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Abstract. A new method for analyzing the mixing time of Markov chains is described. This
method is an extension of path coupling and involves analyzing the coupling over multiple steps. The
expected behavior of the coupling at a certain stopping time is used to bound the expected behavior
of the coupling after a fixed number of steps. The new method is applied to analyze the mixing time
of the Glauber dynamics for graph colorings. We show that the Glauber dynamics has O(n log(n))
mixing time for triangle-free ∆-regular graphs if k colors are used, where k ≥ (2 − η)∆, for some
small positive constant η. This is the first proof of an optimal upper bound for the mixing time of
the Glauber dynamics for some values of k in the range k ≤ 2∆.
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1. Introduction. In this paper, a new method for analyzing the mixing time of
Markov chains is described. This method is a nontrivial extension of path coupling,
and applies in situations where path coupling is not enough to prove rapid mixing.
We run the path coupling for multiple steps and use the expected behavior of the
coupling at a certain stopping time to bound the expected behavior of the coupling
after a fixed number of steps. Standard path coupling is a worst-case analysis in that
it considers the expected change in the distance between the worst possible pair of
states over a single step. However, in a multiple-step analysis, the choice of the initial
pair of states is mitigated by the random choices made by the coupling over several
steps. Hence, with some constant probability, we are not in the worst case. This is
how a multiple-step analysis can improve upon one-step path coupling.

The approach of analyzing the behavior of a Markov chain over several steps
has proved worthwhile in other settings. For example, it has been used to prove the
stability of randomized bin-packing algorithms [7, 16, 1] and contention resolution
protocols [14, 13]. Hence this approach appears to be a natural direction for coupling
arguments as well.
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Czumaj et al. [8] introduced a framework for multiple-step couplings based on
path coupling, which they call delayed path coupling. Their “delayed path coupling
lemma” [8, Lemma 4.2] (reproduced below as Lemma 2.2) shows how the mixing time
of a Markov chain can be bounded above in terms of the behavior of a coupling over
a fixed number of steps. However, the way in which the coupling is analyzed over the
fixed time interval is not specified, and Czumaj et al. give a few different applications.
In some applications, they explicitly construct a non-Markovian coupling over the
full time interval. The construction and analysis of such a coupling can be very
complicated. However, we use straightforward path coupling to drive our multiple-
step coupling, performing most of our analysis at a specially defined stopping time.
The next section contains a description of this new method.

We then apply our method to the problem of analyzing the mixing time of the
Glauber dynamics for graph colorings. A proper k-coloring of a graph G = (V,E)
is a labelling of the vertices from a set of colors C = {1, . . . , k} such that no two
neighboring vertices have the same color. We consider the problem of sampling nearly
uniformly from the set of all proper k-colorings of a graph of maximum degree ∆. Note
that efficiently sampling k-colorings nearly uniformly allows one to approximately
count such colorings [15]. This problem is interesting as a fundamental combinatorial
problem, and it also relates to several problems in statistical physics; see [15, 23] for
more details.

A standard approach to the sampling problem is to design a Markov chain whose
stationary distribution is uniform over all proper k-colorings. We can then sample
nearly uniformly from all proper k-colorings by running the Markov chain until the
distribution of the state is sufficiently near the stationary distribution. For this ap-
proach to be efficient, the number of steps for which we must run the Markov chain
must be sufficiently small. The number of steps for which we must run the Markov
chain is generally called the mixing time, and a Markov chain for sampling proper
k-colorings is rapidly mixing if the mixing time is bounded above by some polynomial
in |V | = n.

Jerrum [15] (and independently Salas and Sokal [21], using different methods)
showed that when k ≥ 2∆, a simple Markov chain is rapidly mixing. This Markov
chain is easily described as follows: choose a vertex v uniformly at random and a color
c uniformly at random; recolor v to color c if doing so yields a proper coloring. This
Markov chain is generally referred to as the Glauber dynamics in the statistical physics
literature. Jerrum proved that the Glauber dynamics has O(n log(n)) mixing time
for k > 2∆, while for k = 2∆ the best known upper bound was O(n3). We use our
new method to show that, for ∆ ≥ 14, the Glauber dynamics chain has O(n log(n))
mixing time for k ≥ (2−η)∆ whenever the graph is triangle-free and ∆-regular, where
η is some small, positive constant. It seems to be widely believed that Ω(n log n) is a
lower bound on the mixing time of the Glauber dynamics; however, we do not know
of an existing proof. We present a simple proof of this fact in Theorem 3.1, for the
special case of graphs with no edges. Therefore our O(n log n) bound on the mixing
time is optimal. Our main result is the first proof of an optimal upper bound for the
mixing time of the Glauber dynamics for some values of k in the range k ≤ 2∆.

The 2∆ barrier has been broken using more complicated chains, but as far as
we know this is the first proof that involves direct analysis of the simple Glauber
dynamics chain. In [5], a rapidly mixing Markov chain was presented for the case
∆ = 3, k = 5 (and for ∆ = 4, k = 7 when the graph is triangle-free and 4-regular).
The proof involves the analysis of several (in the hundreds for the ∆ = 3 case)
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linear programming problems related to the chain. Using a comparison technique
such as [6, 9, 10, 11, 20] one can conclude that the Glauber dynamics is also rapidly
mixing for these values of k, ∆. However, applying a comparison technique generally
increases the upper bound on the mixing time by several factors of n.

In recent work, Vigoda [23] has proven that k ≥ 11∆/6 is sufficient for rapid
mixing, using an entirely different Markov chain (similar to the well-known Swendsen–
Wang algorithm [22]). Again, his result implies rapid mixing of the Glauber dynamics
for k ≥ 11∆/6, but with an O(n2 log n) bound on the mixing time. His result clearly
dominates ours in terms of the range of k for which rapid mixing is established.
However, because our analysis is based directly on the Glauber dynamics chain and
achieves an optimal bound, and because we use a new technique based on analyzing
this chain over multiple steps, our result is of independent interest.

2. Path coupling using stopping times. Before describing the new method
we present some standard definitions and notation. Let Ω be a finite set and let M
be a Markov chain with state space Ω, transition matrix P , and unique stationary
distribution π. If the initial state of the Markov chain is x then the distribution of
the chain at time t is given by P t

x(y) = P t(x, y). The total variation distance of the
Markov chain from π at time t, with initial state x, is defined by

dTV(P
t
x, π) =

1

2

∑
y∈Ω

|P t(x, y)− π(y)|.

Following Aldous [3], let τx(ε) denote the least value T such that dTV(P
t
x, π) ≤

ε for all t ≥ T . The mixing time of M, denoted by τ(ε), is defined by τ(ε) =
max {τx(ε) : x ∈ Ω}. A Markov chain is said to be rapidly mixing if the mixing time
is bounded above by some polynomial in n and log(ε−1), where n is a measure of the
size of the elements of Ω. Throughout this paper all logarithms are to base e.

There are relatively few methods available to prove that a Markov chain is rapidly
mixing. One such method is coupling. A coupling for M is a stochastic process
(Xt, Yt) on Ω × Ω such that each of (Xt), (Yt), considered marginally, is a faithful
copy of M. The moves of the coupling are correlated to encourage the two copies
of the Markov chain to couple: i.e., to achieve Xt = Yt. This gives a bound on the
total variation distance using the coupling lemma (see for example, Aldous [3]), which
states that

dTV(P
t
x, π) ≤ Prob[Xt 
= Yt],

where X0 = x and Y0 is drawn from the stationary distribution π. The following
standard result is used to obtain an upper bound on this probability and hence an
upper bound for the mixing time (the proof is omitted).

Theorem 2.1. Let (Xt, Yt) be a coupling for the Markov chain M and let ρ be
any integer valued metric defined on Ω × Ω. Suppose that there exists β ≤ 1 such
that E[ρ(Xt+1, Yt+1)] ≤ β ρ(Xt, Yt) for all t, and all (Xt, Yt) ∈ Ω× Ω. Let D be the
maximum value that ρ achieves on Ω× Ω. If β < 1 then the mixing time τ(ε) of M
satisfies τ(ε) ≤ log(Dε−1)/(1− β). If β = 1 and there exists α > 0 such that

Prob[ρ(Xt+1, Yt+1) 
= ρ(Xt, Yt)] ≥ α

for all t, and all (Xt, Yt) ∈ Ω× Ω, then τ(ε) ≤ �eD2/α��log(ε−1)�.
From now on, assume that all couplings are Markovian unless explicitly stated.

The path coupling method, introduced in [4], is a variation of traditional coupling



AN EXTENSION OF PATH COUPLING 1965

which allows us to restrict our attention to a certain subset S of Ω×Ω, where Ω is the
state space of a given Markov chain. If we view S as a relation, the transitive closure
of S must equal Ω. The rate of convergence of the chain is measured with respect to
a (quasi)metric ρ on Ω × Ω, which can be defined by lifting a proximity function on
S to the whole of Ω× Ω (see [12] for details).

In this section we present a modification of path coupling which involves stopping
times. Let (X,Y ) be any element of Ω×Ω. As for ordinary path coupling, we define
a path, or sequence

X = Z0, Z1, . . . , Zr = Y

between X and Y , where (Z�, Z�+1) ∈ S for 0 ≤ ! < r, and

r−1∑
�=0

ρ(Z�, Z�+1) = ρ(X,Y ).

In ordinary path coupling we allow the coupling to evolve for one step, giving a new
path

Z0
′, Z1

′, . . . , Zr
′

(for a precise definition of the probability distribution of this new path, see [12]). We
then define (X ′, Y ′) =

(
Z0

′, Zr
′). The path coupling lemma says the following. Let

(X,Y ) 
→ (X ′, Y ′) be a coupling defined on all pairs in S. Suppose there exists a
constant β such that 0 < β ≤ 1 and for all (X,Y ) ∈ S we have

E [ρ(X ′, Y ′)] ≤ β ρ(X,Y ).(2.1)

Then we can conclude that (2.1) holds for all (X,Y ) ∈ Ω×Ω, and apply Theorem 2.1.
Suppose, however, that the smallest value of β for which (2.1) holds for all (X,Y ) ∈
S satisfies β > 1. Then path coupling is not good enough to allow us to apply
Theorem 2.1. However, if β is not much larger than 1, and there are some “good”
initial pairs (X,Y ) ∈ S where the distance decreases after one step (in expected
value), then we can try the following approach.

The following lemma is the “delayed path coupling lemma” [8, Lemma 4.2] of Czu-
maj et al., which shows how the mixing time of a Markov chain may be related to the
behavior of a t-step path coupling (which may be non-Markovian). For completeness,
we present a proof.

Lemma 2.2. Let S ⊆ Ω×Ω be such that the transitive closure of S is the whole of
Ω×Ω. Let ρ be an integer-valued metric on Ω×Ω which takes values in {0, . . . , D}.
Given (X0, Y0) ∈ S, let (X0, Y0), (X1, Y1), . . . , (Xt, Yt) be the t-step evolution of a
(possibly non-Markovian) coupling starting from (X0, Y0). Suppose that there exists a
constant γ such that 0 < γ < 1 and

E [ρ(Xt, Yt)] ≤ γρ(X0, Y0)(2.2)

for all (X0, Y0) ∈ S. Then the mixing time τ(ε) of M satisfies

τ(ε) ≤ log(Dε−1)

1− γ
· t.
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Proof. Using the same argument as the path coupling lemma, we know that (2.2)
holds for all (X0, Y0) ∈ Ω×Ω. Run the coupling in epochs of length t. After r epochs,
we have

E [ρ(Xrt, Yrt)] ≤ γr ρ(X0, Y0) ≤ γrD.

If r ≥ log(Dε−1)/(1− γ) then E [ρ(Xrt, Yrt)] ≤ ε. This gives an upper bound for the
number of epochs required to ensure that the distribution of the chain is at most ε
away from stationarity, in terms of total variation distance. Multiplying this number
by t, the number of steps per epoch, gives the mixing time of the chain.

Therefore it suffices to show that E [ρ(Xt, Yt)] ≤ γ ρ(X0, Y0) for all (X0, Y0) ∈ S,
where γ is some positive constant less than 1. The main contribution of this paper
is to provide a new approach to bounding E [ρ(Xt, Yt)], which we now describe. Let
(X,Y ) 
→ (X ′, Y ′) be a (one-step, Markovian) coupling for M defined on all initial
pairs in S; that is, (X,Y ) ∈ S and (X ′, Y ′) ∈ Ω× Ω. We will apply this coupling for
t steps, using the path coupling machinery to drive the coupling if the trajectory of
the coupling leaves the set S. This gives a multiple-step coupling {(Xs, Ys)}s≥0. Let
T be a stopping time for this coupling, defined in such a way that

ρ(Xs, Ys) = ρ(X0, Y0) for 0 ≤ s < T.

Then T is a random variable which depends only on the history of the coupling up
to the present time. For example, we could define T to be the first time at which the
value of ρ changes.

If T > t then we know that ρ(Xt, Yt) = ρ(X0, Y0). Otherwise, we consider
(XT , YT ), the state of the coupling at the stopping time T . (The pair (XT , YT ) need
no longer belong to the set S, but the path coupling machinery drives the coupling
for all pairs in Ω× Ω.) The analysis gives an upper bound for the quantity

E [ρ(XT , YT ) | T ≤ t] .

We hope that this quantity will be smaller than E [ρ(X1, Y1)], with the following
heuristic justification. The analysis of one-step coupling is a worst-case analysis.
However, after running the Markov chain for T steps, the effect of the chosen starting
state is mitigated to some extent by the random choices made during the running of
the coupling. In other words, with some positive probability we are not in the worst
case. It is here that we can improve on one-step coupling.

We now show how to relate E [ρ(XT , YT ) | T ≤ t] and E [ρ(Xt, Yt)].
Theorem 2.3. Let M be a Markov chain with state space Ω. Let ρ be a metric

on Ω × Ω and let S be some subset of Ω × Ω such that the transitive closure of S is
Ω × Ω. Suppose that we have a (one-step, Markovian) coupling (X,Y ) 
→ (X ′, Y ′),
defined on pairs in S such that

E [ρ(X ′, Y ′)] ≤ β ρ(X,Y )

for some constant β such that β ≥ 1. Let t > 0 be a fixed integer. Apply the coupling
for t steps from initial state (X0, Y0) ∈ S, using the path coupling lemma. Let T be
some stopping time for {(Xs, Ys)}s≥0 such that

ρ(Xs, Ys) = ρ(X0, Y0)

whenever 0 ≤ s < T . Then

E [ρ(Xt, Yt)] ≤ Prob [T > t] · ρ(X0, Y0) + Prob [T ≤ t] · βt ·E [ρ(XT , YT ) | T ≤ t]
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for all (X0, Y0) ∈ S.
Proof. The coupling defined on the set S gives rise to a coupling (X,Y ) 
→ (X ′, Y ′)

on the entire set Ω × Ω such that E [ρ(X ′, Y ′)] ≤ β ρ(X,Y ) for all (X,Y ) ∈ Ω × Ω,
by the path coupling lemma [4]. Let (X0, Y0), (X1, Y1), . . . , (Xt, Yt) be the t-step
evolution of this coupling from the starting state (X0, Y0) ∈ S.

If T > t then ρ(Xt, Yt) = ρ(X0, Y0). Next suppose that T ≤ t. Then

E [ρ(Xt, Yt) | T ≤ t] ≤ βE [ρ(Xt−1, Yt−1) | T ≤ t]

≤ E
[
βt−T ρ(XT , YT ) | T ≤ t

]
≤ βtE [ρ(XT , YT ) | T ≤ t] .

(By replacing t− T by t we are, in effect, assuming that the stopping time occurs at
the very beginning of the interval.) This proves the theorem.

Suppose that S is the set of all pairs (X,Y ) with ρ(X,Y ) = 1. In this case,
Theorem 2.3 can be rewritten to assert that

E [ρ(Xt, Yt)− 1] ≤ Prob [T ≤ t]
(
βt ·E [ρ(XT , YT ) | T ≤ t]− 1

)
.

Combining Lemma 2.2 and Theorem 2.3, we see that γ can be defined to be the
maximum of the values

1− Prob [T ≤ t]
(
1− βt ·E [ρ(XT , YT ) | T ≤ t]

)
(2.3)

over all (X0, Y0) ∈ S. In order to obtain a good bound on the mixing time of the
chain, we aim to show that γ < 1. Clearly γ < 1 if

βtE [ρ(XT , YT ) | T ≤ t] < 1

for all (X0, Y0) ∈ S.
3. Applying the new method to the Glauber dynamics for graph color-

ings. In this section we illustrate the new method by using it to analyze the mixing
time of the Glauber dynamics for graph colorings.

Let G = (V,E) be a given graph and let Ωk(G) be the set of all proper k-colorings
of G, where C is the set of colors. The Glauber dynamics is a Markov chain on Ωk(G)
with transitions from the current state according to the following procedure:

• choose (v, i) ∈ V × C uniformly at random,
• recolor v with i if this results in v being properly recolored.

This chain was analyzed by Jerrum [15] and independently by Salas and Sokal [21].
They proved that the chain is rapidly mixing for graphs with maximum degree ∆
when k > 2∆. The fact that the chain is also rapidly mixing for k = 2∆ can be found
in [4]. Jerrum showed that the Glauber dynamics has O(n log(n)) mixing time for
k > 2∆, and the best known upper bound when k = 2∆ was O(n3).

In section 3.1 we describe the standard path coupling for this chain. Section 3.2
contains the definition of the stopping time for this coupling, and gives a necessary
condition for the success of the new method. In section 3.3 we perform the calcula-
tions needed to establish the necessary condition. All calculations are combined in
section 3.4 to provide an O(n log(n)) upper bound for the mixing time of the Glauber
dynamics for ∆-regular, triangle-free graphs, when (2− η)∆ ≤ k ≤ 2∆, where η is a
small positive constant.

Before we proceed, we present a proof of the “folklore” result that the mixing
time of the Glauber dynamics is bounded below by Ω(n log n). Our proof concerns
graphs with no edges.
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Theorem 3.1. Let G be the empty graph with n vertices, and let k ≥ 2. Then

τ((2e)−1) = Ω(n log n).

Proof. A stopping rule Γ (see [17]) is a map that associates every initial sequence
w of Markov chain states with a number Γ[w] ∈ [0, 1], which is taken to be the
probability that the sequence should continue. We can also think of Γ as a random
variable taking values in {0, 1, 2, . . .}, whose distribution depends only on w0, . . . , wΓ

(and wΓ is the state where we stop). If w0 is drawn from the distribution σ and E[Γ]
is finite and the distribution of final states is τ , then the rule is called a stopping
rule from σ to τ . It is said to be optimal for σ and τ if E[Γ] is minimal. For each
x ∈ Ωk(G) let σx be the distribution concentrated on the state x. Define τ2 to be the
maximum, over all initial states x, of the expected length of an optimal stopping rule
from σx to π. Since the Glauber dynamics is time-reversible, a result of Aldous [2,
Lemma 12] applies, showing that

τ((2e)−1) ≥ cτ2,

where c = (1− e−1)2/2. Now let Γ be the stopping rule which says, “stop when you
have visited every vertex of G at least once.” (It may not be immediately apparent
that this rule satisfies the definition of a stopping rule given in [17], since it uses
information not encoded in the states of the chain. However, it is routine to formulate
an equivalent randomized stopping rule which does fit the definition; see [18, p. 89].)
Since G has no edges and every vertex has been randomly recolored, the coloring
obtained at time Γ is distributed according to π. Hence Γ is a stopping rule from σx
to π for all x ∈ Ωk(G). Let y ∈ Ωk(G) be any coloring of G such that y(v) 
= x(v)
for all v ∈ V . Then y is a halting state for this stopping rule (that is, the probability
that the process will halt if it reaches y is 1). Since Γ has a halting state it is an
optimal stopping rule, using [17, Theorem 5.1]. This shows that τ2 = E[Γ]. Therefore
τ((2e)−1) is bounded below by a constant times the expected number of steps required
to visit every vertex at least once, and the latter is Θ(n log n) by the well-known
coupon collector’s lemma (see, for example, [19, section 3.6]).

3.1. Path coupling for the Glauber dynamics. We now give the standard
path coupling analysis of the Glauber dynamics. The proximity function is given by
Hamming distance, and we let S be the set of all pairs with Hamming distance 1. The
state space of the Markov chain must be extended to the set of all colorings (including
nonproper colorings) in order to be able to form a path of length H(X,Y ) between
any two colorings (X,Y ) ∈ Ωk(G). (This approach is standard and does not cause any
problems, since the nonproper colorings are transient states. The stationary distribu-
tion is uniform over all proper colorings, and zero elsewhere. Although the extended
chain is no longer reversible, the path coupling lemma still applies. Moreover, the
mixing time of the chain on the original state space is bounded above by the mixing
time of the chain on the extended state space.)

Consider (X,Y ) ∈ S, so X and Y differ just at a single vertex v. Let N(v)
denote the set of neighbors of v in G. We can couple at (X,Y ) as follows: choose
(u, i) uniformly at random from V × C. If u = v then attempt to recolor v with i in
both X and Y . This will either succeed in both or fail in both. If it succeeds then
the Hamming distance decreases by 1. The only other moves which can affect the
Hamming distance are when u = w where w ∈ N(v). In this case, if i 
∈ {X(v), Y (v)}
then attempt to recolor w with i in both X and Y . This will either succeed in both
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or fail in both, and the Hamming distance is unaffected. If i = X(v) then attempt
to recolor w with X(v) in X and attempt to recolor w with Y (v) in Y . This will fail
in both X and Y , so the Hamming distance is unaffected. Finally, if i = Y (v) then
attempt to recolor w with Y (v) in X, and attempt to recolor w with X(v) in Y . This
may succeed or fail in either, so the Hamming distance could increase by 1 here. Thus
the expected change in the Hamming distance is at most

− (k − | {X(w) : w ∈ N(v)} |)
kn

+
∆

kn
.

In general, we have | {X(w) : w ∈ N(v)} | ≤ ∆, so that the expected change in the
Hamming distance is at most −(k − 2∆)/(kn). This gives nonincreasing Hamming
distance for k ≥ 2∆. The aim of the new approach is to show that, with constant
positive probability, there are fewer than ∆ distinct colors around v, just before the
stopping time. This gives nonincreasing Hamming distance for a wider range of k.

3.2. A stopping time for the Glauber dynamics on colorings. For sim-
plicity, assume that the given graph G is ∆-regular and triangle-free. Let η be a small
positive constant which we fix later, and suppose that (2−η)∆ ≤ k ≤ 2∆. We analyze
the mixing time of the Glauber dynamics using our new method, to show that the
Glauber dynamics has O(n log(n)) mixing time for this range of k.

Let (X0, Y0) ∈ S be given, so that X0, Y0 differ just at a single vertex v ∈
V . Perform the coupling described in section 3.1 with starting point (X0, Y0). Let
Q(X0, Y0) be the set of all moves which involve v or increase the Hamming distance;
that is,

Q(X0, Y0) = {(v, i) : i ∈ C} ∪ {(w, Y0(v)) : w ∈ N(v)} .

Then Q(X0, Y0) contains all the choices which may affect the Hamming distance, but
also some which will not. Define the random variable T to be the first step at which
a pair in Q(X0, Y0) is chosen by the coupling. Then T is a stopping time since it
depends only on the coupling up to the present time. Now (XT , YT ) is the state of
the coupling after the T th step, which we refer to as the state of the coupling at the
stopping time. Note that H(Xs, Ys) = H(X0, Y0) = 1 for 0 ≤ s < T by the analysis of
section 3.1. Clearly |Q(X0, Y0)| = k+∆ for all pairs (X0, Y0) ∈ S. Let δ be a positive
constant, and assume that δn is an integer. (Since n can grow arbitrarily large, there
is not much harm in making this assumption.) An (approximately) optimal value of
δ will be fixed later, which will satisfy δ < (2− η)/3. We run the coupling for t steps,
where t = δn.

Let C be a random variable which denotes the number of colors which occur more
than once around v just before the stopping time T (that is, after step T − 1). In the
next section we prove that, when n and ∆ are “big enough” and η is “small enough,”
we have

E [C | T ≤ δn] ≥ ξ∆

for some constant ξ such that ξ ≥ 2η. We now show why this is sufficient.
The arguments of section 3.1 show that the expected value of the Hamming

distance after one step of normal path coupling from (X,Y ) ∈ S is at most

1− k − 2∆

kn
≤ 1 +

η∆

kn



1970 DYER, GOLDBERG, GREENHILL, JERRUM, AND MITZENMACHER

since (2− η)∆ ≤ k ≤ 2∆. Next, notice that

E [H(XT , YT )− 1 | T ≤ δn] ≤ −k − (∆−E [C | T ≤ δn])

k +∆
+

∆

k +∆

≤ −k − (1− 2η)∆

k +∆
+

∆

k +∆

≤ −η
3
.

Therefore, using Theorem 2.3 (and in particular the remarks following the theorem),

E [H(Xδn, Yδn)− 1] ≤ Prob [T ≤ δn]
(
βδn ·E [H(XT , YT ) | T ≤ δn]− 1

)
≤ Prob [T ≤ δn]

((
1 +

η∆

kn

)δn (
1− η

3

)
− 1

)

≤ Prob [T ≤ δn]
(
eηδ/(2−η)e−η/3 − 1

)
.(3.1)

This quantity is nonpositive whenever

ηδ

2− η
− η

3
≤ 0,

and this holds for δ ≤ (2− η)/3.
We now calculate a lower bound for E [T | T ≤ δn], which is needed in section 3.3.
Lemma 3.2. Suppose that n ≥ δ−1 and (2 − η)∆ ≤ k ≤ 2∆, where 0 < η < 2.

Let θ = 3/(2− η). Then

E [T | T ≤ δn] ≥ δn

2
(1− θδ).

Proof. Let q = 1 − (k + ∆)/(kn), and let ps denote the probability that T = s.
Then ps = Prob [T = s] = (1 − q)qs−1 and Prob [T ≤ δn] = 1 − qδn. Now qδn ≥
1− (k +∆)δ/k since n ≥ δ−1. Therefore

E [T | T ≤ δn] =
(
1− qδn

)−1
δn∑
s=0

sps

≥ pδn δ
2 n2

2 (1− qδn)

>
(1− q) qδn δ2 n2

2 (1− qδn)

≥ (1− q)
(
1− k+∆

k δ
)

2k+∆
k δ

δ2 n2

≥ (1− θδ)
δn

2
,

as claimed.

3.3. The expected number of repeated colors just before the stopping
time. Let (X0, Y0) be a given pair in S and let v be the vertex which is colored
differently in X and Y . Let T be the stopping time for the coupling when started at
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(X0, Y0). Denote by C the number of colors which occur at least twice around v just
before the stopping time T . That is,

C = | {i ∈ C : | {w ∈ N(v) : XT−1(w) = i} | ≥ 2} |.
In this section we obtain a lower bound for E [C | T ≤ δn] which holds when ∆ and n
are both “large enough” and η is “small enough.” Specifically, take ∆ ≥ 14, n ≥ 120,
and η < 1/210.

Let Aw be defined by

Aw = C \ ({X0(u) : {u,w} ∈ E} ∪ {Y0(v)})
for w ∈ N(v). Then Aw is the set of colors which are acceptable at w in both X0 and
Y0. Note that |Aw| ≥ k −∆− 1 for all w ∈ N(v). Next, let

Bi = {w ∈ N(v) : i ∈ Aw}
and let bi = |Bi| for each i ∈ C. So Bi is the set of vertices w ∈ N(v) at which i is
acceptable in both X0 and Y0.

Lemma 3.3. Assume that η < 1/210 and ∆ ≥ 14. Let k satisfy (2− η)∆ ≤ k ≤
2∆. Then there are at least �k/5� colors i such that bi ≥ ∆/3.

Proof. Let Z = |{(i, w) : i ∈ Aw}|. Now Z ≥ ∆(k −∆− 1). For a contradiction,
suppose that fewer than �k/5� colors i have bi ≥ ∆/3. If k is a multiple of 5 then

Z ≤
(
k

5
− 1

)
∆+

(
4k

5
+ 1

)
∆

3

≤
(
1−

(
1

15
− 1

3∆

))
∆2 −∆

< ∆(k −∆− 1),

giving the desired contradiction. Next, suppose that k = 5!+ r, where r ∈ {1, 2, 3, 4}.
Then

Z ≤ !∆+ (k − !)
∆

3

≤
(
1−

(
1

15
− 15− 2r

15∆

))
∆2 −∆

< ∆(k −∆− 1)

since η < 1/210 and ∆ ≥ 14. Again, this is a contradiction.
Using this information we can prove a lower bound for the expected number of

repeated colors around v just before the stopping time, given that the stopping time
occurs in the first δn steps.

Theorem 3.4. Suppose that n ≥ 120, ∆ ≥ 14, η < 1/210, and δ < (2 − η)/3.
Also assume that (2− η)∆ ≤ k ≤ 2∆. Then

E [C | T ≤ δn] ≥ 1

3840
· δ2 (1− θδ)2 · e−4δ ·∆,

where θ = 3/(2− η).
Proof. By Lemma 3.3, there are at least �k/5� colors i such that bi ≥ ∆/3.

Consider ways in which such a color i can occur at least twice around v just before
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the stopping time T . One way in which this can occur is as follows. Suppose that
there are exactly two distinct elements u, w ∈ Bi which were chosen with the color
i during the coupling. That is, (u, i) and (w, i) were both chosen but (q, i) was not
chosen for any q ∈ Bi \ {u,w}. Also suppose that u and w are never chosen at any
other time, with any color, and that no neighbor of u or w is ever chosen with color
i. In this situation, both u and w end up colored i. We now analyze the probability
that this event occurs for a given value of T .

We know that T is the first stopping time, so there are T − 1 steps before the
stopping time step. We do not have kn possible choices at each of these T − 1 steps,
but rather kn − (k + ∆) possibilities. With this in mind, the probability that, say,
w is chosen with color i is given by 1/(kn − (k + ∆)) ≥ 1/(kn). There are at least
∆2/24 choices for the unordered pair {u,w} ⊆ Bi since bi ≥ ∆/3 and ∆ ≥ 14. The
probability that both (u, i) and (w, i) are chosen at two distinct times in the first
T − 1 steps is at least

(
T−1

2

) · 1/(k2n2). There are also choices which we have ruled
out for all other steps, corresponding to the vertex-color pairs from the set

{(q, i) : q ∈ (N(u) ∪N(w) \ {v}) ∪ (Bi \ {u,w})}
⋃

{(u, j), (w, j) : j ∈ C \ {Y (v)}} .
(Note that the selection of j = Y (v) is ruled out because s is not a stopping time for
0 ≤ s < T .) We have ruled out at most 3∆ + 2k − 6 choices at each of T − 3 steps.
Thus we see that

Prob

[
i is repeated | T, bi ≥ ∆

3

]
≥ ∆2

24
·
(
T − 1

2

)
· 1

k2n2
·
(
1− 3∆ + 2k − 6

kn− (k +∆)

)T−3

.

Let x = 3∆+ 2k − 6 and y = kn− (k +∆). Then(
1− x

y

)T−3

= exp

(
−(T − 3)

∞∑
i=1

1

i

(
x

y

)i
)

= exp

(
−Tx
y

+
∞∑
i=1

(
3

i
− Tx

(i+ 1)y

)(
x

y

)i
)

≥ e−Tx/y

≥ e−4δ.

The first inequality follows since 3/i ≥ Tx/((i + 1)y) for all i ≥ 1, and the second
inequality follows since 4y ≥ nx (using the definition of x, y and the assumptions of
the theorem). Plugging this back into our calculations, we obtain

Prob

[
i is repeated | T, bi ≥ ∆

3

]
≥ ∆2

24
·
(
T − 1

2

)
· 1

k2n2
· e−4δ.

Now we shall take expectation with respect to T , conditional on T ≤ δn. Using
Lemma 3.2 and the fact that n ≥ 120, we find that(

E [T | T ≤ δn]− 1

2

)
≥ δ2 n2 (1− θδ)2

16
.

Applying Jensen’s inequality, we obtain

Prob

[
i is repeated | T ≤ δn, bi ≥ ∆

3

]
≥ ∆2

384
· δ2 n2 (1− θδ)2 · 1

k2n2
· e−4δ

≥ 1

768
· δ2 (1− θδ)2 · e−4δ · ∆

k
.(3.2)
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By summing (3.2) over the �k/5� most popular colors, the theorem is proved.

3.4. The mixing time of the Glauber dynamics. We now calculate an up-
per bound for the mixing time of the Glauber dynamics, using Lemma 2.2 and The-
orem 2.3. Let ξ be defined by

ξ(δ, η) =
1

3840
· δ2 (1− θδ)2 · e−4δ

=
1

3840
· δ2

(
1− 3δ

2− η

)2

· e−4δ.

Theorem 3.4 shows that E [C | T ≤ δn] ≥ ξ∆. Note that ξ is a decreasing function
of η. Take δ = 1/8 and η = 8 × 10−7. Then ξ(δ, η) ≥ 2η. (These values of δ, η are
approximately optimal.) The discussion of section 3.2 suggested that this condition
was sufficient to ensure rapid mixing of the Glauber dynamics. We now give the
details.

Theorem 3.5. Let n ≥ 120 and ∆ ≥ 14. Suppose that (2 − η)∆ ≤ k ≤ 2∆,
where η = 8× 10−7. The mixing time of the Glauber dynamics for graph colorings of
∆-regular, triangle-free graphs is bounded above by

τ(ε) ≤ 4× 106 n log(nε−1).

Proof. Let δ = 1/8, as in the previous section. We bound the mixing time by
finding an upper bound on the quantity γ such that

H(Xδn, Yδn) ≤ γ

over all initial pairs (X0, Y0) ∈ S. Using the remark following Theorem 2.3, we can
define γ by (2.3). Let q = 1− (k +∆)/(kn), as in Lemma 3.2. Then

Prob [T ≤ δn] = 1− qδn

≥ 1− exp

(
−k +∆

k
δ

)
≥ 1− e−4δ/3.

Using this, with the calculations of (3.1), we obtain

γ ≤ 1−
(
1− e−4δ/3

)(
1− exp

(
ηδ

2− η
− η

3

))
≤ 1− 3.3× 10−8,

substituting δ = 1/8 and η = 8 × 10−7. Now applying Lemma 2.2 we find that the
mixing time of the Glauber dynamics is bounded above by

τ(ε) ≤ δn · log(nε
−1)

1− γ

≤ 108

26.4
n log(nε−1)

< 4× 106 n log(nε−1).

This bound holds for (2− η)∆ ≤ k ≤ 2∆, where η = 8× 10−7, assuming that ∆ ≥ 14
and n ≥ 120.
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Vigoda [23] described a new Markov chain for graph colorings which alters the
coloring of up to six vertices at each transition. He showed using path coupling that
this chain is rapidly mixing for k ≥ 11∆/6. The mixing time of this chain is bounded
above by

k

k − 11
6 ∆

n log(nε−1)

for k > 11∆/6. Vigoda also applies the comparison technique of Diaconis and Saloff-
Coste [9] to show that the mixing time of the Glauber dynamics is at most

O
(
k log(k)n2 log(n)

)
when k > 11∆/6. In particular, this gives an upper bound of O(n2 log n) when
k = 2∆. It seems unlikely that any comparison technique could yield the optimal
bound of O(n log n).
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