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ABSTRACT: It is well known that after placing n balls independently and uniformly at
Ž .random into n bins, the fullest bin holds Q log nrlog log n balls with high probability. More

recently, Azar et al. analyzed the following process: randomly choose d bins for each ball,
and then place the balls, one by one, into the least full bin from its d choices. Azar et al.
They show that after all n balls have been placed, the fullest bin contains only

Ž .log log nrlog dqQ 1 balls with high probability. We explore extensions of this result to
parallel and distributed settings. Our results focus on the tradeoff between the amount of
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communication and the final load. Given r rounds of communication, we provide lower
rŽ .'bounds on the maximum load of V log nrlog log n for a wide class of strategies. Our

results extend to the case where the number of rounds is allowed to grow with n. We then
demonstrate parallelizations of the sequential strategy presented in Azar et al. that achieve
loads within a constant factor of the lower bound for two communication rounds and almost

Ž .match the sequential strategy given log log nrlog dqO d rounds of communication. We
also examine a parallel threshold strategy based on rethrowing balls placed in heavily loaded
bins. This strategy achieves loads within a constant factor of the lower bound for a constant

Ž . Ž .number of rounds, and it achieves a final load of at most O log log n given V log log n
rounds of communication. The algorithm also works well in asynchronous environments. Q

Ž .1998 John Wiley & Sons, Inc. Random Struct. Alg., 13, 159]188 1998

1. INTRODUCTION

When n balls are thrown independently and uniformly at random into n bins, it is
Ž Ž ..known that with high probability by which we shall mean 1yO 1rn the

Ž . Žmaximum number of balls received by any bin is Q log nrlog log n . In this paper
.log is used for log . Occupancy results such as this have a long history in the2

w x w xmathematical literature 12, 15 with numerous applications in hashing 2, 7, 14 ,
Ž . w xParallel Random Access Machine PRAM simulation 17, 9, 14, 16, 20 and load

w xbalancing 2, 7 .
w xAzar et al. proved an important extension of this result 2 . Suppose we place the

balls sequentially, one at a time. For each ball, we choose d bins independently
Žand uniformly at random, and place the ball in the least full bin ties are broken

.arbitrarily . When all the balls have been placed, the fullest bin contains only
Ž . w x Žlog log nrlog dqO 1 balls with high probability 2 . A similar result in a slightly

. w xdifferent model was also proven in 14 .
Unfortunately, this extension requires the resting place of the balls to be

determined sequentially. This limits its applicability in parallel and distributed
settings, a major drawback when compared to the simple randomized approach. In
this paper, we examine the potential of parallelizing the above procedure, as well
as other possible strategies for reaching a small maximum load in a distributed
environment. We focus on the tradeoff between the number of communication
rounds and the final load one can achieve using simple, randomized strategies.

We first show lower bounds that hold for a wide class of load balancing
Žstrategies, including natural parallelizations of the method of Azar et al. Following

w x .2 , we shall hereafter refer to their algorithm as GREEDY. We demonstrate a
parallelization of GREEDY for two communication rounds that matches the lower
bounds to within a constant factor, and we examine alternative parallelizations of
GREEDY that are effective when the number of communication rounds is approxi-
mately equal to the maximum load. We also examine an idea similar to those used

w x w xin 14 and 16 based on setting a threshold at each bin: balls that attempt to enter
a bin that is already above its threshold for that round must be rethrown. This
strategy matches the lower bounds up to a constant factor for any constant number
of rounds. Our results show that thresholding strategies can achieve a useful
tradeoff between communication cost and the maximum load achieved.
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1.1. The Balls and Bins Model

We first describe our model in terms of balls and bins. Each of m balls is to be
placed in one of n bins. Each ball begins by choosing d bins as prospective

Ždestinations, each choice being made independently and uniformly at random with
.replacement from all possible bins. The balls decide on their final destinations

using r rounds of communication, where each round consists of two stages. In the
first stage each ball is able to send messages in parallel to any prospective bin, and
in the second stage each bin is able to send messages in parallel to any ball from
which it has ever received a message. In the final round, the balls commit to one of
the prospective bins and the process terminates. Messages are assumed to be of

Ž .size polylog n, m . The goal is to minimize the maximum load, which is defined to
be the maximum number of balls in any bin upon completion.

This model is motivated by the following realistic scenario: modern computer
Ž .networks often have decentralized compute-servers bins and client workstations

Ž .issuing jobs balls . A distributed load-balancing strategy has to assign jobs to
servers. Clients are ignorant of the intention of other clients to submit jobs;
contention is known only from server load. Servers are ignorant of jobs from clients
that have not communicated with them. It is also prohibitively expensive for clients
to globally coordinate job submissions. The primary objectives are to minimize the
maximum load achieved as well as the number of communication rounds required.
Reducing the number of rounds is an important goal since, in a network setting,
the time to complete a round is determined by network latency, which is generally
orders of magnitude higher than CPU cycle times.

We examine a class of simple strategies that includes many of the standard
algorithms presented in the literature. The strategies we restrict our attention to
are nonadaptï e, in that the possible destinations are chosen before any communi-
cation takes place. We also restrict our discussion to strategies that are symmetric,
in the sense that all balls and bins perform the same underlying algorithm and all
possible destinations are chosen independently and uniformly at random. We
believe that these restrictions have practical merit, as an algorithm with these
properties would be easier to implement and modify even as the underlying system
changes.

ŽInformally, we shall say that an algorithm functions asynchronously if a ball or
. Žbin has to wait only for messages addressed to it as opposed to messages destined

.elsewhere . That is, ball and bins are not required to wait for a round to complete
before continuing. An algorithm requires synchronous rounds if there must exist a
synchronization barrier between some pair of rounds; that is, a ball or bin must
explicitly wait for an entire previous round to complete before sending a message.
In many distributed settings, the ability of an algorithm to function asynchronously
can be a significant advantage; an algorithm with synchronous rounds needs some
notion of global time to maintain coordination. Note that the algorithm of Azar

Ž . Ž .et al. achieves final load no worse than O log log n , but requires V n syn-
chronous rounds.

We remark that many of our algorithms can perform asynchronously. In these
versions of our algorithms any ball sends or receives at most d messages per round,

Ž .whereas a bin may receive or send up to O log nrlog log n messages per round. It
seems unlikely that this latter number could be made smaller while insisting on a
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Ž Ž ..small O log n number of rounds, for the following reason. During some round
Ž .there are at least V nrlog n messages from balls that have not previously

communicated. If these messages are distributed randomly, some bin will receive at
Ž .least V log nrlog log n of them. We can avoid this complication if we modify the

algorithms to use synchronous rounds and assume a time limit for each round. In
most of our algorithms, a bin must explicitly acknowledge each message and send a
negative response to all but a constant number of balls in each round. If these
negative responses need not be sent explicitly, and instead a lack of response is
interpreted as a negative reply, then the bins need only acknowledge and respond
to a constant number of messages per round. The remaining messages can be
discarded.

1.2. Summary of Our Results

In Section 2, we provide a lower bound for a general class nonadaptive and
w xsymmetric strategies that include parallel variations of GREEDY 2 and threshold

w xmethods 14, 16 . For any fixed number r of rounds of communication and any
fixed number d of choices for each ball, we show that with constant probability the

rŽ .'maximum load is at least V log nrlog log n . This lower bound is proved by
reducing the balls and bins scenario to an edge orientation problem on random
graphs.

The rest of the paper deals with upper bounds. Our analysis exploits a basic,
w xgeneral tool that we derive, based on results of Gonnet 10 , relating the distribu-

tion of the number of balls that land in a bin when balls are thrown independently
and uniformly at random and the distribution of Poisson random variables. We
note that the close relationship between these two models has been observed and
made use of previously, and tighter bounds on specific problems can often be

w x w x w xobtained with more detailed analyses; see, for example, 3, Chap. 6 , 6 , or 13 .
Apart from enabling us to prove our bounds, the tool may be of independent
interest.

In Section 4 we describe an asynchronous parallelization of GREEDY for two
rounds that matches the lower bound to within a constant factor for any fixed d.
We also describe a more complicated extension of GREEDY in which the number of
rounds is allowed to grow with n. We show that this extension achieves a final load

Ž .no worse than log log nrlog dq2 dqO 1 with high probability if we allow
Ž .log log nrlog dq2 dqO 1 synchronous rounds.

In Section 5 we explore an entirely different paradigm based on thresholds,
w xwhich were also used in 7, 14, 16 . We demonstrate algorithms based on thresholds

that asymptotically match the lower bounds for any fixed number of rounds r ; that
rŽ .'is, the final load is O log nrlog log n with high probability. However, if r and d

Žare allowed to grow with n, we show that the thresholding method with threshold
.one is inferior to the parallel GREEDY approach: while the latter achieves a

Ž . Ž .maximum load of O log log nrlog log log n with O log log nrlog log log n rounds,
Ž . Ž .thresholding achieves a maximum load of V log log n with log log nqO 1 rounds.

Nevertheless, thresholding has the advantage of functioning asynchronously and
offering a continuous tradeoff between rounds used and final load achieved.
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Finally, we also present results obtained by simulating our algorithms. As one
might expect, our parallel strategies lead to a final load close to that obtained by
GREEDY, and much better than that achieved by choosing one bin randomly for
each ball.

We note that since the writing of this paper a great deal of further work has
w xbeen done in this area. Stemann 21 extends our work by analyzing an algorithm

that asymptotically matches our lower bound in the case of n balls and n bins for
Ž .any r although his algorithm does not function asynchronously ; he also analyzes

the case where the number of balls m differs from the number of bins n for his
algorithm, as well as considers other similar load balancing problems. Mitzen-

w xmacher 18, 19 studies load balancing using multiple choices in dynamic settings
w xrelated to queueing networks. Czumaj and Stemann 8 provide a general frame-

w xwork that extends the model and the results of Azar et al. 2 ; for example, they
also consider the average allocation time in a threshold-based scheme similar in
spirit to the one we analyze here. Berenbrink, Meyer auf der Heide, and Schroder¨

w xdevelop algorithms for dealing with weighted balls 4 . We note that these papers
also contain many other results for further variations on the original model;
because of the many interesting and useful variations of the basic balls and bins
problem, we expect it will continue to be a fruitful area of research.

1.3. Basic Lemmas

Ž .In preparation for our proofs, we make note of two useful lemmas. let B n, p be a
Bernoulli random variable with parameters n and p. The first statement can be
proven by standard coupling methods.

Lemma 1. Let X , X , . . . , X be a sequence of random ¨ariables in an arbitrary1 2 n
domain, and let Y , Y , . . . , Y be a sequence of binary random ¨ariables, with the1 2 n

Ž .property that Y sY X , . . . , X . Ifi i 1 iy1

<Pr Y s1 X , . . . , X Fp ,Ž .i 1 iy1

then

n

Pr Y Gk FPr B n , p Gk ;Ž .Ž .Ý iž /
is1

and similarly, if

<Pr Y s1 X , . . . , X Gp ,Ž .i 1 iy1

then

n

Pr Y Fk FPr B n , p Fk . BŽ .Ž .Ý iž /
is1

The second lemma presents some useful Chernoff-type bounds that are used
w xfrequently throughout the paper; proofs may be found in 11 .
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Ž .Lemma 2. If X 1F iFn are independent binary random ¨ariables such thati
w xPr X s1 sp, then the following hold,i

n tnp
tyn pFor tGnp, Pr X G t F e . 1Ž .Ý i ž /ž / tis1

n tnp
tyn pFor tFnp, Pr X F t F e . 2Ž .Ý i ž /ž / tis1

In particular, we ha¨e

n
yn pPr X Genp Fe , 3Ž .Ý iž /

is1

and

n np 2 .Ž y1 n pePr X F Fe . 4Ž .Ý iž /eis1

B

2. LOWER BOUNDS

2.1. The Random Graph Model

We first develop a general model for lower bounds that captures a class of
nonadaptive, symmetric load balancing strategies. Our lower bounds are expressed
in terms of the number of rounds of communication, r, and the number of choices
available to each ball, d. In Section 2.2, we focus on the case where ds2 and
rs2, extending the results to arbitrary values of r and d in Section 2.3.

For our bounds, we rephrase the balls and bins problem in terms of a random
graph orientation problem. The relationship between balls and bins problems and

w xrandom graphs has been noted previously 1, 14, 16 . Here, we show that proving a
lower bound for the balls and bins problem is equivalent to showing that, with
sufficiently high probability, a specific subgraph appears in a random graph. These
results on random graphs may be of independent interest.

We temporarily restrict ourselves to the case of ds2. Associate with each bin a
vertex of a graph with n vertices. Each ball can be represented by an undirected
edge in this graph, where the vertices of the edge correspond to the two bins

Žchosen by the ball. For convenience, in this section, we assume that each ball
chooses two bins without replacement. This has the effect of ensuring that no
self-loops arise in the graph. Multiple edges, however, may arise: these correspond
to two balls that have chosen the same pair of bins. Our proofs may be modified to

.allow self-loops, and our restriction does not change our asymptotic results. With
each edge we shall associate an orientation. The goal of the algorithm is thus to
minimize the maximum indegree over all vertices of the graph. In the case where
there are m balls and n bins, the corresponding graph is a random graph chosen
uniformly from the set of all graphs with n vertices and m edges, where an edge
may occur with multiplicity greater than one. Abusing standard notation slightly,
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we call this class of graphs GG . We focus on the case msn, since this is the mostm , n
interesting case in terms of behavior.

We now characterize communication in this model. For each round of commu-
nication, every ball and bin will determine a larger portion of the graph around it.
Following standard terminology, we define the neighborhood of an edge e, denoted

Ž .by N e , to be the set of all edges incident to an endpoint of e. For a set S of
Ž . Ž .edges, we write N S for D N e . The neighborhood of a vertex ¨ , denoted byeg S

Ž .N ¨ , is the set of all edges incident to ¨ . To model the increasing knowledge
gained by communication, we introduce more general related definitions.

Ž .Definition 3. The l-neighborhood of an edge e, denoted by N e , is defined induc-l
Ž . Ž . Ž . Ž Ž ..tï ely by: N e sN e , N e sN N e .1 l ly1

Ž . Ž . Ž .Definition 4. The l, x -neighborhood of an edge es x, y , denoted by N e , isl, x
Ž . Ž . � 4 Ž . Ž Ž .. � 4defined inductï ely by: N e sN x y e , N e sN N e y e .1, x l, x ly1, x

Intuitively, for each round of communication, a ball learns about a larger neighbor-
hood in the graph. Specifically, since we are working toward lower bounds, we may
assume that the messages sent by the bins contain all available information
whenever possible. Consider an r round protocol for the balls and bins problem
where balls commit to their final choice in the r th round. In this case, we may

Ž .assume a ball knows everything about the balls in its ry1 -neighborhood, and no
more, before it must commit to a bin in the r th round; this may be verified

Žformally by a simple induction argument. Note that our model does not allow for
.‘‘pointer jumping’’; the neighborhood expands by just one level each round.

We now describe an assumption that we use to show that the final load is high
with constant probability; that is, with probability greater than some fixed constant

Ž .g)0. The l-neighborhood of a ball es x, y splits into two subgraphs correspond-
Ž . Ž .ing to N e and N e ; these are the parts of the neighborhood the balls learnsl, x l, y

about from each bin. Suppose that these two subgraphs of the ball’s l-neighbor-
hood are isomorphic rooted trees, with the roots being x and y. In this case we say
that the ball has a symmetric l-neighborhood, or, more graphically, we say that the

Ž .ball is confused see Fig. 1 . The ball has no reason to prefer one bin over another,
and must essentially choose randomly. For the moment, we explicitly assume that

1in this situation the ball chooses a bin randomly with probability ; we expand on2

this shortly.

Ž .Assumption 5. If a ball has a symmetric ry1 -neighborhood, then in any protocol
of r rounds it chooses a destination bin with a fair coin flip.

We further justify this assumption at the end of Section 2.2.

2.2. The d= 2, r= 2 Case

By Assumption 5, if many confused balls are incident on one bin, then with
constant probability over half of them will opt for the bin, which will become
overloaded. We show that for r and T suitably related to n, a random graph G
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Fig. 1. The central edge e corresponds to a confused ball: its left and right neighborhoods
Ž Ž . Ž ..N e and N e appear the same.2, x 2, y

Ž .with n vertices and n edges has, with high probability, an isolated T , r -tree,
defined as follows:

Ž .Definition 6. A T , r tree is a rooted, balanced tree of depth r, such that the root
Ž .has degree T and each internal node has Ty1 children. A T , r tree is isolated in a

graph G if it is a connected component of G with no edges of multiplicity greater than
one.

Ž . Ž .Note that a T , r tree is slightly different from a Ty1 -ary tree of depth r, in that
Ž .the root has degree T. See Fig. 2.

Ž .We show that a random graph from GG contains a T , r tree of a suitable size.n, n
For convenience, we begin with the simple case of ds2 and rs2.

Theorem 7. With constant probability, a random graph from GG contains ann, n
'Ž . Ž Ž ..'isolated T , 2 tree with Ts 2 yo 1 log nrlog log n .

Ž .Fig. 2. A 4, 2 tree. Each vertex has degree 4, and the depth of the tree is 2. Balls B1]B4
are confused after one round of communication, and hence each orients itself to the root

1with probability .2
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Ž .Since, with constant probability, half of the confused edges in an isolated T , 2 tree
Ž .adjacent to the root will orient themselves toward it by Assumption 5 , the above

theorem immediately yields the following corollary:

Corollary 8. Any nonadaptï e, symmetric load distribution strategy for the balls and
bins problem with n balls and n bins satisfying Assumption 5, where ds2 and rs2,

'Ž Ž ..'has a final load at least 2 r2yo 1 log nrlog log n with at least constant
probability.

Ž .Corollary 8 demonstrates that the O log log n bounds achieved by Azar et al. using
the GREEDY strategy cannot be achieved by any two round strategy where each ball
has two choices.

Although Theorem 7 is stated for the case where m, the number of edges, and
n, the number of bins, are equal, it is useful to write the number of edges as m
throughout the proof. Besides making the proof clearer, this allows us to extend
the theorem easily to a broader range of m; this is discussed after the proof.

Ž . 2
2Proof of Theorem 7. Let vs ¨ , ¨ , . . . , ¨ be a vector of T q1 vertices. Let X0 1 T v

Ž .be an indicator random variable that is 1 if ¨ is the root of an isolated T , 2 tree,0
¨ , . . . , ¨ are the nodes of depth 1, ¨ , . . . , ¨ are the children of ¨ , and so1 T Tq1 2Ty1 1
on, and let XsÝ X . We show that X)0 with at least constant probability byv v
determining the expectation and variance of X and applying the simple bound
Ž w x Ž . .from 5 , Eq. 3 of I.1 ,

2w xE X
Pr Xs0 F1y .Ž . 2w xE X

w xWe first compute E X . The multinomial coefficient

n ,ž /1; T ; Ty1; . . . ; Ty1

Ž .where Ty1 occurs T times and the sum of the terms on the second level is
Ž . 21qTqT Ty1 sT q1, gives the number of possible choices for v; we must first

choose the root, and then the T children of the root, and then the Ty1 children
for each of T children. We now choose a specific v and determine the probability p

2 Ž .that X is 1. If X is 1, there must be T edges corresponding to the T , r treev v
connecting the vertices of v and no other edges incident to these vertices. We must

m2 2Ž .Ž .first choose T of the m edges to make up the tree: there are T ! ways of2T

Ž 2 .doing this. The remaining edges must lie on the remaining ny T q1 vertices so
that the tree is isolated. Hence,

my T 2
2 mny T q1Ž . 2T !Ž .2ž /ž / T2

ps .m
nž /2
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Using the linearity of expectations, we have

my T 2
2 mny T q1n Ž . 2T !Ž .2ž / ž /ž /1; Ty1; . . . ; Ty1 T2w xE X s .m

nž /2

This unwieldy expression can be simplified by canceling appropriately and noting
Ž . Ž .that we choose T small enough so that many terms are o 1 in the case msn .

Ž .For instance, if Tso log n , then we have

my T 2
2ny T q1Ž .ž / 22 y2 ŽT q1.m r nse 1qo 1 ; 5Ž . Ž .Ž .2my Tnž /2

m 2T !Ž . 2T2ž / mT s 1qo 1 ; 6Ž . Ž .Ž .2 ž /T nn

n
nž /1; T ; Ty1; . . . ; Ty1 s 1qo 1 . 7Ž . Ž .Ž .2 Tq1T Ty1 ! TŽ .Ž .ny1Ž .

We thus obtain

T 2
2m

n ž /nw xE X s 1qo 1 . 8Ž . Ž .Ž .2 Tq12ŽT q1.m r ne Ty1 ! TŽ .Ž .

w 2 xWe now examine how to compute E X . Note that, because we are considering
Ž .only isolated T , 2 trees, if v/w then X and X can both equal 1 if and only if vv w

and w consist of disjoint sets of vertices or are equal. This simplifies the calculation
w 2 xof E X considerably. Since

w 2 x w x w xE X sE X q E X X ,Ý v w
v/w

w xit suffices to compute the second term. The calculation is similar to that for E X
and proceeds as follows.

The number of possible disjoint pairs v and w is

n ,ž /1; T ; Ty1; . . . ; Ty1; 1; T ; Ty1, . . . , Ty1
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Ž .and the probability q that a given disjoint pair v and w yields two isolated T , 2
trees is

my 2T 2
2 mny 2T q2Ž . 22T !Ž .2ž /ž / 2T2

qs .m
nž /2

w x w x2Ž Ž ..From these terms we derive Ý E X X sE X 1qo 1 , by simplifying withv / w ¨ w
Ž . Ž .equations entirely similar to Eqs. 5 ] 7 .

my 2T 2
2ny 2T q2Ž .ž / 22 y2 Ž2T q2.m r nse 1qo 1 ;Ž .Ž .2my 2Tnž /2

m 22T !Ž . 22T2ž / m2T s 1qo 1 ;Ž .Ž .2 ž /2T nn

n
nž /1; T ; Ty1, . . . , Ty1; 1; T ; Ty1, . . . , Ty1 s 1qo 1 .Ž .Ž .2 2Tq22T 2Ty1 ! TŽ .Ž .ny1Ž .

w 2 x w x w x2Ž Ž ..We thus have that E X sE X qE X 1qo 1 . It now suffices to choose a T
w xsuch that E X is bounded below by a constant. Taking the logarithm of both sides

Ž .of Eq. 8 , we find this will hold as long as

2T 2 m 2m
2 2T log Tq yT log F log nqo log n . 9Ž . Ž .

n n

'Ž . Ž Ž ..'Hence for msn there exists a T , 2 tree with Ts 2 yo 1 log nrlog log n
with constant probability. B

Remark. Although we have stated Theorem 7 only for the case msn, it is clear
Ž .that nearly the same proof, and hence Eq. 9 , applies for a range of m. For

k Ž .'example, if msnrlog n for some fixed k, then we again have V log nrlog log n
bounds on the maximum load with at least constant probability. The important

Ž .points to check are where we have stated that some terms are o 1 , as in Eqs.
Ž . Ž .5 ] 7 , which places restrictions on the possible values of m and T. It is also worth

Ž .noting that Eq. 9 can be improved somewhat. We have insisted up to this point
that our trees be isolated, even though there is no reason that the leaf nodes
cannot be adjacent to nodes outside the tree. Taking advantage of this fact would

2 Ž .reduce the 2T mrn terms of Eq. 9 ; this does affect the bound in the case where
msn. B
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We now justify Assumption 5. Although it may at first seem unreasonable to
insist that balls with symmetric r-neighborhoods choose a bin randomly, obvious
tie-breaking schemes do not affect the lower bound. For instance, if the balls are
ordered at the bins, either by random I.D. numbers or by a random permutation,
and then choose a bin according to their rank, the balls are essentially choosing a
bin at random. The proof can also easily be modified for the case where the balls
are ranked at the bins by some fixed ordering by using the symmetry of the
destination choices of the balls. Similarly, if bins are numbered and given a
preferred ordering in case of ties, then with constant probability there is still a
Ž .T , 2 tree whose root has the given final load.

2.3. The General Case

One can extend Theorem 7 to the case where d)2 andror r)2; in fact, the
extension also applies if r and d grow sufficiently slowly with n.

When r)2 and ds2, the balls and bins scenario can again be reduced to a
Ž .random graph problem; instead of showing the existence of a T , 2 tree, one needs

Ž .to demonstrate the existence of a T , r tree. When d)2 we must consider
hypergraphs instead of graphs. In this model, balls correspond to hyperedges of d
distinct vertices in the hypergraph. The degree of a vertex is the number of
incident hyperedges. A tree of hyperedges is simply a connected acyclic hyper-
graph; that is, there is no path from a vertex back to itself along adjacent
hyperedges. The depth of a tree is the number of hyperedges in a longest path
from the root to a leaf.

Ž . Ž .Figure 3 gives an example of a 3, 2, 3 tree. The l-neighborhood and l, x -
neighborhood of a ball can be defined for hypergraphs similar to Definitions 3 and

Ž .4. As in Assumption 5, we assume that if a ball has a symmetric ry1 -
neighborhood, it chooses one of the d bins uniformly at random at the end of an r
round algorithm; for convenience, we still call this Assumption 5. Thus the root of

Ž .an isolated T , r, d tree will end with Trd balls with at least constant probability.
Ž .As we shall see, whether an isolated T , r, d tree exists is essentially a matter of its

Ž .Fig. 3. A 3, 2, 3 tree. Each triangle corresponds to a hyperedge of three vertices.
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size, in terms of the number of edges it contains. In the remainder of this section,
we shall prove the following theorem:

rŽ .'Theorem 9. For any fixed r and d, there exists a TsV log nrlog log n such that
with constant probability, a random graph with n ¨ertices and n hyperedges of size d

Ž .contains an isolated T , r, d tree.

The theorem immediately yields the following corollary:

Corollary 10. Any nonadaptï e, symmetric load distribution strategy for the balls and
bins problem satisfying Assumption 5 where d and r are constants and msn has a

rŽ .'final load at least V log nrlog log n with constant probability.

Ž .Corollary 10 generalizes Corollary 8 by demonstrating that the O log log n bounds
achieved by Azar et al. using the GREEDY strategy cannot be achieved by any
strategy in which each ball has a fixed constant number of choices and in which
only a constant number of rounds are used.

Ž .The constant factor in the lower bound for r and d fixed is dependent on d.
The proof of the theorem also yield results when r and d grow with n. With

Ž .constant probability the final load is Trd if there is a T , r, d tree in the
Ž .corresponding hypergraph. Similarly, if there is a T , r, d tree in the corresponding

hypergraph, then with probability dyT the final load is T ; this can be used to give
negative results by showing that no nonadaptive, symmetric load distribution

T Ž .strategy achieves load T with high probability when d so n . For example, we
have the following corollary:

Corollary 11. Any nonadaptï e, symmetric load distribution strategy for the balls and
Ž .bins problem satisfying Assumption 5 with msn where dsO log log nrlog log log n

Ž . Ž .and rsO log log nrlog log log n has a final load at least V log log nrlog log log n
Ž c . Žwith probability at least O 1rlog n for some constant c dependent on d and r but

.independent of n .

Proof of Theorem 9. As in Theorem 7, although we are considering only the case
msn, we continue to distinguish m and n when writing the proof, in the interests
of enhancing clarity and allowing generalizations to other values of m where
suitable.

Ž .We begin by finding the expected number of isolated T , r, d trees. Let V
Ž .denote the total number of vertices in the desired T , r, d tree and let E denote

the total number of hyperedges of the tree. A given list of V vertices corresponds
Ž .to a unique T , r, d tree in a canonical way. For a given list of V vertices, the

probability p that the corresponding tree component exists is
my E

nyV m E!ž / ž /d E
ps .m

nž /d

That is, we must choose from the m edges the E edges of the tree, and all other
edges cannot be incident to any vertex of the tree.
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To compute the number of possible trees, we consider all lists of V vertices,
Ž .where the first vertex corresponds to the root, the next T dy1 vertices corre-

spond to the first T edges, and so on. Each possible reordering of the vertices that
make up an edge leads to the same tree; also, the subtrees at each level can be
permuted without changing the tree. Keeping these facts in mind, we find the total
possible number of vertices corresponding to distinct isolated trees, which we
denote by N, is

nž /1; T dy1 ; Ty1 dy1 ; . . . ; Ty1 dy1Ž . Ž . Ž . Ž . Ž .
Ž . Ž .EyT r Ty1

T dy1 Ty1 dy1Ž . Ž . Ž .
= ž / ž /dy1; . . . ; dy1 dy1; . . . ; dy1

Ns Ž . Ž .EyT r Ty1T ! Ty1 !Ž .

n!
s ,Ž . Ž .E Ey1 r Ty1nyV ! dy1 ! T Ty1 !Ž . Ž . Ž .

where in the first multinomial coefficient, the sum of the terms on the second level,
Ž . Ž .Ž . Ž .Ž .1qT dy1 q Ty1 dy1 q ??? q Ty1 dy1 , is V.

Ž .�wŽ .Ž .xr 4 wŽRoutine calculations yield that Vs1qT dy1 Ty1 dy1 y1 r Ty
.Ž . x Ž . Ž . Ž1 dy1 y1 and Es Vy1 r dy1 . For suitable values of T and hence E and
.V , after absorbing lower order terms the product Np reduces to

Em
En d 1qo 1Ž .Ž .ž /nNps .Ž . Ž .Ey1 r Ty1V dm r ne T Ty1 !Ž .Ž .

Ž .Hence the expected number of T , r, d trees can be made at least a constant for
suitable choices of T , r, and d; this requires

m V dm
log nqE log qE log dG q Ey1 log Ty1 qo Ey1 log Ty1 .Ž . Ž . Ž . Ž .Ž .

n n

Ž . r Ž .Noting that Ef Td , we find that up to lower order terms we require log nG
Ž . rTd log T when msn and d is a fixed constant. In particular, we can find a T of

r
Ž . Ž .'size at least V log nrlog log n such that the expected number of T , r, d trees is

at least a constant when msn.
We must now also show that the variance is not too large. Recall that

w 2 x w x w xE X sE X q E X X .Ý v w
v/w
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Again, we make use of the fact that the trees are isolated. If v and w share no
vertices, then the probability q that X and X are both 1 isv w

my 2 E
ny2V m 2 E!ž / ž /d 2 E

qs .m
nž /d

The number of pairs of disjoint v and w is

n!
.Ž . Ž .2 E 2 Ey1 r Ty12ny2V ! dy1 ! T Ty1 !Ž . Ž . Ž .

Again it is simple to check that

22w x w x w xE X sE X qE X 1qo 1 ,Ž .Ž .

which is sufficient to prove the theorem. B

3. THE POISSON APPROXIMATION

We now switch from proving lower bounds to examining parallel algorithms for
load balancing based on the GREEDY idea. Before developing any particular
algorithms, we derive a useful general tool. The main difficulty in analyzing balls
and bins problems is that it is often hard to handle the dependencies that naturally
arise in such systems. For example, if one bin is empty, then it is less likely that
another bin is empty; the loads of the various bins are correlated. It will be useful
to have a general way to circumvent these sorts of dependencies. We show here
how to do so when we are examining the probability of a rare event.

It is well known that after throwing m balls independently and uniformly at
random into n bins, the distribution of the number of balls in a given bin is
approximately Poisson with mean mrn. We would like to say that the joint
distribution of the number of balls in all the bins is well approximated by assuming
the load at each bin is an independent Poisson random variable with mean mrn.
This would allow us to treat bin loads as independent random variables, and hence
use standard techniques such as Chernoff bounds.

Suppose m balls are thrown into n bins independently and uniformly at random,
and let X Žm. be the number of balls in the ith bin, where 1F iFn. Leti
Y Žm., . . . , Y Žm. be independent Poisson random variables with mean mrn. We omit1 n
the superscript when it is clear from the context. We derive a relation between

w xthese two sets of random variables, adapting an argument used by Gonnet 10 to
determine the expected maximum number of balls in a bin.

Ž .Theorem 12. Let f x , . . . , x be any nonnegatï e function. Then1 n

'E f X , . . . , X F 2p em E f Y , . . . , Y . 10Ž . Ž . Ž .1 n 1 n
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w Ž .xFurther, if E f X , . . . , X is either monotonically increasing or monotonically1 n
decreasing with m, then

E f X , . . . , X F4E f Y , . . . , Y . 11Ž . Ž . Ž .1 n 1 n

Proof. We have that

`

E f Y , . . . , Y s E f Y , . . . , Y Y sk Pr Y skŽ . Ž . Ž .Ý Ý Ý1 n 1 n i i
ks0

GE f Y , . . . , Y Y sm Pr Y smŽ . Ž .Ý Ý1 n i i

sE f X , . . . , X Pr Y sm ,Ž . Ž .Ý1 n i

where the last equality follows from the fact that the joint distribution of the Yi
given ÝY sm is exactly that of the X , as can be checked by comparing thei i
probabilities of any given set of bin loads in both cases. As ÝY is Poissoni
distributed with mean m, we now have

mmeym

E f Y , . . . , Y GE f X , . . . , X ,Ž . Ž .1 n 1 n m!

Ž .and using Stirling’s approximation now yields Eq. 10 .
w Ž .xIf E f X , . . . , X increases with m, then similarly,1 n

`

E f Y , . . . , Y G E f Y , . . . , Y Y sk Pr Y skŽ . Ž . Ž .Ý Ý Ý1 n 1 n i i
ksm

`
Žk . Žk .s E f X , . . . , X Pr Y skŽ . Ž .Ý Ý1 n i

ksm

`
Žm. Žm.G E f X , . . . , X Pr Y skŽ . Ž .Ý Ý1 n i

ksm

sE f X , . . . , X Pr Y Gm .Ž . Ž .Ý1 n i

1Ž . Ž .It is easy to check that Pr ÝY Gm can be bounded below by , and Eq. 11i 4
w Ž .xfollows. The case where E f X , . . . , X decreases with m is similar. B1 n

From this theorem, we derive a corollary that is central to most of our proofs.
Let us call the scenario in which bin loads are taken to be independent Poisson
random variables with mean mrn the Poisson case, and the scenario where m balls
are thrown into n bins independently and uniformly at random the exact case. Also,
let a load based e¨ent be an event that depends solely on the loads of the bins.
More precisely, a load based event is determined by a 0r1 indicator function on
the variables X , . . . , X .1 n
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Corollary 13. A load based e¨en that takes place with probability p in the Poisson
'case takes place with probability at most p 2p em in the exact case. If the probability

of the e¨ent is monotonically increasing or decreasing with the total number of balls,
then the probability of the e¨ent is at most 4 p in the exact case.

w xProof. Let f be the indicator function of the load based event. In this case E f is
just the probability that the event occurs, and the result follows immediately from
Theorem 12. B

To demonstrate the utility of this corollary, we provide a simple representative
example that proves useful later.

Lemma 14. Suppose m-nrlog n, and suppose m balls are thrown independently
and uniformly at random into n bins. Then, with high probability, the maximum load is
Ž Ž ..Q log nrlog nrm .

Proof. By Corollary 13, since the maximum load is monotonically increasing with
the number of balls it is sufficient to prove that the bounds hold in the Poisson
case. Let p be the probability that any particular bin contains k or more balls.k

For the lower bound, note that

km
ym r než /np G ,k k!

as the right hand side is simply the probability that a bin has exactly k balls. The
Ž .n ypk nprobability that no bin has k or more balls is thus at most 1yp Fe , and wek

yp k n Ž Ž ..need to show that e F1rn when ksV log nrlog nrm . Taking logarithms
twice yields the following sufficient condition,

n
log k!qk log F log nyO log log n . 12Ž . Ž .ž /m

1Ž .It is now simple to check that choosing ksa log nrlog nrm for any constant a- 2

suffices as long as m-nrlog n.
For the upper bound, note that

km
ym r n2 ež /np F , 13Ž .k k!

as can be found by bounding the probability that a bin has k or more balls by a
Ž .geometric series and using just that m-n . It is easy to show that when

Ž . 2kG3 log nrlog nrm , this probability is less than 1rn , and thus no bin contains
Ž . Ž .3 log nrlog nrm or more balls with probability at least 1yO 1rn in the exact

case. B

We emphasize that Corollary 13 proves useful to us because in the Poisson case
all bin loads are independent. This independence allows us to use various forms of
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Chernoff bounds in the Poisson case, and then transfer the result to the exact case,
greatly simplifying the analysis.

4. PARALLEL GREEDY

The lower bounds in Section 2 show that if the number of communication rounds
Ž .and possible destinations for a ball are fixed, the log log nrlog dqO 1 maximum

w xload bound for GREEDY shown in 2 no longer applies. We therefore seek ways to
parallelize the GREEDY strategy, with the aim of matching the lower bounds. We
first deal with the case of two rounds in Section 4.1, and then consider multiple
rounds in Section 4.2. For these sections, we restrict ourselves to the case dG2.

4.1. A Two Round Parallelization of GREEDY

We begin with a more formal description of GREEDY. Each ball a will at some
point in the algorithm independently and uniformly at random choose d destina-

Ž . Ž . Ž . Ž .tion bins i a , i a , . . . , i a with replacement . We may assume that these1 2 d
choices are made in parallel as the first step in the algorithm; this assumption
makes it clear that GREEDY is nonadaptive. Next, each ball a decides, solely by

Ž . Ž .communicating with i a , . . . , i a , to which bin it shall commit. Once a ball has1 d
committed to a bin, its decision cannot be reversed. We note that ties in this and
other algorithms are broken arbitrarily and the d bin choices are made with
replacement unless stated otherwise.

CHOOSE d :Ž .
in parallel: each ball a

chooses u.a.r. d bins i a , . . . , i aŽ . Ž .1 d

GREEDY dŽ .
call CHOOSE dŽ .
sequentially : each ball a

queries bins i a , . . . , i a for current loadŽ . Ž .1 d

commits to bin with smallest load.

Ž . Ž .To parallelize the GREEDY algorithm, we let the balls choose between i a , . . . , i a1 d
according to the load on a bin as computed using the number of balls that sent a

Ž .request to it in CHOOSE d , not the number that has actually committed to occupy it.
Let all the balls inform their d choices that they have been chose by sending them
each a request. We shall refer to the d requests as siblings.

Each bin then creates a list of the requests it has received. The bins may order
their lists arbitrarily. However, if they handle requests in the order they arrive, the
algorithm may function asynchronously. Notice that we make no claim that the
requests arrive at the bins in any particular order.

The height of a request is its position in the request list it belongs to. The bins
now send back the heights of their requests to the balls. Finally, each ball commits
to the bin in which its request had the smallest height. This allows the entire
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process, which we call PGREEDY, to finish in only two rounds:

PGREEDY d :Ž .
call CHOOSE dŽ .
in parallel: each ball a

sends requests to bins i a , . . . , i aŽ . Ž .1 d

in parallel: each bin i
creates list of received requests
sends heights to requesting balls

in parallel: each ball a
commits to bin with smallest height.

Note that Corollary 9 provides a lower bound for the PGREEDY strategy, showing
that the parallelization cannot possibly maintain the load balance of GREEDY. We
now prove a matching upper bound on the maximum load achieved by PGREEDY.

Ž .Theorem 15. For fixed d and msn, the maximum load achië ed by PGREEDY d is
Ž .'at most O log nrlog log n with high probability.

Proof. As in Theorems 7 and 9, although we are considering only the case msn,
we maintain the distinction between m and n when writing the proof.

The outline of the proof is as follows: consider any bin i, and consider all balls
with requests of height larger than some T in bin i. For such a ball to choose bin1
i, all of its siblings’ requests must have height at least T , and hence they must all1
have landed in bins that received at least T requests. By choosing T large1 1
enough, we can make the probability that a request at bin i of height at least T1
chooses bin i very small, and thereby bound the number of balls that choose bin i.

We begin with some technical details. First, there may be balls that have one or
Ž 2 2 .more siblings choose bin i. The expected number of such balls is O md rn ; as

msn and d is fixed, with high probability the number of such balls is bounded by
Ž .a constant. We can therefore absorb these balls in the O 1 term and ignore them

in the remainder of the proof. Second, we choose a bound M such that with high
Žprobability, bin i receives no more than M requests. For example, in this case, we

Ž . .may take MsO log n . Conditioned on both these high probability events occur-
ring, the set R of requests sent to a bin other than i are distributed in the
remaining ny1 bins independently and uniformly.

Consider all requests in i of height at least T , all of whose siblings lie outside i;1
call this set of requests I. We now find a suitable T such that, with sufficiently2
high probability, fewer than T elements of I have siblings whose heights are all T2 1

Ž .or more. This shows that with high probability at most T elements of I commit2

Ž .'to bin i. Choosing T and T to be Q log nrlog log n will then complete the1 2
proof.

Consider the subprocess of requests R arriving at the bins other than i. We can
imagine these requests arriving sequentially at the bins according to some arbitrary
ordering. Let time t be the instant immediately after the t th such request arrives.
Let EE be the event that, at time t, no more than N bins have received more thant
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T requests from R, for some N to be determined later. Also, let the random1
variable X equal 1 if the height of the t th request is greater than T , and 0t 1

Ž .otherwise. Now, for rgI, let S r be the set of arrival times for the siblings of r,
Ž .and let the random variable Y equal 1 if, for every tgS r , X s1, and EE occurs;r t t

Y is 0 otherwise. That is, Y s1 if and only if all the siblings of r are of height atr r
least T , but the number of bins of height T has not become higher than N1 1
before all siblings of r arrive.

We define EE to be the even that EE is true for all t. Conditioned on EE, we havet
that Ý Y is an upper bound on the number of balls with requests of height atr g R r

Ž .least T at bin i that choose bin i as their final destination. Note that Pr Y s1 F1 r

Ž .dy1Nrn . It follows that the sum of any subset of the Y is stochasticallyi
dominated by the sum of the same number of independent Bernoulli variables with

Ž .dy1parameter Nrn by Lemma 1. Now we choose an N so that EE is true with
high probability. In the Poisson case, the probability that a bin has T requests is1

Ž ym d r nŽ .T1.e mdrn rT !. As long as T )2mdrn, then the probability that a bin1 1

Ž ym d r nŽ .T1.has at least T requests is at most 2 e mdrn rT !. Applying Chernoff1 1
Ž Ž ..bounds Lemma 2, Eq. 1 , with high probability the number of bins with at least

Ž ym d r nŽ .T1.T requests is at most Ns 4ne mdrn rT ! in the Poisson case. Since the1 1
number of bins with at least T requests is monotonically increasing in the number1
of requests, the same is true in the exact case as well by Corollary 13.

We use the bound on N to bound the number of balls with requests of height at
least T in i whose siblings all have height at least T . Again, using Chernoff1 1

Ž Ž ..bounds Lemma 2, Eq. 1 , we have

T2dy1N
Pr Y GT F eM .Ý r 2 ž /ž /nrgR

Ž c.We want the probability on the left to be at most, say O 1rn for some constant
cG1. Hence we require

T2dy1N 1
eM F .cž /n n

We now take logarithms of both sides and remove lower order terms. Note that as
Ž .MsO log n its contribution is only a lower order term. Simplifying yields

md c log n
T T log T yT log G . 14Ž .2 1 1 1ž /n dy1

Ž .'For msn, we may choose T sT sQ log nrlog log n , and the result follows.1 2
B

One would be inclined to believe that increasing d would decrease the final
Ž .load. Eq. 14 indicates that this is true when msn for very large n, as in the case

the effect of d is to reduce the required values of T and T by a constant factor.1 2
In practice, however, for reasonable values of n, increasing d yields no improve-
ment, and in fact increasing d can increase the final load. This can be explained by
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Ž .the term yT log mdrn in Eq. 14 , which has a disproportionate effect when T1 1
and T are small. Also, the constant factor is dictated by our attempt to have the2

Ž .probability of failure be at most O 1rn ; if one is willing to accept slightly larger
error probabilities one can improve it slightly.

4.2. Multiple Round Strategies

Our lower bounds suggest that with more rounds of communication, one might
achieve a better load distribution. We thus suggest an alternative parallelization of
GREEDY called MPGREEDY that makes use of more rounds. Although this algorithm
may not be useful in practical settings, its connection to the GREEDY scheme
appears interesting in its own right.

The algorithm proceeds in a number of rounds, until every ball has committed.
In each round, each bin will allow at most one of its requesting balls to commit to
it. If a ball receives that privilege from more than one bin, the ball commits to the
bin with the smallest current load. Once a ball has committed, the bins holding the
other requests are informed that they may discard those requests:

MPGREEDY d :Ž .
call CHOOSE dŽ .
in parallel: each ball a

chooses a random I.D. number
sends requests with I.D. to bins i a , . . . , i aŽ . Ž .1 d

in parallel: each bin i
sorts requests by I.D. number

sequentially : repeat until all balls have committed
in parallel: each bin i

sends current load to first uncommitted ball on request list
in parallel: each ball a

if received at least one message
commits to the bin with smallest current load
tells bins holding other requests to discard.

One can imagine the algorithm by picturing a scanline moving level by level up the
request lists of the bins. When the scanline moves up to a new level, bins send
messages to all the balls that the scanline has just passed through. When bins
receive responses, they delete the corresponding balls in the request list above the
scanline. The algorithm terminates when every request has either been passed
through or deleted.

A practical disadvantage of this algorithm is that it requires synchronous rounds;
the discards for each round must complete before the next round can begin. We
also require a partial order on the balls, given in this case by randomly chosen I.D.

Žnumbers chosen from a suitably large set to ensure uniqueness with high probabil-
.ity , to instill some notion of sequentiality.
Clearly, the maximum number of balls in any bin upon completion is bounded

above by the number of rounds taken to finish. We analyze the latter.
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Ž .Theorem 16. With high probability MPGREEDY d finishes in at most log log nrlog d
Ž .q2 dqO 1 rounds, and hence the maximum load is also log log nrlog dq2 dq

Ž .O 1 .

In order to prove the above statement, we relate MPGREEDY to the following
Ž .variant of GREEDY for any dG2 : if, when placing a ball, there is a tie for the least

loaded bin, then a copy of the ball is placed in each bin with the minimal load. We
call this scheme GREEDY WITH TIES.

Lemma 17. The number of communication rounds used by MPGREEDY is one more
than the maximum load produced by GREEDY WITH TIES if the balls are thrown in the
order gï en by the I.D. numbers and if the bin choices made by the balls are the same
for both trials.

Proof. Consider a modification of MPGREEDY where a ball commits to all bins
from which it receives a message. The number of communication rounds used by
this modified version of MPGREEDY is the same as for the original. With a little
thought one can see that this scheme exactly mimics the GREEDY WITH TIES

scheme, and hence the two methods give the same final distribution of the balls.
Ž .See Fig. 4. Since the height of the scanline moves up one level each round, the
number of communication rounds used by MPGREEDY is one more than the
maximum load of GREEDY WITH TIES. B

Remark. Using ties as we have done may seem unnecessary, but it allows the
scanline to be at the same height for all bins after each round. It may appear that it
would improve the final maximum load if, after ties are deleted, heights in the
request lists are updated to reflect the deletions. This is difficult to prove, because
once heights are updated in this way, the connection between the scanline scheme
and the GREEDY scheme is not readily apparent. B

Fig. 4. Comparing GREEDY WITH TIES and MPGREEDY. Each level is one round of communi-
cation. The crossed and dashed balls are discarded by the MPGREEDY process. The GREEDY

WITH TIES process includes the dashed balls.
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Ž w x.We now suggest a modification of the proof by Azar et al. Theorem 4 of 2 to
handle the case where there may be ties. The following statement is sufficient:

Theorem 18. The maximum load achië ed by GREEDY WITH TIES when n balls are
Ž .thrown into n bins is at most log log nrlog dq2 dqO 1 with high probability. In

Ž .particular, for any fixed d the maximum load is log log nrlog dqO 1 .

w xProof. The proof is almost entirely the same as Theorem 4 of 2 ; we review the
differences here, using their notation. We let h be the height of the t th ball andt

Ž . Ž .let n t and m t refer to the number of bins with load at least i and the numberi i
of balls with height at least i at time t, respectively. The main consideration is that
for each ball placed in the system up to d copies can be placed if ties remain. We

Ž .let EE be the event that n n Fb , but we must use a different inductive definitioni i i
of b . As our base case, we may take b 2 snr2 de; then EE 2 holds with certainty.i 6 d 6 d
We set b se db drndy1.iq1 i

For a fixed i consider a sequence of random variables Y wheret

d , iff h G iq1 and n ty1 Fb ,Ž .t i iY st ½ 0, otherwise.

Ž .Note that over any given set of choices for the balls before time t, Pr Y sd Ft
Ž .db rn sp ; hence by Lemma 1,i i

k
Pr Y Gk FPr B n , p G ,Ž .Ž .Ý t i d

Ž .where B n, p is the sum of n independent Bernoulli random variables. Condi-
tioned on EE we have n Fm FÝY , soi iq1 iq1 t

< <Pr n Gk EE FPr Y Gk EEŽ . Ž .Ýiq1 i t i

k
FPr B n , p G EEŽ .i iž /d

Pr B n , p GkrdŽ .Ž .iF .w xPr EEi

w xThe proof now proceeds along the same lines as that of Theorem 4 of 2 . This
2 Ž .shows that the maximum load log log nrlog dq6d qO 1 . We can improve this

by taking a different base case: for d)8, b snr2 de holds with high probability2 d
even if all balls are simply placed into d random bins, and hence we can start the
induction from this point instead. B

Theorem 16 follows immediately from Lemma 17 and Theorem 18. Moreover,
an extension to the case where d grows with n is interesting.

Ž .Corollary 19. When MPGREEDY is run with ds log log nrlog log log nqO 1 , the
Ž .number of rounds and maximum load are at most O log log nrlog log log n with high

probability.
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Theorem 18 demonstrates that one can match the performance of GREEDY using
Ž .only log log nrlog dq2 dqO 1 rounds of communication, rather than the obvi-

ous n rounds. Corollary 19 also matches the lower bound of Corollary 11, up to
constant factors.

It is an open question whether one can extend MPGREEDY to avoid the need for
the partial order on the balls or the synchronous rounds while achieving a similar
maximum load. Stemann, using a different algorithm, also achieves a maximum

w xload as good as the MPGREEDY algorithm 21 . This algorithm is also not completely
asynchronous, although it seems to require weaker synchrony than MPGREEDY.

5. THE THRESHOLD STRATEGY

w x w xWe now examine another strategy, previously exploited in 7 and 14 in similar
contexts, to achieve good load balancing. Given a threshold T , we imagine
throwing the balls over r rounds. If more than T balls enter a bin during a round,
the excess balls are rethrown in the next round. We wish to set T as small as
possible while ensuring that, with high probability, at most T balls are thrown into
any bin in the r th round. Then, after all r rounds, the fullest bin will contain at
most rT balls. Note that a ball can choose its bins for all r rounds before any
messages are sent, so this scheme again falls into the general model of Section 2
for which our lower bounds apply.

There are several advantages this method has over the PGREEDY strategy already
presented. First, this method can work in completely asynchronous environments:
as long as requests include the number of its current round as part of the message,
messages from distinct rounds can be handled simultaneously at the bins. Second,
balls send and receive at most one message per round. Finally, as we shall show,
this method demonstrates a potentially useful tradeoff between the maximum load
and the number of rounds.

THRESHOLD T :Ž .
while there exists a ball that has not been accepted

in parallel: each unaccepted ball a
chooses u.a.r a bin i aŽ .
sends a request to i aŽ .

in parallel: each bin i
� 4chooses min T , a received requests from current round

sends these balls acceptances
sends other requesting balls rejections.

The question is how to set the parameter T so that the procedure terminates with
high probability within some specified number of rounds. In Section 5.1, we show
how to set T for any constant number of rounds. We then show in Section 5.2 that,

Ž . Ž .when Ts1, THRESHOLD T takes at most O log log n rounds and has maximum
Ž .load V log log n with high probability. Our proofs demonstrate essential tech-

niques that can be used for a wide range of T and r values to demonstrate that a
Ž .pair T , r leads to an algorithm that terminates with high probability.
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5.1. Thresholds with a Fixed Number of Rounds

Ž .Theorem 20. If r is fixed independent of n, then THRESHOLD T terminates after r
rŽ .'rounds with high probability, where TsO log nrlog log n .

Ž . Ž .Proof. Let k be the number of balls to be re thrown after i rounds k sn . Wei 0
will show by induction that

Ž i . Ž .T y1 r Ty14 log n
k Fn , 15Ž .i ž /T !

for all iF ry1 with high probability. From this statement one may verify that for
rŽ .'constants r and 0-e-1, and suitably large n, TsO log nrlog log n suffices to

reduce k to less than n1ye. We may then conclude that only one more round isry1
necessary by applying Lemma 14 with msn1ye.

Ž .We now inductively prove Eq. 15 . The case is0 is readily verified. Now
Ž .consider the situation when k balls are thrown into n bins in the iq1 st round. Iti

Ž . � 4can be verified from Eq. 15 that for large enough n, k rn-T for all ig 0, . . . , r .i
We can thus apply the Poisson approximation and Corollary 13 to obtain that, with

Ž .high probability, in the iq1 st round,

Tyk r ni2 e k rnŽ .i
Pr a given bin receives )T requests F . 16Ž . Ž .

T !

Ž .Therefore via the Chernoff bounds of Lemma 2 with high probability the number
w yk i r nŽ .T xof bins with more than T requests is at most 4ne k rn rT!. We can makei

the conservative upper bound assumption that with probability exponentially close
to one, none of these overfull bins has more than log n requests, so that with high
probability,

w Ž i .x Ž .T T y1 r Ty1 q14 log n
k Fn . 17Ž .iq1 ž /T !

Ž .Equation 15 now follows by induction, as long as the number of rethrows is large
enough so that the Chernoff bound holds. This immediately implies a maximum

rŽ . Ž .'load of O rT , which, for fixed r, is O log nrlog log n . B

The theorem suggests that using the threshold strategy, one can successfully
trade load balance for communication time in a well-defined manner. We note that

rŽ . Ž .'one can also show that for TsV log nrlog log n , THRESHOLD T requires more
than r rounds with high probability. We also remark that we could show that
Theorem 20 holds with very high probability; that is, the probability of failure is

Ž . Ž .bounded above by 1rf n where f n is a superpolynomial function. This requires
more attention to the Chernoff bounds.
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5.2. The Case of T= 1

We can extend our argument to the case where r grows with n with a bit more
care. As an illustrative example, we consider the case where Ts1. We note that

w x w xmore powerful results are given in 14 and 16 , but the simple proofs below are
appealing.

Ž . Ž .Theorem 21. THRESHOLD 1 terminates after at most log log nqO 1 stages with
high probability.

Proof. As in the proof of Theorem 20, let k be the number of balls to be throwni
Ž Ž ..after round i. It is simple to show by Chernoff bounds Eq. 1 that, with high

probability, after only two rounds at most nr2 e balls remain to be thrown. We
2'claim that, as long as k is at least 4 n log n , k Fek rn with probabilityiq1 iq1 i

Ž 2 .1yO 1rn . For convenience we assume that in each round the balls arrive in
some arbitrary order, with the first ball that arrives at a bin being accepted. Let Xj
be the indicator random variable of the event that the jth ball falls into a

Ž < .nonempty bin, where 1F jFk . Note that Pr X s1 X , . . . , X Fk rn. It fol-i j 1 jy1 i
lows from Lemma 1 that the sum of the k random variables X is stochasticallyi j
dominated by the sum of k independent Bernoulli random variables with parame-i

Ž Ž ..ter k rn. Using Chernoff bounds Eq. 1 the above claim follows; the restrictioni 'that k is at least 4 n log n is required for the Chernoff bound to hold withiq1

'sufficient probability. We thus have, if iG2 and k G4 n log n , thati

n
k F .iy2i 2e2

Ž . 'Hence rs log log nqO 1 rounds will suffice to cut down k to below 4 n log nr
with high probability. By using the Poisson case to bound the number of bins that

Ž .receive more than one ball, one can show that only O 1 more rounds are needed
after this point, and the result follows. B

Ž .The strategy THRESHOLD 1 achieves a maximum load that is essentially the
Ž . Ž .same as GREEDY, but uses only O log log n asynchronous rounds instead of O n

synchronous rounds. Moreover, because of its simplicity, we expect that this
strategy may be the best choice when the GREEDY strategy does not apply. Because
the bound of Theorem 21 does not match the lower bound of Corollary 11, one

Ž .might hope that THRESHOLD 1 actually performs even better than the given upper
Ž .bound. This could happen in one of two ways: either THRESHOLD 1 might termi-

Ž . Ž .nate in fewer than V log log n rounds, or even if V log log n rounds are required,
Ž .perhaps no bin actually receives V log log n balls. We now show, however, that

the bound of Theorem 21 is tight, up to constant factors.

Ž . Ž .Theorem 22. The maximum load of THRESHOLD 1 is at least V log log n with high
probability.

Proof. As before, let k be the number of balls to be thrown in round i, withi
k sn. We can determine k by considering the number of bins that receive two0 iq1



PARALLEL RANDOMIZED LOAD BALANCING 185

or more balls in the ith round. In the Poisson case, the probability that a bin
yk i r nŽ 2 2 . 2 2 Ž .receives two balls in round i is e k r2n Gk r2 en . By Eq. 2 of Lemma 2i i'and Corollary 13, as long as k )10 n log n , then with probability at leasti

2 2Ž . '1yO 1rn , k Gk r4en. Hence, for all iFn, with k )10 n log n ,iq1 i i

2 iq1y11 4eniq12k G k s . 18Ž .iq1iq1 0 2ž /4en 4eŽ .

Ž . Ž .It is easy to check from Eq. 18 that we need isV log log n before k Fi

'10 n log n . We now show that with high probability, there will be at least one bin
Ž .that receives a ball in each of the first V log log n rounds. Say that a bin sur̈ ï es

up to round i if it gets a ball in each of rounds 1, . . . , i, and let s be the number ofi
bins that survive up to round i. Then

k i1 ki
<w xPr bin survives up to iq1 it survives up to i s1y 1y G ,ž /n 2n

Ž Ž ..where the last inequality holds since k Fn. Applying Chernoff’s bound Eq. 2i
tells us that the fraction of bins that survived round i that also survive round iq1

Ž 2 .is at least k r4n with probability at least 1yO 1rn as long as s is sufficientlyi i
Ž .large. Therefore, after the iq1 st round, with high probability the number of

surviving bins is at least

k k0 i
s Gn= = ??? =iq1 4n 4n

neiq1

) .iq124eŽ .

Ž .It remains to be checked that for isV log log n all the Chernoff bounds hold,
and thus with high probability there is still a surviving bin. B

6. SIMULATION RESULTS

It is important to note that in the balls and bins scenario, even if each ball just
chooses one bin independently and uniformly at random, the maximum load is very
small compared to the total number of bins. Thus, even though one may be able to
show that asymptotically one strategy performs better than another, it is worth-
while to test actual performance. For example, it is not clear from the results we
have described that GREEDY performs better than straightforward random selection

Žunless n is exceedingly large! In fact, for all values of n, the expected maximum
w xload of GREEDY is less than that of simple random selection; see 2 for more



ADLER ET AL.186

.details. Even if one can guarantee better performance, however, a system designer
interested in using a load balancing scheme must balance the tradeoff between the
maximum load and the complexity of the underlying algorithm. Asymptotic nota-
tion proves less helpful than specific numbers in understanding this tradeoff. We
therefore examine actual performance through some simulation results.

For simplicity, we here consider only the case where the numbers of balls and
bins are equal. As usual, d represents the number of bins to which each ball sends
requests. The numbers given in the table represent the maximum load found for
one hundred trials of each strategy.

The first thing worth noting is that GREEDY performs noticeably better than
simple one-choice randomization: even at just one million balls, the difference is at
least a factor of 2 in all of our trials. A second interesting feature of GREEDY is that
the maximum load appears to vary little across trials, suggesting that the maximum
load is sharply concentrated on a single value. This can in fact be shown using

Ž w x .straightforward martingale arguments. See, for example, 19, Section 4.2 .
Ž .As expected, both PGREEDY and THRESHOLD T perform somewhere between

simple random selection and GREEDY. Notice that for PGREEDY when ds3 the
maximum load tends to be smaller than when ds2, but that the maximum load
tends to increase when ds4. This is not completely surprising given our previous
analysis in Section 4.

In the threshold schemes, the thresholds used were as follows: three balls per
round per bin in the 2 round scheme, and two balls per bin per round in the 3
round scheme. These choices were made to ensure that the algorithm terminated
with all balls having a final destination in the correct number of rounds with high
probability: in all trials, the algorithm terminated in the correct number of rounds.
Our simulations suggest that threshold schemes are the best practical choice when
one wishes to achieve a better load balance, but cannot meet the sequentiality
requirement of GREEDY. See Table 1.

7. CONCLUSION

In this paper we examined various mechanisms to balance load in a decentralized
manner, using the abstraction of a balls and bins occupancy problem. We specifi-
cally explored the tradeoff between the number of communication rounds invested
and the remaining load imbalance. Existing work defined the two extremes in this

Ž . Ž .tradeoff, namely, O log nrlog log n imbalance after one round, and O log log n
after n sequential rounds.

We have demonstrated that, in our models, the sequentiality requirement of the
Ž .GREEDY algorithm is in fact necessary for the strong O log log n result they

obtained. In light of our lower bounds, we looked for related algorithms that
perform well, both in theory and in practice. Both our lower and upper bounds are
strikingly uniform for all of them, despite their apparent differences. Our analysis

Ž .together with our simulations suggest that the THRESHOLD T algorithm is the best
choice when sequentiality cannot be maintained and imbalance smaller than a
single random choice is desired.
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aTABLE 1 Simulation Results for GREEDY and other strategies

Ž .GREEDY PGREEDY THRESHOLD T

Balls One 2 3
n Choice ds2 ds3 ds4 ds2 ds3 ds4 rounds rounds

8 . . . 28
9 . . . 57 5 . . . 92 5 . . . 95 5 . . . 77 5 . . . 88 4 . . . 77

1 m 4 . . . 100 3 . . . 100 3 . . . 100
10 . . . 13 6 . . . 8 6 . . . 5 6 . . . 23 6 . . . 12 5 . . . 23
11 . . . 2

8 . . . 7
9 . . . 72 5 . . . 90 5 . . . 96 5 . . . 68 5 . . . 74 4 . . . 69

2 m 4 . . . 100 3 . . . 100 3 . . . 100
10 . . . 18 6 . . . 10 6 . . . 4 6 . . . 32 6 . . . 26 5 . . . 31
11 . . . 3

8 . . . 1
9 . . . 63 5 . . . 71 5 . . . 87 5 . . . 36 5 . . . 54 4 . . . 47

4 m 4 . . . 100 3 . . . 100 3 . . . 100
10 . . . 35 6 . . . 29 6 . . . 13 6 . . . 64 6 . . . 46 5 . . . 53
12 . . . 1

9 . . . 40
10 . . . 58 5 . . . 55 5 . . . 71 5 . . . 6 5 . . . 20 4 . . . 19

8 m 4 . . . 100 3 . . . 100 3 . . . 100
11 . . . 1 6 . . . 45 6 . . . 29 6 . . . 94 6 . . . 80 5 . . . 81
12 . . . 1

9 . . . 21
10 . . . 62 5 . . . 31 5 . . . 48 5 . . . 1 5 . . . 5 4 . . . 1

16 m 4 . . . 100 3 . . . 100 3 . . . 100
11 . . . 16 6 . . . 69 6 . . . 52 6 . . . 99 6 . . . 95 5 . . . 99
16 . . . 1

9 . . . 5
10 . . . 65 5 . . . 8 5 . . . 20

32 m 4 . . . 100 3 . . . 100 3 . . . 100 6 . . . 100 6 . . . 100 5 . . . 100
11 . . . 25 6 . . . 92 6 . . . 80
12 . . . 5

a The number of balls ranges from 1 million to 32 million. The results from 100 trials are presented: the
Ž .load is given in bold on the left, and the number of times out of 100 that load occurred is given on the

Ž .right e.g., ‘‘ . . . 35’’ .
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