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Abstract. We consider the problem of extending the analysis of balls
and bins processes where a ball is placed in the least loaded of d ran-
domly chosen bins to cover deletions. In particular, we are interested
in the case where the system maintains a fixed load, and deletions are
determined by an adversary before the process begins. We show that
with high probability the load in any bin is O(log log n). In fact, this
result follows from recent work by Cole et al. concerning a more difficult
problem of routing in a butterfly network.
The main contribution of this paper is to give a different proof of this
bound, which follows the lines of the analysis of Azar, Broder, Karlin,
and Upfal for the corresponding static load balancing problem. We also
give a specialized (and hence simpler) version of the argument from the
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paper by Cole et al. for the balls and bins scenario. Finally, we provide
an alternative analysis also based on the approach of Azar, Broder, Kar-
lin, and Upfal for the special case where items are deleted according to
their age. Although this analysis does not yield better bounds than our
argument for the general case, it is interesting because it utilizes a two-
dimensional family of random variables in order to account for the age
of the items. This technique may be of more general use.

1 Introduction

A standard question in load balancing is to consider what the distribution of
balls in bins looks like when m balls are thrown into n bins. In particular,
when n balls are thrown into n bins, it is well known that the maximum load
is approximately log n/ log log n with high probability. The seminal paper of
Azar, Broder, Karlin, and Upfal asked a related question: suppose the balls are
placed sequentially, and each ball is placed in the least loaded of d bins chosen
independently and uniformly at random [4]. In this case, they find that the
maximum load is log log n/ log d + O(1) with high probability; more detailed
analysis of the distribution in this case is undertaken in [10]. This work has
led to a number papers analyzing related load balancing schemes, including for
example [1, 2, 5–9, 11, 12].

Note that the above result applies to a static problem, where a fixed number
of balls are distributed. An interesting related question is to consider the dynamic
situation where balls can be deleted as well as inserted into the system over time.
Indeed, the original paper by Azar, Broder, Karlin, and Upfal examines the
dynamic situation where at each step a random ball is deleted and re-inserted in
the system [4]. Related work by, for example, Mitzenmacher [8, 9, 11] and Adler
et al. [1] examines deletions via connections with queueing theoretical models.

Here we focus on a model where an adversary may specify a deletion sequence
in advance. Our first and main result is to extend the proof of [4] to handle a
polynomial length sequence of insertions and deletions, where the maximum load
in the system is always at most n balls. We then note that an even more general
result, in which re-insertions can occur, is already essentially contained in the
results of [6] (a re-insertion causes a ball to choose among the same bins as on
its first insertion). This work considered a similar problem related to routing on
a butterfly network. We restate this proof for the balls and bins setting, where
it becomes significantly simpler. Finally, we consider a special case in which
deletions are always of the item that has been longest in the system. We again
use a variant of the two-choice argument from [4], this time making use of a
two-dimensional family of random variables, similar in spirit to the work of [11].

We emphasize that the interest of this work lies in the techniques used rather
than the result, which is already implicit in the work of [6].
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2 Adversarial deletions: polynomially many steps

In this section, we demonstrate that the original proof of Azar, Broder, Kar-
lin, and Upfal in [4] can be extended to handle deletions under an appropriate
adversarial model for polynomially many steps. We first define the underlying
process.

For a vector v = (v1, v2, . . .), let Pd(v) be the following process: at time
steps 1 through n, n balls are placed into n bins sequentially, with each ball
going into the least loaded of d bins chosen independently and uniformly at
random. After these balls are placed, deletions and insertions alternate, so that
at each subsequent time step n + j, first the ball inserted at time vj is removed,
and then a new ball is placed into the least loaded of d bins chosen independently
and uniformly at random. (Actually we do not require this alternation; the main
point is that we have a bound, n, on the number of balls in the system at any
point. The alternation merely makes notation more convenient.)

We assume the vector v is suitably defined so that at each step an actual
deletion occurs; that is, the vj are unique and vj ≤ n + j − 1. Otherwise v is
arbitrary, although we emphasize that it is chosen before the process begins and
does not depend on the random choices made during the process.

We adopt some of the notation of [4]. Each ball is assigned a fixed height
upon entry, where the height is the number of balls in the bin, including itself.
The height of the ball placed at time t is denoted by h(t). The load of a bin
at time t refers to the number of balls in the bin at that time. We let µ≥k(t)
denote the number of balls that have height at least k at time t, and ν≥k(t) be
the number of bins that have load at least k at time t. Note that if a bin has
load k, it must contain some ball of height at least k. Hence µ≥k(t) ≥ ν≥k(t) for
all times t. Finally, B(n, p) refers to a binomially distributed random variable
based on n trials each with probability p of success.

Before giving the proof, we sketch the main ideas. The flavor of the proof
is to show that with high probability the number of bins containing at least i
balls is doubly exponentially decreasing for sufficiently large i. The bound on the
number of bins containing at least i + 1 balls is obtained from the bound on the
number of bins containing at least i balls. Establishing the proper conditioning
between the number of bins with i and i + 1 balls makes the proof challenging.

A key idea is to avoid seeking a direct bound on the number of bins con-
taining at least i balls. Rather, following [4], we use the fact that the number of
balls of height at least i bounds the number of bins containing at least i balls.
This leads us to obtain bounds on the distribution of ball heights which, with
high probability, hold for polynomially many steps. A concern is that here the
adversarial choice of deletions might lead this bound to be too weak. On the
other hand, the adversary is constrained, for the full sequence of deletions must
be chosen up front, and this allows the result.

The key difference between our result on that of [4] is that they find a domi-
nating distribution of heights on one set of n balls, whereas we use a distribution
that applies to every set of n balls present in the system as it evolves. As it hap-
pens, the bounds are essentially the same; the most significant changes lie in
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the end game, where we must bound the number of bins containing more than
log log n/ log d balls.

Theorem 1. For any fixed constants c1 and c2, with probability at least 1 −
o(1/nc1) the maximum load of a bin achieved by process Pd(v) over T = nc2

steps is log log n/ log d + O((c1 + c2)/d)

Proof. The argument extends the original Theorem 4 of [4], by determining a
distribution on the heights of the balls that holds for polynomially many steps,
regardless of which n balls are in the system at any point in time.

Let Ei be the event that ν≥i(t) ≤ βi for time steps t = 1, . . . , T , where the βi
will be revealed shortly. We want to show that at time t, 1 ≤ t ≤ T ,

Pr(µ≥i+1 > βi+1 | Ei)

is sufficiently small. That is, given Ei, we want Ei+1 to hold as well. This proba-
bility is hard to estimate directly. However, we know that since the d choices for
a ball are independent, we have

Pr(h(t) ≥ i + 1 | ν≥i(t− 1)) =

(
ν≥i(t− 1)

)d
nd

.

We would like to bound for each time t the distribution of the number of
time steps j such that h(j) ≥ i + 1 and the ball inserted at time step j has not
been deleted by time t. In particular, we would like to bound this distribution
by a binomial distribution over n events with success probability (βi/n)d. But
this is difficult to do directly as the events are not independent.

Instead, we fix i and define the binary random variables Yt for t = 1, . . . , T ,
where

Yt = 1 iff h(t) ≥ i + 1 and ν≥i(t− 1) ≤ βi.

(The value Yt is 1 if and only if the height of the ball t is at least i + 1 despite
the fact that the number of boxes that have load at least i is currently below
βi.)

Let ωj represent the choices available to the j’th ball. Clearly

Pr(Yt = 1 | ω1, . . . , ωt−1, v1, . . . , vt−n) ≤
βdi
nd

def= pi.

Consider the situation immediately after a time step t′ where a new ball has
entered the system. Then there are n balls in the system, that entered at times
u1, u2, . . . , un. Let I(t′) be the set of times {u1, u2, . . . , un}. Then

∑
t∈I(t′)

Yt =
n∑
i=1

Yui ;

that is, the summation over I(t′) is implicitly over the values of Yt for the balls in
the system at time t′. (This statement differs from the result of [4]; the important
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point here is that we can bound
∑
t∈I(t′) Yt regardless of what n balls are in the

system. Note these balls are fixed for any time t by the deletion sequence v.)
We may conclude that at any time t′ ≤ T

Pr

 ∑
t∈I(t′)

Yt ≥ k

 ≤ Pr(B(n, pi) ≥ k). (1)

Observe that conditioned on Ei, we have µ≥i+1(t′) =
∑
t∈I(t′) Yt. Therefore

Pr(µ≥i+1(t′) ≥ k | Ei) = Pr

 ∑
t∈I(t′)

Yt ≥ k | Ei

 ≤ Pr(B(n, pi) ≥ k)
Pr(Ei)

. (2)

Thus:

Pr(¬Ei+1 | Ei) ≤
T Pr(B(n, pi) ≥ k)

Pr(Ei)
Since

Pr(¬Ei+1) ≤ Pr(¬Ei+1 | Ei) Pr(Ei) + Pr(¬Ei),
we have

Pr(¬Ei+1) ≤ T Pr(B(n, pi) ≥ k) + Pr(¬Ei). (3)

We can bound large deviations in the binomial distribution with the formula
(see for instance [3], Appendix A.)

Pr(B(n, pi) ≥ epin) ≤ e−pin. (4)

We may then set β6 = n
2e , and subsequently

βi =
eβdi−1

nd−1
for i ≥ 7.

Note that the βi are chosen so that Pr(B(n, pi) ≥ βi+1) ≤ e−pin.
With these choices E6 holds with certainty, as there cannot be more than

n/2e bins with 6 balls. For i ≥ 6,

Pr(¬Ei+1) ≤
T

nc1+c2+1
+ Pr(¬Ei) ≤

1
nc1+1

+ Pr(¬Ei),

provided that pin ≥ (c1 + c2 + 1) lnn.
Let i∗ be the smallest value for which pi∗−1n ≤ (c1 + c2 + 1) lnn. Note that

i∗ ≤ ln lnn/ lnd + O(1). Note that the preceding argument can not be used to
bound the number of bins with height at least i∗, as the Chernoff bounds are no
longer powerful enough; hence we must tackle the tail more directly. This requires
some careful attention to detail. In fact we will show that, given Ei∗−1, then with
probability 1−o(1/nc1), there are no balls with height i∗+d(c1+c2+2)/(d−1)e+1
over the course of the entire process.
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Let F1 be the event that ν≥i∗(t) ≤ (ec1 + ec2 + e) lnn for all times t ≤ T . In
other words, at every time there are not too many bins with height at least i∗.
Then

Pr(¬F1) ≤ Pr(¬F1 | Ei∗−1) Pr(Ei∗−1) + Pr(¬Ei∗−1),

and again by (1), (2), and (4)

Pr(¬F1 | Ei∗−1) Pr(Ei∗−1) ≤ T Pr(B(n, (c1+c2+1) lnn/n) ≥ (ec1+ec2+e) lnn) ≤ 1
nc1+1

.

Let F2 be the event that ν≥i∗+1(t) ≤ c1 + c2 + 2 for all times t ≤ T . In other
words, at every time there are no more than a constant number of bins with load
at least i∗ + 1. Again,

Pr(¬F2) ≤ Pr(¬F2 | F1) Pr(F1) + Pr(¬F1).

Here

Pr(¬F2 | F1) Pr(F1) ≤ T Pr(B(n, ((ec1 + ec2 + e) lnn/n)d) ≥ c1 + c2 + 2).

The binomial expression can be checked to be o(1/nc1+c2+1), and hence this last
term is also O(1/nc1+1).

Conditioned on F2, we must now show that throughout the process there
are no bins with load i∗ + d(c1 + c2 + 2)/(d − 1)e + 1 with sufficiently high
probability. Let this event be given by G. Consider any specific time step z. For
there to be be any bins with load i∗ + d(c1 + c2 + 2)/(d− 1)e+ 1 at time z, at
least d(c1 + c2 + 2)/(d− 1)e of the balls in the system must have landed in bins
with height at least i∗ + 1. Hence

Pr(¬G) ≤ Pr(¬G | F2) Pr(F2) + Pr(¬F2).

Here

Pr(¬G | F2) Pr(F2) ≤ T Pr
(
B(n, ((c1 + c2 + 2)/n)d) ≥ d(c1 + c2 + 2)/(d− 1)e

)
.

The binomial expression can be checked to be o(1/nc1+c2+1), and hence this last
term is also O(1/nc1+1).

To conclude (abusing notation), we have

Pr(¬G) ≤ O

(
1

nc1+1

)
+ Pr(¬F2)

≤ O

(
1

nc1+1

)
+ Pr(¬F1)

≤ O

(
1

nc1+1

)
+ Pr(¬E i∗−1)

≤ O

(
1

nc1+1

)
+
i∗−1∑
i=1

1
nc1+1

.

Here the last bound comes from the recurrence (3). That is, Pr(¬G) is dominated
by the sum of O(log log n) events each with with probability O(1/nc1+1); the
theorem follows.
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Note that the probability bounds of Theorem 1 can be improved by choosing a
smaller value of i∗, so that the strong Chernoff bounds hold, and then increasing
the maximum load allowed appropriately. Similarly, we can improve the theorem
so that a superpolynomial number of steps can be handled, although this requires
increasing the bound on the maximum load above log log n/ log d + O(1) to for
example (1 + o(1)) log log n/ log d.

3 Adversarial deletions: a witness tree argument

In this section, we provide a simple witness tree argument for the balls-and-bins
problem with deletions and re-insertions. A similar argument appears in [6] for
the more difficult problem of routing circuits in a butterfly network. Therefore,
our result is not new, in that it follows naturally from the argument in [6].
Rather, our goal is to present a self-contained and simplified version of the proof
for the simpler balls-and-bins situation. For convenience, we focus on the case
d = 2.

We consider a variation Qd(v,w) of the process Pd(v). Again, the process
begins with n insertions, followed by alternating insertions and deletions, with v
specifying the balls to be deleted. We now usew to represent insertions, however.
We assign each ball an identification number, and without loss of generality we
assume the first n balls have ID numbers 1 through n. At time n + j, the ball
with ID number wj is inserted. If this ball has never been inserted before, then
it is placed in the least loaded of d bins chosen independently and uniformly at
random. If the ball has been inserted before, it is placed in the least loaded of
the d bins chosen for its first insertion – that is the bin choices of a ball are fixed
after it is first inserted in the system. We assume that v and w are consistent,
so there is only one ball with a given ID number in the system at a time. Note
also that v and w must be chosen by the adversary before the process begins,
without reference to the random choices made during the course of the process.

This scenario appears when, for example, we use a (random) hash function
for the two bin choices of every ball. As before, when a ball is (re-)inserted, the
algorithm places the ball in the bin with the smaller load.

The main theorem of this section is stated below. The constants of the the-
orem have been chosen for convenience and have not been optimized. Note that
the techniques used to prove this theorem can be generalized to show that if
each ball makes d bin choices for some constant d, then the maximum load of
any bin is O(log log n) with high probability. The result can also be extended for
non-constant d as well.

Theorem 2. At any time t, with probability at least 1−1/nΩ(log logn), the max-
imum load of a bin achieved by process Q2(v,w) is 4 log log n.

Proof. We prove the theorem in two parts. First, we show that if there is a bin r
at time t with 4` balls, where ` = log log n, there exists a degree ` pruned witness
tree. Next, we show that, with high probability, no degree ` pruned witness tree
exists.
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Constructing a witness tree. In a witness tree, each node represents a bin
and each edge (ri, rj , te) represents a ball that was inserted at time te whose
two bin choices are ri and rj . Suppose that some bin r has load 4` at time t.
We construct the witness tree as follows. The root of the tree corresponds to
bin r. Let b1, . . . , b4` be the balls in r at time t. Let ri be the other bin choice
associated with ball bi (one of the choices is bin r). The root r has 4` children,
one corresponding to each bin ri. Let ti < t be the last time bi was (re-)inserted
into the system. Without loss of generality, assume that t1 < t2 < . . . < t4`. Note
that the height of ball bi when it was inserted at time ti is at least i. Therefore,
the load of bin ri, the other choice of bi, is at least i− 1 at time ti. We use this
fact to recursively grow a tree rooted at each ri.

The witness tree we have described is irregular. However, it contains as a
subgraph an `-ary tree of height ` such that

– The root in level 0 has ` children that are internal nodes.
– Each internal node on levels 1 to ` − 2 has two children that are internal

nodes and `− 2 children that are leaves.
– Each internal node on level `− 1 has ` children that are leaves.

For convenience we refer to this subtree as the actual witness tree henceforth.
Constructing a pruned witness tree. If the nodes of the witness tree are
guaranteed to represent distinct bins, proving our probabilistic bound is a rel-
atively easy matter. However, this is not the case; a bin may reappear several
times in a witness tree, leading to dependencies that are difficult to resolve. This
makes it necessary to prune the tree so that each node in the tree represents
a distinct bin. Consequently, the balls represented by the edges of the pruned
witness tree are also distinct. In this regard, note that a ball appears at most
once in a pruned witness tree, even if it was (re-)inserted multiple times in the
sequence.

We visit the nodes of the witness tree iteratively in breadth-first search order
starting at the root. As we proceed, we remove (i.e., prune) some nodes of the
tree and the subtrees rooted at these nodes – what remains is the pruned witness
tree. We start by visiting the root. In each iteration, we visit the next node v in
breadth-first order that has not been pruned. Let B(v) denote the nodes visited
before v.

– If v represents a bin that is different from the bins represented by nodes in
B(v), we do nothing.

– Otherwise, prune all nodes in the subtree rooted at v. Then, we mark the
edge from v to its parent as a cutoff edge.

Note that the cutoff edges are not part of the pruned witness tree. The procedure
continues until either no more nodes remain to be visited or there are ` cutoff
edges. In the latter case, we apply a final pruning by removing all nodes that are
yet to be visited. The tree that results from this pruning process is the pruned
witness tree. After the pruning is complete, we make a second pass through
the tree and construct a set C of cutoff balls. Initially, C is set to ∅. We visit
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the cutoff edges in BFS order and for each cutoff edge (u, v) we add the ball
corresponding to (u, v) to C, if this ball is distinct from all balls currently in C
and if |C| ≤ dp/2e, where p is the total number of cutoff edges.

Lemma 1. The pruned witness tree constructed above has the following proper-
ties.

1. All nodes in the pruned witness represent distinct bins.
2. All edges in the pruned witness tree represent distinct balls. (Note that cutoff

edges are not included in the pruned witness tree.)
3. The cutoff balls in C are distinct from each other, and from the balls repre-

sented in the pruned witness tree.
4. There are dp/2e cutoff balls in C, where p is the number of cutoff edges.

Proof. The first three properties follow from the construction. We prove the
fourth property as follows. Let b be a ball represented by some cutoff edge, and
let v and w be its bin choices. Since v and w can appear at most once as nodes in
the pruned witness tree, ball b can be represented by at most two cutoff edges.
Thus, there are dp/2e distinct cutoff balls in C.

Enumerating pruned witness trees.
We bound the probability that a pruned witness tree exists by bounding both

the number of possible pruned witness trees and the probability that each such
tree could arise. First, we choose the shape of the pruned witness tree. Then,
we traverse the tree in breadth-first order and bound the number of choices for
the bins for each tree node and the balls for each tree edge; we also bound the
associated probability that these choices came to pass. Finally, we consider the
number of choices for cutoff balls in C and the corresponding probability that
they arose. Multiplying these quantities together yields the final bound – it is
important to note here that we can multiply term together only because all
the balls and the bins in the pruned witness tree and the cutoff balls in C are
distinct.

Choosing the shape of the pruned witness tree. Assume that there are p cutoff
edges in the pruned tree. The number of ways of selecting the p cutoff edges is
at most (

`22`

p

)
≤ `2p2`p,

since there are at most `22` nodes in the pruned witness tree.
Ways of choosing balls and bins for the nodes and edges of the pruned witness

tree. The enumeration proceeds by considering the nodes in BFS order. The
number of ways of choosing the bin associated with the root is n. Assume that
you are considering the ith internal node vi of the pruned witness tree whose
bin has already been chosen to be ri. Let vi have δi children. We evaluate the
number of ways of choosing a distinct bin for each of the δi children of vi and
choosing a distinct ball for each of the δi edges incident on vi and weight it by
multiplying by the appropriate probability. We call this product Ei.
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There are at most
(
n
δi

)
ways of choosing distinct bins for each of the δi children

of vi. Also, since there are at most n balls in the system at any point in time,
the number of ways to choose distinct balls for the δi edges incident on vi is
also at most

(
n
δi

)
. (Note that the n balls in the system may be different for each

vi; however, there are still at most
(
n
δi

)
possibilities for the ball choices for any

vertex.) There are δi! ways of pairing the balls and the bins, and the probability
that a chosen ball chooses bin ri and a specific one of δi bins chosen above is
2/n2. Thus,

Ei ≤
(

n

δi

)(
n

δi

)
δi!
(

2
n2

)δi
≤ 2δi/δi!. (5)

Let m be number of internal nodes vi in the pruned witness tree such that
δi = `. Using the bound in Equation 5 for only these m nodes, the number of
ways of choosing the bins and balls for the nodes and edges respectively of the
pruned witness tree weighted by the probability these choices occurred is at most
n · (2`/`!)m.

Ways of choosing the cutoff balls in C. Using Lemma 1, we know that there
are dp/2e distinct cutoff balls in C. The number of ways of choosing the balls
in C is at most ndp/2e, since at any time step there are at most n balls in the
system to choose from. Note that a cutoff ball has both its bin choices in the
pruned witness tree. Therefore, the probability that a given ball is a cutoff ball
is at most (

`22`

2

)
2
n2
≤ `422`/n2.

Thus the number of choices for the dp/2e cutoff balls in C weighted by the
probability these cutoff balls occurred is at most

ndp/2e(`422`/n2)dp/2e ≤ (`422`/n)dp/2e.

Putting it all together. The probability at time t of there existing a pruned
witness tree with p cutoff edges, and m internal nodes with ` = log log n children,
is at most

`2p2`p · n · (2`/`!)m · (`422`/n)dp/2e ≤ n · (2`/`!)m · (`824`/n)dp/2e

≤ n · (2e/ log log n)m log logn · (log log8 n log4 n/n)dp/2e. (6)

Observe that either the number the cutoff edges, p, equals ` or the number of
internal nodes with ` children, m, is at least 2`−2 = log n/4. Thus, in either
case, the bound in Equation 6 is 1/nΩ(log logn). Further, since there are at most
`22` values for p, the total probability of a pruned witness tree is at most `22` ·
1/nΩ(log logn) which is 1/nΩ(log logn). This completes the proof of the theorem.

4 Deletions based on item age

We now consider an alternative scenario, where items are deleted in order of
their insertion time. We define a process P ′d based on phases: in the first phase,
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there are n insertions, where again all insertions are made by putting a ball into
the least loaded of d bins chosen independently and uniformly at random. In
subsequent phases, there are first n insertions, and then the items inserted in
the previous phase are deleted.

One way to view this process is as a modified version of the process Pd(v)
in the case where v = (1, 2, 3, . . .). The difference here is that deletions and
insertions do not alternate; instead, deletion requests are batched and acted
on at the end of a phase. (Unfortunately, we do not yet have an argument
showing bounds no this modified version of Pd((1, 2, . . .)) necessarily also hold
on the original process, even though it seems natural to conclude that batching
deletions until a later time can only worsen performance.)

This phase-based system allows us to regard the state of each bin as a two-
dimensional variable. A bin is said to be in state (i, j) if it has i balls that will
be deleted in the next deletion phase and at least j balls that have been inserted
in the current insertion phase. Such two-dimensional models have previously
proven useful for dynamic variations of load balancing problems [11]. We prove
bounds for this phased-based system; for convenience we consider only the case
d = 2.

Theorem 3. For any fixed constant c, the maximum load of a bin achieved
by process P ′2(1, 2, . . .) over T = nc steps is log log n/ log 2 + O(1) with high
probability.

Proof (Sketch). We vary Theorem 1 so that it works on phases. That is, consider
a time interval of n insertions preceding a deletion phase. Let Xi,j(t) be the
number of bins with i balls that will be deleted and at least j newly inserted
balls after the tth insertion. Note that Xi,j(0) = 0 unless j = 0.

Our goal is to show there is a simple “stable” bounding distribution with
the following property: if we begin with Xi,0(0) ≤ βi for some appropriate se-
quence βi, then after n insertions and n deletions, we again have Xi,0(0) ≤ βi
with suitably high probability. This will imply that the process continues for
polynomially many steps before the load becomes too high, assuming we begin
properly.

Suppose
Xi,0(0) ≤ αn

i
γ2i

for sufficiently large i ≥ L, where L and γ are suitable constants. (For example,
we may take L = 20, α = 1/20, and γ = (1 − 1

2L ); note γ2L ≈ 1
e .) It can be

checked that this condition holds after the first n insertions in a straightforward
manner. We will show that

Xi,j(n) ≤ αn

i + j
γ2i+j

for i + j ≥ L with high probability.
Further, let X̂i,0 =

∑∞
k=0 Xk,i(n); X̂i,0 is just the number of bins with i balls

after the insertions and deletions complete. We will also show that

X̂i,0(0) ≤ αn

i
γ2i
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for i ≥ L with high probability; this will allow us to continue the process for
polynomially many steps. (Actually, technically we only require these conditions
hold for up to the point where i + j is log log n/ log 2 + O(1), so that there are
still Ω(log n) bins of this height. Once the number of bins at a state becomes
sufficiently small so that Chernoff bounds no longer apply, we must use a more
explicit tail argument, as in Theorem 1. This affects the O(1) term of the theo-
rem, which depends on c. We skip these details here.)

We prove this inductively on i + j in a similar fashion to the induction in
Theorem 1. Define

yi,j
def=

α

i + j
γ2i+j .

Let Eg be the event that Xi,j(n) ≤ yi,j for all i + j = g. Now for a fixed pair
(i, j + 1) with i + j = g consider a series of binary random variables Yt for
t = 1, . . . , n, where Yt = 1 iff the tth ball lands in a bin in state (i, j + 1) (after
its entry) and Eg. (The value Yt is 1 if the height of the ball t is at least i+ j +1
and i balls in its bin are to deleted, despite the fact that the number of such
bins has not grown too large.)

Let ωi represent the choices available to the ith ball. Then

Pr(Yt = 1 | ω1, . . . , ωt−1) ≤ y2
i,j + 2

∑
k+l=g

(k,l)6=(i,j)

yi,jyk,l + 2
∑
k>g

yi,jyk,0 = Pi,j .

We simplify the above expression:

Pi,j ≤
(

α2γ2i+j+1

(i + j)2

)1 + 2(i + j) + 2
∑
k>g

γ2k−2i+j


≤ 3α

(
αγ2i+j+1

i + j

)
.

In the last inequality, we bounded the last summation using the specified value
for γ and the fact that g ≥ L.

By the Chernoff bound
∑n
t=1 Yt ≤ 1

2nyi,j with probability at least 1−1/n2c+2

as long as Pi,j ≥ (2c + 2) lnn. But here
∑n
t=1 Yt = Xi,j(n) conditioned on Eg.

Hence, as long as i + j = o(log n),

Pr(¬Eg+1 | Eg) = o

(
1

nc+1

)
.

Similarly, conditioned on all Eg for g ≥ L, for i ≥ L + 1,

X̂i,0 =
∑
k≥0

Xk,i(n)

≤
∑
k≥0

αγ2i+k

2(i + k)

≤ α

i
γ2i .
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Hence, with high probability, the inductive argument goes through, handling
all levels of height at least L + 1. As the probability of failure is o( 1

nc+1 ) in any
phase, we can go through nc phases before a failure with high probability.

Note, however, than in using the assumption that the previous phase was well
bounded to obtain the bound for the next one, we have “lost” the appropriate
bound for X̂L,0. This is because to bound X̂L,0(0) we would need to have an
initial bound on XL−1,0(0), which we lack. This problem can be easily handled
by noting that the number of bins with at least L balls at any point in the
process is stochastically dominated by the number of bins with at least L balls
when 4n bins are thrown into the n bins; this is because we could consider
the distribution when each of the at most 2n balls in the system has a twin,
and a ball or its twin goes into each of the two bins a ball chooses from. This
distribution clearly dominates the distribution present in the system. For L = 20
and the parameters chosen we can conclude that at the beginning of every phase
EL holds with probability exponentially small in n, so the inductive proof goes
through.

As for Theorem 1, the probability of failure can be made lower by increasing
the bound on the maximum load appropriately.
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