenges. In particular, while there has been clear progress on the
problem of determining the capacity for the deletion channel, tight bounds re-
main elusive. An analysis of the maximum likelihood approach appears to be
the biggest prize, potentially dominating the previous bounds obtained. Even
an analysis for the case of codewords chosen uniformly at random, which cor-
responds to natural questions on the behavior of random sequences and subse-
quences, would be a significant step forward.

While in this survey issues related to efficient coding and decoding have arisen
only tangentially, the problem of finding practical codes with good performance
is also well worth studying. Some recent efforts in this direction for channels
with deletions and possibly other errors include [3, 5, 39], but thus far most of
the work in this area remains fairly ad hoc. Clear design principles need to be
developed. Perhaps the work done thus far to improve bounds on the capacity
can naturally lead to reasonably efficient coding methods.

To conclude, although the problem of coding for the deletion channel and
other channels with synchronization errors has been around for decades, it re-
mains a largely unstudied area. Just as the edit distance (or Levenshtein dis-
tance) between two strings is a much more complicated construct than the
Hamming distance, coding over channels with synchronization errors appears
potentially much more complicated than coding over channels with only symbol
errors. We expect that efforts to confront this complexity will lead to interest-
ing new results, techniques, and connections between information theory and
computer science.

M. Mitzenmacher/Deletion channels and related synchronization channels 30

References

[1] Abdel-Ghaffar, K.A.S. Capacity per unit cost of a discrete memoryless
channel. IEE Electronic Letters, 29:142–144, 1993.

[2] Batu,T., Kannan, S., Khanna, S. and McGregor A. Reconstruct-
ing strings from random traces. In Proceedings of the Fifteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 910–918, 2004.
MR2290981

[3] Chen, J., Mitzenmacher, M., Ng, C. and Varnica N. Concatenated
codes for deletion channels. In Proceedings of the 2003 IEEE International
Symposium on Information Theory, p. 218, 2003.

[4] Chung, S.Y., Forney, Jr., G.D., Richardson, T.J. and Ur-

banke, R. On the design of low-density parity-check codes within 0.0045
dB ofthe Shannon limit. IEEE Communications Letters, 5(2):58–60, 2001.

[5] Davey, M.C. and Mackay, D.J.C. Reliable communication over chan-
nels with insertions, deletions, and substitutions. IEEE Transactions on
Information Theory, 47(2):687–698, 2001. MR1820484

[6] Diggavi, S. and Grossglauser, M. On Transmission over Deletion
Channels. In Proceedings of the 39th Annual Allerton Conference on Com-
munication, Control, and Computing, pp. 573–582, 2001.

[7] Diggavi, S. and Grossglauser, M. On information transmission
over a finite buffer channel. IEEE Transactions on Information Theory,
52(3):1226–1237, 2006. MR2238087

[8] Diggavi, S., Mitzenmacher, M. and Pfister, H. Capacity Upper
Bounds for Deletion Channels. In Proceedings of the International Sympo-
sium on Information Theory, pp. 1716–1720, Nice, France, June 2007.

[9] Dobrushin, R.L. Shannon’s Theorems for Channels with Synchronization
Errors. Problems of Information Transmission, 3(4):11–26, 1967. Trans-
lated from Problemy Peredachi Informatsii, vol. 3, no. 4, pp. 18–36, 1967.
MR0289198

[10] Dolgopolov, A.S. Capacity Bounds for a Channel with Synchroniza-
tion Errors. Problems of Information Transmission, 26(2):111–120, 1990.
Translated from Problemy Peredachi Informatsii, vol. 26, no. 2, pp. 27–37,
April-June, 1990. MR1074126

[11] Dolecek, L. and Anantharam, V. Using Reed-Muller(1, m) Codes over
Channels with Synchronization and Substitution Errors. IEEE Transac-
tions on Information Theory, 53(4):1430–1443, 2007. MR2303012

[12] Dolecek, L. and Anantharam, V. A Synchronization Technique for
Array-based LDPC Codes in Channels with Varying Sampling Rate. In
Proceedings of the 2006 IEEE International Symposium on Information
Theory (ISIT), pages 2057–2061, 2006.

[13] Drinea, E. and Kirsch, A. Directly lower bounding the information
capacity for channels with i.i.d. deletions and duplications. In Proceedings
of the 2007 IEEE International Symposium on Information Theory (ISIT),
pages 1731–1735, 2007.

http://www.ams.org/mathscinet-getitem?mr=2290981
http://www.ams.org/mathscinet-getitem?mr=1820484
http://www.ams.org/mathscinet-getitem?mr=2238087
http://www.ams.org/mathscinet-getitem?mr=0289198
http://www.ams.org/mathscinet-getitem?mr=1074126
http://www.ams.org/mathscinet-getitem?mr=2303012

M. Mitzenmacher/Deletion channels and related synchronization channels 31

[14] Drinea, E. and Mitzenmacher, M. On Lower Bounds for the Capacity
of Deletion Channels. IEEE Transactions on Information Theory, 52:10,
pp. 4648–4657, 2006. MR2300847

[15] Drinea, E. and Mitzenmacher, M. Improved lower bounds for the
capacity of i.i.d. deletion and duplication channels. IEEE Transactions on
Information Theory, 53:8, pp. 2693–2714, 2007. MR2400490

[16] Ferreira, H.C., Clarke, W.A., Helberg, A.S.J., Abdel-

Ghaffar, K.A.S. and Winck, A.J.H. Insertion/deletion correction with
spectral nulls. IEEE Transactions on Information Theory, volume 43, num-
ber 2, pp. 722–732, 1997.

[17] Fertonani, D. and Duman, T.M. Novel bounds on the capacity of bi-
nary channels with deletions and substitutions, In Proceedings of the 2009
IEEE International Symposium on Information Theory (ISIT), 2009.

[18] Gallager, R.G. Sequential decoding for binary channels with noise and
synchronization errors. Lincoln Lab. Group Report, October 1961.

[19] Gusfield, D. Algorithms on Stings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.
MR1460730

[20] Holenstein, T., Mitzenmacher, M., Panigrahy, R. and Wieder,U.

Trace reconstruction with constant deletion probability and related results.
In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 389–398, 2008. MR2487606

[21] Jimbo, M. and Kunisawa, K. An Iteration Method for Calculating the
Relative Capacity. Information and Control, 43:216–233, 1979. MR0553700

[22] Kannan, S. and McGregor, A. More on reconstructing strings from
random traces: insertions and deletions. In Proceedings of the 2005 IEEE
International Symposium on Information Theory, pp. 297–301, 2005.

[23] Kavcic, A. and Motwani, R. Insertion/deletion channels: Reduced-
state lower bounds on channel capacities. In Proceedings of the 2004 IEEE
International Symposium on Information Theory, p. 229.

[24] Kesten, H. Random difference equations and renewal theory for products
of random matrices. Acta Mathematica, 131:207–248, 1973. MR0440724

[25] Levenshtein, V.I. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics - Doklady, vol. 10, no. 8, pp. 707–710, 1966.
(In Russsian, Dolkady Akademii Nauk SSR, vol. 163, no. 14 pp. 845–848,
1966. MR0189928

[26] Levenshtein, V.I. Efficient reconstruction of sequences. IEEE Transac-
tions on Information Theory, 47(1):2–22, 2001. MR1819952

[27] Levenshtein, V.I. Efficient reconstruction of sequences from their sub-
sequences or supersequences. Journal of Combinatorial Theory, Series A,
93(2):310–332, 2001. MR1805300

[28] Liu, Z. and Mitzenmacher, M. Codes for deletion and insertion chan-
nels with segmented errors. In Proceedings of the 2007 IEEE International
Symposium on Information Theory (ISIT), pages 846–850, 2007.

http://www.ams.org/mathscinet-getitem?mr=2300847
http://www.ams.org/mathscinet-getitem?mr=2400490
http://www.ams.org/mathscinet-getitem?mr=1460730
http://www.ams.org/mathscinet-getitem?mr=2487606
http://www.ams.org/mathscinet-getitem?mr=0553700
http://www.ams.org/mathscinet-getitem?mr=0440724
http://www.ams.org/mathscinet-getitem?mr=0189928
http://www.ams.org/mathscinet-getitem?mr=1819952
http://www.ams.org/mathscinet-getitem?mr=1805300

M. Mitzenmacher/Deletion channels and related synchronization channels 32

[29] Lothaire, M. Applied Combinatorics on Words. Vol. 105 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 2005.
MR2165687

[30] Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A. and Spiel-

man, D.A. Efficient erasure correcting codes. IEEE Transactions on In-
formation Theory, 47(2):569–584, 2001. MR1820477

[31] Luby, M.G. and Mitzenmacher, M. Verification-based decoding for
packet-based low-density parity-check codes. IEEE Transactions on Infor-
mation Theory, 51(1):120–127, 2005. MR2234576

[32] Metzner, J.J. Packet-symbol decoding for reliable multipath reception
with no sequence numbers. In Proceedings of the IEEE International Con-
ference on Communications, pp. 809–814, 2007.

[33] Mitzenmacher, M. A note on low density parity check codes for erasures
and errors. SRC Technical Note 17, 1998.

[34] Mitzenmacher, M. A Brief History of Generative Models for Power Law
and Lognormal Distributions. Internet Mathematics, vol. 1, No. 2, pp. 226–
251, 2004. MR2077227

[35] Mitzenmacher, M. Polynomial time low-density parity-check codes with
rates very close to the capacity of the q-ary random deletion channel for
large q. IEEE Transactions on Information Theory, 52(12):5496–5501,
2006. MR2300707

[36] Mitzenmacher, M. Capacity bounds for sticky channels. IEEE Trans-
actions on Information Theory, 54(1):72, 2008. MR2446740

[37] Mitzenmacher, M. and Drinea, E. A simple lower bound for the ca-
pacity of the deletion channel. IEEE Transactions on Information Theory,
52:10, pp. 4657–4660, 2006. MR2300848

[38] Mitzenmacher, M. and Upfal, E. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press,
2005. MR2144605

[39] Ratzer, E. Marker codes for channels with insertions and deletions. An-
nals of Telecommunications, 60:1-2, p. 29–44, January-February 2005.

[40] Richardson, T.J., Shokrollahi, M.A. and Urbanke, R.L. Design
of capacity-approaching irregular low-density parity-check codes. IEEE
Transactions on Information Theory, 47(2):619–637, 2001. MR1820480

[41] Richardson, T.J. and Urbanke, R.L. The capacity of low-density
parity-check codes under message-passing decoding. IEEE Transactions
on Information Theory, 47(2):599–618, 2001. MR1820479

[42] Schulman, L.J. and Zuckerman, D. Asymptotically good codes cor-
recting insertions, deletions, and transpositions. IEEE Transactions on
Information Theory, 45(7):2552–2557, 1999. MR1725152

[43] Shannon, C.E. A mathematical theory of communication. Bell Systems
Technical Journal, 27(3):379–423, 1948. MR0026286

[44] Sloane, N.J.A. On single-deletion-correcting codes. Codes and Designs:
Proceedings of a Conference Honoring Professor Dijen K. Ray-Chaudhuri
on the Occasion of His 65th Birthday, Ohio State University, May 18–21,
2000, 2002. MR1948149

http://www.ams.org/mathscinet-getitem?mr=2165687
http://www.ams.org/mathscinet-getitem?mr=1820477
http://www.ams.org/mathscinet-getitem?mr=2234576
http://www.ams.org/mathscinet-getitem?mr=2077227
http://www.ams.org/mathscinet-getitem?mr=2300707
http://www.ams.org/mathscinet-getitem?mr=2446740
http://www.ams.org/mathscinet-getitem?mr=2300848
http://www.ams.org/mathscinet-getitem?mr=2144605
http://www.ams.org/mathscinet-getitem?mr=1820480
http://www.ams.org/mathscinet-getitem?mr=1820479
http://www.ams.org/mathscinet-getitem?mr=1725152
http://www.ams.org/mathscinet-getitem?mr=0026286
http://www.ams.org/mathscinet-getitem?mr=1948149

M. Mitzenmacher/Deletion channels and related synchronization channels 33

[45] Ullman, J.D. On the capabilities of codes to correct synchronization
errors. IEEE Transactions on Information Theory, 13 (1967), 95–105.

[46] Varshamov, R.R. and Tenengolts, G.M. Codes which correct sin-
gle asymmetric errors. Automation and Remote Control, 26:2, pp. 286-
290, 1965. Translated from Automatika i Telemekhanika, 26:2, pp. 288–292,
1965.

[47] Viswanathan, K. and Swaminathan, R. Improved string reconstruc-
tion over insertion-deletion channels. In Proceedings of the Nineteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 399–408, 2008.
MR2487607

[48] Vvedenskaya, N.D. and Dobrushin, R.L. The Computation on a Com-
puter of the Channel Capacity of a Line with Symbol Drop-out. Problems
of Information Transmission, 4(3):76–79, 1968. Translated from Problemy
Peredachi Informatsii, vol. 4, no. 3, pp. 92–95, 1968.

[49] van Wijngaarden, A.J., Morita, H. and Vinck, A.J.H. Prefix syn-
chronized codes capable of correcting single insertion/deletion errors. In
Proceedings of the International Symposium on Information Theory, p. 409,
1997.

[50] Zigangirov, K.S. Sequential decoding for a binary channel with drop-
outs and insertions. Problems of Information Transmission, vol. 5, no. 2,
pp. 17–22, 1969. Translated from Problemy Peredachi Informatsii, vol. 5,
no. 2, pp. 23–30, 1969.

http://www.ams.org/mathscinet-getitem?mr=2487607

	Introduction
	The ultimate goal: A maximum likelihood argument
	Shannon-style arguments
	How the basic argument fails
	Codebooks from first order Markov chains

	Better decoding via jigsaw puzzles
	A useful reduction for deletion channels
	A related information theoretic formulation
	Upper bounds on the capacity of deletion channels
	Variations on the deletion channel
	Sticky channels
	Segmented deletion and insertion channels
	Deletions over larger alphabets

	Trace reconstruction
	Conclusion
	References

