
Testing k-Wise Independence over Streaming Data

Kai-Min Chung Zhenming Liu Michael Mitzenmacher

Abstract

Following on the work of Indyk and McGregor [5], we consider the problem of identifying correlations
in data streams. They consider a model where a stream of pairs (i, j) ∈ [n]2 arrive, giving a joint
distribution (X, Y). They find approximation algorithms for how close the joint distribution is to the
product of the marginal distributions under various metrics, which naturally corresponds to how close
X and Y are to being independent.

We extend their main result to higher dimensions, where a stream of m k-dimensional vectors in
[n]k arrive, and we wish to approximate the `2 distance between the joint distribution and the product
of the marginal distributions in a single pass. Our analysis gives a randomized algorithm that is a (1±ε)
approximation (with probability 1 − δ) that requires space logarithmic in n and m and proportional
to 3k.

0

1 Introduction

Following on the work of Indyk and McGregor [5], we consider the problem of identifying correlations
in data streams. In their work, they consider a model where a stream of pairs (i, j) ∈ [n]2 arrive, giving
a joint distribution (X, Y). They find approximation algorithms for how close the joint distribution is
to the product of the marginal distributions under various metrics, which naturally corresponds to how
close X and Y are to being independent. They leave the problem of higher-dimensional systems, such as
when one obtains a stream of triples (X, Y, Z) ∈ [n]3, open.

These questions have been considered in follow-up work by Braverman and Ostrovsky [3, 4]. Let us
refer to the number of variables in the joint distribution as k. In [3], Braverman and Ostrovsky consider
the `2 metric, extending the ideas of [5] to k > 2, with a single-pass small-space algorithm where the
space grows proportionally to 2O(k2). In [4], they consider the problem of the `1 metric, where Indyk and
McGregor obtain a small-space single-pass O(log n)-approximation for k = 2. (Indyk and McGregor also
obtain a linear space (1 ± ε)-approximation for this metric.) Here Braverman and Ostrovsky obtain a
(1± ε)-approximation for all k, although the space required is doubly exponential in k.

In this paper, we provide an improvement on the results for the `2 distance. Specifically, our analysis
allows us to reduce the dependence on the space as a function of k to an expression proportional to
3k, instead of 2O(k2) as in [3]. (The space used is asymptotically the same in all other parameters.)
Besides yielding a technical but non-trivial improvement on the amount of space required, we believe our
proof is simpler and more natural than the extension presented in [3], and hence might prove useful for
further developments on this class of problems. Indeed, in [3] Braverman and Ostrovsky explicitly express
the potential difficulties in generalizing the approach of Indyk and McGregor, and develop a different
approach for their upper bound. In contrast, our argument develops more naturally from the original
argument of Indyk and McGregor [5]. In particular, we demonstrate the existence of a useful geometric
partitioning that extends their main idea to higher dimensions. More discussion on the limitation of
Indyk and McGregor’s approach, and the comparison of our approach to the technique of Braverman and
Ostrovsky can be found in Section 3.1.

For motivation, we note that testing for independence has been an important subject in both the
study of statistics and the design of database system. Further discussions appear in several previous works,
including [3, 4, 5, 6, 8]. Traditional non-parametric methods of testing independence over empirical data
usually require space complexity that is either linear in the support size or input size. The scale of
contemporary data sets often prohibits such space complexity. It is therefore natural to ask whether we
will be able to design algorithms to test for independence in streaming model. Interestingly, this specific
problem appears not to have been introduced until the work of Indyk and McGregor. While arguably
results for the `1 norm would be stronger than for the `2 norm in this setting, the problem for `2 norms is
interesting in its own right; see the discussion of [3] for further elaboration on this point. Further, given
the current complexity of the best results for the `1 metric given in [4], it may be that our result for the
`2 may be more appropriate for practical implementation.

Our specific theoretical contribution can be summarized as follows:

Theorem 1.1. For every ε > 0 and δ > 0, there exists a randomized algorithm that computes, given a
sequence a1, ..., am of k-tuples, in one pass and using O(3kε−2 log 1

δ (log m+log n)) memory bits, a number
Y so that the probability Y deviates from the `2 distance between product and joint distribution by more
than a factor of (1 + ε) is at most δ.

2 Review of the Algorithm for k = 2

We begin by reviewing the approximation algorithm and associated proof for the `2 norm given in
[5]. Reviewing this result will allow us to provide the necessary notation and frame the setting for our
extension to general k. Moreover, in our proof, we find that a constant in Lemma 3.1 from [5] that
we subsequently generalize appears incorrect. (Because of this, our proof is slightly different and more
detailed than the original.) Although the error is minor in the context of their paper (it only affects

1

the constant factor in the order notation), it becomes more important when considering the proper
generalization to larger k, and hence it is useful to correct here.

2.1 The Model

We provide the general underlying model. Here we mostly follow the notation of [3, 5].
Let S be a stream of size m with elements a1, ..., am, where ai ≡ (a1

i , ..., a
k
i) ∈ [n]k. (When we have a

sequence of elements that are themselves vectors, we denote the sequence number by a subscript and the
vector entry by a superscript when both are needed.) The stream S defines an empirical distribution over
[n]k as follows: the frequency f(ω) of an element ω ∈ [n]k is defined as the number of times it appears in
S, and the empirical distribution is

Pr[ω] =
f(ω)
m

for any ω ∈ [n]k.

Since ω = (ω1, ..., ωk) is a vector of size k, we may also view the streaming data as defining a joint
distribution over the random variables X1, ..., Xk corresponding to the values in each dimension. (In the
case of k = 2, we write the random variables as X and Y rather than X1 and X2.) There is a natural
way of defining marginal distribution for the random variable Xi: for ωi ∈ [n], let fi(ωi) be the number
of times ωi appears in the ith coordinate of an element of S, or

fi(ωi) =
∣∣{aj ∈ S : ai

j = ωi}
∣∣ .

The empirical marginal distribution Pri[·] for the ith coordinate is defined as

Pri[ωi] =
fi(ωi)

m
for any ωi ∈ [n].

For ω ∈ [n]k, let vω = Pr[ω] −
∏

1≤i≤k Pri[ωi], and let v be the vector in R[n]k of values vω in some
order. Our goal is to approximate the value

‖v‖ ≡

 ∑
ω∈[n]k

∣∣∣∣∣∣Pr[ω]−
∏

1≤i≤k

Pri[ωi]

∣∣∣∣∣∣
2

1
2

. (1)

This represent the `2 norm between the product of the marginal distributions and the joint distribution,
which we would expect to be close to zero in the case where the Xi were truly independent.

Finally, our algorithms will assume the availability of 4-wise independent binary vectors. For more
on 4-wise independence, including efficient implementations, see [1, 9]. For the purposes of this paper,
the following simple definition will suffice.

Definition 2.1. (4-wise independence) A random variable X over {−1, 1}n is 4-wise independent if for
any distinct values i1, i2, i3, i4 ∈ [n] and any b1, b2, b3, b4 ∈ {−1, 1}, the following equality holds,

Pr
x←X

[xi1 = b1, xi2 = b2, xi3 = b3, xi4 = b4] = 1/16.

2.2 The Algorithm and its Analysis for k = 2

In this case, we assume that the sequence (a1
1, a

2
1), (a

1
2, a

2
2), ..., (a

1
m, a2

m) arrives an item by an item.
Each (a1

i , a
2
i) (for 1 ≤ i ≤ m) is an element in [n]2. The random variables X and Y over [n] can be

expressed as follows: Pr[i, j] = Pr[X = i, Y = j] = |{` : (a1
` , a

2
`) = (i, j)}|/m

Pr1[i] = Pr[X = i] = |{` : (a1
` , a

2
`) = (i, ·)}|/m

Pr2[j] = Pr[Y = j] = |{` : (a1
` , a

2
`) = (·, j)}|/m.

2

We simplify the notation and use pi ≡ Pr[X = i], qj ≡ Pr[Y = j], ri,j = Pr[X = i, Y = j]. and
si,j = Pr[X = i] Pr[Y = j].

Indyk and McGregor’s algorithm proceeds in a similar fashion to the streaming algorithm presented
in [2]. Specifically let s1 = 72ε−2 and s2 = 2 log(1/δ). The algorithm computes s2 random variables
D1, D2, ..., Ds2 and outputs their median. The output is the algorithm’s estimate on the norm of v
defined in Equation 1. Each Di is the average of s1 random variables Dij : 1 ≤ j ≤ s1, where Dij are
independent, identically distributed random variables. Each of the variables D = Dij can be computed
from the algorithmic routine shown in Figure 1.

2-D Approximation
(
(a1

1, a
2
1), ..., (a

1
m, a2

m)
)

1 Independently generate 4-wise independent random vectors x, y from {−1, 1}n.
2 t1 ← 0, t2 ← 0, t3 ← 0.
3 for c← 1 to m
4 doLet the cth item (a1

c , a
2
c) = (i, j)

5 t1 ← t1 + xiyj , t2 ← t2 + xi, t3 ← t3 + yj .
6 Return D = (t1/m− t2t3/m2)2.

Figure 1: The procedure for generating random variable D for k = 2.

Notice that by the end of the process 2-D Approximation, we have t1/m =
∑

i,j∈[n] xiyjri,j , t2/m =∑
i∈[n] xipi, and t3/m =

∑
i∈[n] yiqi. Also, when a vector is in R(n2), its indices can be represented by

(i1, i2) ∈ [n]2. In what follows, we will use a bold letter to represent the index of a high dimensional
vector, e.g., vi ≡ vi1,i2 . The following Lemma shows that the expectation of D is ‖v‖ and the variance of
D is at most 9(E[D])2.

Lemma 2.2. [5] Consider two independent vectors x = (x1, ..., xn), y = (y1, ..., yn) ∈ {−1, 1}n, where each

vector is 4-wise independent. Let v ∈ Rn2
and zi(≡ z(i1,i2)) = xi1yi2. Let us define D =

(∑
i∈[n]2 zivi

)2
.

Then E[D] =
∑

i∈[n]2 v2
i and Var[D] ≤ 9(E[D])2.

Proof. We have E[D] = E[(
∑

i zivi)2] =
∑

i v
2
i E[z2

i] +
∑

i 6=j vivjE[zizj]. For all i ∈ [n]2, we know z2
i = 1.

On the other hand, zizj ∈ {−1, 1}. The probability that zizj = 1 is Pr[zizj = 1] = Pr[xi1xj1yi2yj2 =
1] = 1/16 +

(
4
2

)
1/16 + 1/16 = 1/2. The last equality holds is because xi1xj1yi2yj2 = 1 is equivalent to

saying either all these variables are 1, or exactly 2 of these variables are -1, or all these variables are -1.
Therefore, E[zizj] = 0. Consequently, E[D] =

∑
i∈[n]2 v2

i .
Now we bound the variance. We have

Var[D] ≤ E[D2] =
∑

i,j,k,l∈[n]2

E[zizjzkzl]vivjvkvl ≤
∑

i,j,k,l∈[n]2

|E[zizjzkzl]| · |vivjvkvl|

Also |E[zizjzkzl]| ∈ {0, 1}. The quantity E[zizjzkzl] 6= 0 if and only if the following relation holds,

∀s ∈ [2] : ((is = js) ∧ (ks = ls)) ∨ ((is = ks) ∧ (js = ls)) ∨ ((is = ls) ∧ (ks = js)) . (2)

Denote the set of 4-tuples (i, j,k, l) that satisfy the above relation by D. We may also view each 4-tuple
as an ordered set that consists of 4 points in [n]2. Consider the unique smallest axes-parallel rectangle in
[n]2 that contains a given 4-tuple in D (i.e. contains the four ordered points). Note this could either be a
(degenerate) line segment or a (non-degenerate) rectangle, as we discuss below. Let M : D → {A,B, C, D}
be the function that maps an element σ ∈ D to the smallest rectangle ABCD defined by σ. Since a
rectangle can be uniquely determined by its diagonals, we may write M : D → (χ1, χ2, ϕ1, ϕ2), where

3

χ1 ≤ χ2 ∈ [n], ϕ1 ≤ ϕ2 ∈ [n] and the corresponding rectangle is understood to be the one with
diagonal {(χ1, ϕ1), (χ2, ϕ2)}. Also, the inverse function M−1(χ1, χ2, ϕ1, ϕ2) represents the pre-images
of (χ1, χ2, ϕ1, ϕ2) in D. (χ1, χ2, ϕ1, ϕ2) is degenerate if either χ1 = χ2 or ϕ1 = ϕ2, in which case the
rectangle (and its diagonals) correspond to the segment itself, or χ1 = χ2 and ϕ1 = ϕ2, and the rectangle
is just a single point.

Example 2.3. Let i = (1, 2), j = (3, 2), k = (1, 5), and l = (3, 5). The tuple is in D and its corresponding
bounding rectangle is a non-degenerate rectangle. The function M(i, j,k, l) = (1, 3, 2, 5).

Example 2.4. Let i = j = (1, 4) and k = l = (3, 7). The tuple is also in D and minimal bounding
rectangle formed by these points is an interval {(1, 4), (3, 7)}. The function M(i, j,k, l) = (1, 3, 4, 7).

To start we consider the non-degenerate cases. Fix any (χ1, χ2, ϕ1, ϕ2) with χ1 < χ2 and φ1 < φ2.
There are in total

(
4
2

)2
= 36 tuples (i, j,k, l) in D with M(i, j,k, l) = (χ1, χ2, ϕ1, ϕ2). Twenty-four of these

tuples correspond to the setting where none of i, j,k, l are equal, as there are twenty-four permutations
of the assignment of the labels i, j,k, l to the four points. (This corresponds to the first example.) In
this case the four points form a rectangle, and we have |vivjvkvl| ≤ 1

2((vχ1,ϕ1vχ2,ϕ2)
2 + (vχ1,ϕ2vχ2,ϕ1)

2).
Intuitively, in these cases, we assign the “weight” of the tuple to the diagonals.

The remaining twelve tuples in M−1(χ1, χ2, ϕ1, ϕ2) correspond to intervals. (This corresponds to
the second example.) In this case two of i, j,k, l correspond to one endpoint of the interval, and the
other two labels correspond to the other endpoint. Hence we have either |vivjvkvl| = (vχ1,ϕ1vχ2,ϕ2)

2 or
|vivjvkvl| = (vχ1,ϕ2vχ2,ϕ1)

2, and there are six tuples for each case.
Therefore for any χ1 < χ2 ∈ [n] and ϕ1 < ϕ2 ∈ [n] we have:∑

(i,j,k,l)∈
M−1(χ1,χ2,ϕ1,ϕ2)

|vivjvkvl| ≤ 18((vχ1,ϕ1vχ2,ϕ2)
2 + (vχ1,ϕ2 , vχ2,ϕ1)

2).

The analysis is similar for the degenerate cases, where the constant 18 in the bound above is now
quite loose. When exactly one of χ1 = χ2 or ϕ1 = ϕ2 holds, the size of M−1(χ1, χ2, ϕ1, ϕ2) is

(
4
2

)
= 6,

and the resulting intervals correspond to vertical or horizontal lines. When both χ1 = χ2 and ϕ1 = ϕ2,
then |M−1(χ1, χ2, ϕ1, ϕ2)| = 1. In sum, we have∑
i,j,k,l∈D

|vivjvkvl| =
∑

χ1≤χ2
ϕ1≤ϕ2

∑
(i,j,k,l)∈

M−1(χ1,χ2,ϕ1,ϕ2)

|vivjvkvl|

≤
∑

χ1<χ2
ϕ1<ϕ2

18((vχ1,ϕ1vχ2,ϕ2)
2 + (vχ1,ϕ2vχ2,ϕ1)

2) +
∑

χ1=χ2
ϕ1<ϕ2

6((vχ1,ϕ1vχ2,ϕ2)
2 + (vχ1,ϕ2vχ2,ϕ1)

2)

+
∑

χ1<χ2
ϕ1=ϕ2

6((vχ1,ϕ1vχ2,ϕ2)
2 + (vχ1,ϕ2vχ2,ϕ1)

2) +
∑

χ1=χ2
ϕ1=ϕ2

(vχ1,ϕ1vχ2,ϕ2)
2

≤ 9
∑
i∈[n]2

j∈[n]2

(vivj)2 = 9E2[D].

Finally, we have
∑

i,j,k,l∈[n]2 |E[zizjzkzl]| · |vivjvkvl| ≤
∑

i,j,k,l∈D |vivjvkvl| ≤ 9E2[D] and Var[D] ≤
9E2[D].

We emphasize the geometric interpretation of the above proof as follows. The goal is to bound the
variance by a constant times E2[D] =

∑
i,j∈[n]2

(vivj)2, where the index set is the set of all possible lines in
plane [n]2 (each line appears twice). We first show that Var[D] ≤

∑
i,j,k,l∈D |vivjvkvl|, where the 4-tuple

index set corresponds to a set of rectangles in a natural way. The main idea of Indyk and McGregor is to
use inequalities of the form |vivjvkvl| ≤ 1

2((vχ1,ϕ1vχ2,ϕ2)
2 + (vχ1,ϕ2vχ2,ϕ1)

2) to assign the “weight” of each

4

4-tuple to the diagonals of the corresponding rectangle. The above analysis shows that 18 copies of all
lines are sufficient to accommodate all 4-tuples. While similar inequalities could also assign the weight of
a 4-tuple to the vertical or horizontal edges of the corresponding rectangle, using vertical or horizontal
edges is problematic. The reason is that there are Ω(n4) 4-tuples but only O(n3) vertical or horizontal
edges, so some lines would receive Ω(n) weight, requiring Ω(n) copies. This problem is also noted in [3].

Our bound here is Var[D] ≤ 9E2[D], while in [5] the bound is given as Var[D] ≤ 3E2[D]. There
appears to have been an error in the derivation in [5]; some intuition comes from the following example.
We note that |D| is at least

(
4
2

)2 ·
(
n
2

)2 = 9n4− 9n2 (This counts the number of non-degenerate 4-tuples.)
Now if we set vi = 1 for all 1 ≤ i ≤ n2, we have E[D2] ≥ |D| = 9n4 − 9n2 ∼ 9E2(D), which suggests
Var[D] > 3E2[D]. Again, we emphasize this discrepancy is of little importance to [5]; the point there is
that the variance is bounded by a constant factor times the square of the expectation. It is here, where
we are generalizing to higher dimensions, that the exact constant factor is of some importance.

Given the bounds on the expectation and variance for the Di,j , standard techniques yield a bound
on the performance of our algorithm.

Theorem 2.5. For every ε > 0 and δ > 0, there exists a randomized algorithm that computes, given a
sequence (a1

1, a
2
1), ..., (a

1
m, a2

m), in one pass and using O(ε−2 log 1
δ (log m + log n)) memory bits, a number

Med so that the probability Med deviates from ‖v‖ by more than ε is at most δ.

Proof. Recall the algorithm described in the beginning of Section 2.2: let s1 = 72ε−2 and s2 = 2 log δ. We
first computes s2 random variables D1, D2, ..., Ds2 and outputs their median Med, where each Di is the
average of s1 random variables Dij : 1 ≤ j ≤ s1 and Dij are independent, identically distributed random
variables computed by Figure 1. By Chebyshev’s inequality, we know that for any fixed i,

Pr
(∣∣Di − ‖v‖

∣∣) ≥ ε‖v‖] ≤ Var(Di)
ε2‖v‖2

=
(1/s1)Var[D]

ε2‖v‖2
=

(9ε2/72)‖v‖2

ε2‖v‖2
=

1
8
.

Finally, by standard Chernoff bound arguments (see for example Chapter 4 of [7]), the probability that
more than s2/2 of the variables Yi deviate by more than ε‖v‖ from ‖v‖ is at most δ. In case this does
not happen, the median Med supplies a good estimate to the required quantity ‖v‖ as needed.

3 The Algorithm and its Analysis for k > 2

3.1 Gaining Intuition: The Case k = 3

For the case of general k, the input to the algorithm is a1, a2, ..., am, where each ai = (a1
i , a

2
i , ..., a

k
i)

is an element in [n]k. Let s1 = 8 · 3k · ε−2 and s2 = 2 log δ. As before our algorithm computes s2 random
variables D1, ..., Ds2 and outputs their median. Each Di is the average of s1 random variables Dij :
1 ≤ j ≤ s1, where Dij are independent, identically distributed random variables. Each of the variables
D = Dij can be computed from the algorithmic routine shown in Figure 2.

k-D Approximation (a1, ..., am)
1 Independently generate 4-wise independent random vectors x1, ..., xk from {−1, 1}n.
2 s← 0, and ti ← 0 for 1 ≤ i ≤ k.
3 for c← 1 to m

4 dos← s +
∏

1≤j≤k xaj
c

j , tj ← tj + xaj
c

j for 1 ≤ j ≤ k.
5 Return D = (s/m−

∏
1≤j≤k(tj/m))2.

Figure 2: The procedure for generating random variable X for general k.

5

Figure 3: Examples of possible 4-tuples in D3. The leftmost instance: i = (1, 0, 1), j = (0, 0, 1), k =
(1, 1, 0), and l = (0, 1, 0); the middle instance: i = (1, 0, 1), j = (0, 1, 1), k = (1, 0, 0), and l = (0, 1, 0); the
rightmost instance: i = (1, 0, 1), j = (0, 0, 0), k = (1, 1, 0), and l = (0, 1, 1). In the first two instances, the
four points i, j, k, and l spans 2-dimensional subspace. The diagonals in the first two cases are intuitive
to define. In the last instance, the four points i, j, k, and l do not share the same plane. It is not clear
how diagonals shall be defined in this case.

Like the case for k = 2, we shall show the algorithm k-D Approximation outputs a correct es-
timator and the variance of the estimator is well-controlled. We will soon see that finding E[D] is less
challenging; the more difficult question is to bound Var[D], which we will focus on below. By the same
argument, we have

Var[D] ≤ E[D2] =
∑
i,j,k,l

E[zizjzkzl]vivjvkvl ≤
∑
i,j,k,l

|E[zizjzkzl]| · |vivjvkvl|

and the quantity E[zizjzkzl] 6= 0 if and only if the following relation holds:

∀s ∈ [k] : ((is = js) ∧ (ks = ls)) ∨ ((is = ks) ∧ (js = ls)) ∨ ((is = ls) ∧ (ks = js)) . (3)

Let Dk be the set of all 4-tuples (i, j,k, l) that satisfy the above relation. There appears to be no
natural way to translate a 4-tuple in Dk to two diagonal pairs by using only the techniques for the case
for k = 2 regardless of how careful we are to define diagonals for a 4-tuple in Dk. To clarify this, let us
take a closer look at the case for k = 3. The quantity E[zizjzkzl] is non-zero if and only if the 4-tuple
(i, j,k, l) are in D3 . Mimicking what Indyk and McGregor did, we interpret 4-tuples in D3 geometrically.
Figure 3 illustrates possible configurations (up to rotations and permutations) of the tuples in D3.

An immediate problem in applying Indyk and McGregor’s technique is that the “diagonals” now are
no longer well-defined. A possible fix is to redefine the diagonals for the 4-tuples in D3. While there is
a natural way of defining diagonals for the first two configurations in Figure 3 in the Appendix, defining
diagonals for the rightmost configuration is more subtle. Let us call a the rightmost configuration a bad
4-tuple. Formally speaking, a 4-tuple (A,B, C, D) ∈ D3 is a bad tuple if the four points A, B, C, and D
do not lie on the same plane. We say this type of 4-tuples are bad because there is no natural way to
define the “diagonals” over these tuples.

We shall argue that we would not be able to obtain any useful bound if we apply Indyk and Mc-
Gregor’s technique in a straightforward way. Indeed, there are only three possible ways of applying the
arithmetic-geometric mean inequality (henceforth, referred to as the A-G inequality) over the bad tuples:
2|vAvBvCvD| ≤ v2

Av2
B + v2

Cv2
D, 2|vAvBvCvD| ≤ v2

Av2
C + v2

Bv2
D, or 2|vAvBvCvD| ≤ v2

Av2
D + v2

Bv2
C . Accord-

ingly, there could be three ways of defining diagonals for the rightmost 4-tuple, which are all visualized
in Figure 4.

6

Figure 4: Possible ways of applying arithmetic-geometric inequality over a bad 4-tuple. The geometric
interpretation of arithmetic-geometric inequality is to translate a product of four points into the sum
of two lines. Leftmost: vivjvkvl ≤ 1

2(v2
i v

2
j + v2

kv2
l); middle: vivjvkvl ≤ 1

2(v2
i v

2
k + v2

j v
2
l); rightmost:

vivjvkvl ≤ 1
2(v2

i v
2
l + v2

j v
2
k).

These three ways of defining diagonals, however, all suffer from a serious drawback. The diagonals
are always parallel to one of the xy, yz, or xz planes.1 The total number of intervals that are parallel
to xy, yz, or xz plane is Θ(n5) while the total number of bad 4-tuples is Θ(n6). Therefore, we can at
best to get a bound that looks like Var[D] ≤ Θ(n)E2[D]. This bound will be insufficient to establish
polylogarithmic space algorithms. Again, Braverman and Ostrovsky also made similar observations on
the limits of Indyk and McGregor’s technique in [3].

Notice that Indyk and McGregor’s way of using the A-G inequality in fact always translates a product
of four points to a sum of two lines locally. The obstacle presented above suggests that only using local
transformation will not suffice to give us a useful bound. We therefore provide a global transformation
that can fix the problem. Specifically, we show how to handle the bad tuples by applying the A-G
inequality twice. The geometric interpretation of our technique corresponds to global manipulations of
the bad tuples.

Let us first develop a systematic way to generate all bad tuples in D3. Consider an arbitrary
hyperrectangle R that is defined by its diagonal {(α1, α2, 1), (β1, β2, n)}. Consider two sets of point pairs
which are along the edges of the hyperrectangle R: B ≡ {(B1i, B2i) | 1 ≤ i ≤ n, B1i = (α1, α2, i), B2i =
(β1, β2, i)} and G ≡ {(G1i, G2i) | 1 ≤ i ≤ n, G1i = (α1, β2, i), G2i = (α2, β1, i)}. These two sets can
be visualized in Figure 5. Notice that a pair in B and a pair in G with different z-coordinates form
a bad 4-tuple. Directly applying the A-G inequality for an isolated quantity vB1ivB2ivG1jvG2j , where
(B1i, B2i, G1j , G2j) is a bad 4-tuple, would not allow us to derive any useful bound. Instead, we may
group all bad tuples (together with some degenerate tuples with the same z-coordinate) bounded by R
and apply the A-G inequality two consecutive times as follows:

∑
1≤i,j≤n

|vG1ivG2ivB1jvB2j | =

 ∑
1≤i≤n

|vG1ivG2i |

  ∑
1≤j≤n

|vB1jvB2j |

 ≤ 1
2

(∑
i

|vG1ivG2i |
)2

+
(∑

j

|vB1jvB2j |
)2

 ,

where the last inequality holds because of the A-G inequality. Next, we see that(∑
1≤i≤n

|vG1iG2i |
)2

=
∑

1≤i,j≤n

|vG1ivG2ivG1jvG2j | ≤
1
2

∑
i,j

(
v2
G1i

v2
G2j

+ v2
G2i

v2
G1j

)
=

∑
i,j

v2
G1i

v2
G2j

.

1Here x, y, and z shall be understood as 3 axes for the space [n]3.

7

Figure 5: Defining the set of point pairs B and G in a hyperrectangle for k = 3. The rectangular
parallelepiped to the left is an R for a fixed α1, α2, β1, and β2. The black lines drawn on the rectangular
parallelepiped indicate the set B and the gray lines indicate the set G. In particular a black (gray) line
corresponds to a pair of points in B (in G). An arbitrary black line and an arbitrary gray line corresponds
with a bad 4-tuple in D3. For example, the rectangular parallelepiped to the right highlights a black
line {B2,4, B1,4} and a gray line {G1,2, G2,2}. The 4-tuples that consist of {B2,4, B1,4, G1,2, G2,2} (e.g.,
(B2,4, B1,4, G1,2, G2,2)) are all bad 4-tuples in D3.

The inequality in the middle holds because of the A-G inequality again. Similarly, (
∑

j |vB1jvB2j |)2 ≤∑
i,j v2

B1i
v2
B2j

. Notice now that the set of all bad tuples generated by the sets G and B are charged to the
diagonals in the form v2

G1i
v2
G2j

(or v2
B1i

v2
B2j

). As opposed to having an insufficient number of diagonals
being parallel to one of the xy, yz, or xz planes, there are plenty of diagonals of the form v2

B1i
v2
B2j

.
The above manipulation gives us a way to translate bad tuples to diagonals that are not parallel

to the xy, yz, or xz planes, which is sufficient to analyze the k = 3 case in a way similar to the k = 2
case. The manipulation allows us to fix bad tuples that reside on one stripe. Processing all 4-tuples in
D3 requires a little additional work. We group bad tuples (and some of the good tuples) into multiple
stripes and apply the above technique; for the rest of the good tuples, we use Indyk and McGregor’s
original technique. It can be shown using these two techniques that Var[D] ≤ 27E2[D]. We briefly sketch
how to obtain this bound based on the technique in Section 3.1. We only give a sketch since our general
analysis for k > 2 will also cover this case. Recall that we process all 4-tuples in D3 as follows: we group
bad tuples (and some of the good tuples) into multiple stripes and apply the A-G inequality twice; for
the rest of the good tuples, we use Indyk and McGregor’s original technique.

We want to count the number of times that an edge v2
i v

2
j (for i, j ∈ [n]3) will be assigned weight

through the translation. Recall that a 4-tuple (A,B, C, D) is good if A,B, C, D are four distinct points
lying on the same plane. Let us consider a fixed edge v2

i v
2
j , where i1 6= j1, i2 6= j2, and i3 6= j3 and

calculate the weight assigned to this edge (the analysis for the rest of edges v2
i v

2
j , where i and j share

one or more coordinates will be similar). Fix an edge v2
i v

2
j . The number of good 4-tuples that use v2

i v
2
j

is 3 · 4! = 72. Each good 4-tuple only uses the A-G inequality once and assigns a weight of one half to
v2
i v

2
j . Therefore, v2

i v
2
j is assigned a total weight of 72/2 = 36 from good tuples.

Using the above technique, it can be shown that the amortized number of bad 4-tuples that assign
weight to v2

i v
2
j is 2 ·4! = 48. Because we use the A-G inequality twice to deal with bad 4-tuples, each bad

4-tuple assigns a weight of one quarter to v2
i v

2
j . Therefore, v2

i v
2
j is assigned weight 48/4 = 12 to amortize

for bad tuples.
Finally, there could be degenerate cases where the 4-tuples only form a line. Fixing the edge v2

i v
2
j ,

there could be
(
4
2

)
= 6 such 4-tuples. Each degenerate 4-tuple assigns a weight of one to v2

i v
2
j . Therefore,

v2
i v

2
j is assigned weight 6 from the degenerate cases. Summing up these three cases, we have Var[D] ≤

((36 + 12 + 6)/2) ·E2[D] = 27E2[D]. We need to divide 36 + 12 + 6 by 2 because each vivj appears twice

8

in E2[D].
Before presenting our analysis for general k, we briefly discuss the technique of Braverman and

Ostrovsky [3]. The above manipulation of applying A-G inequality twice also appears in their analysis to
achieve global transformations. However, they do not give the aforementioned geometric interpretation,
but instead use the approach to give an inductive argument on the number of coordinates k. They
decompose the tuples according to certain combinatorial properties, and each global transformation is
used to gain one “good” coordinate. They pay a multiplicative factor at each level of the induction that
yields an overall bound with a factor of 2O(k2). In contrast, in the next section, we show that a global
transformation can be used without an induction on all tuples (both good and bad tuples) to assign all
diagonals equal weight, which gives our improved bound of a factor of 3k.

3.2 A General Analysis for k ≥ 3

Now we consider general k. The above argument would become very complicated quickly as k
increases, due to the difficulty of dealing with various degenerate cases. We obtain a more elegant
analysis by a slightly different global transformation again based on applying the A-G inequality twice.
Instead of dividing tuples into good and bad tuples, we divide tuples into 3k classes and apply a global
transformation to show that each class of tuples can be bounded by a copy of E2[D], which implies
Var[D] ≤ 3k · E2[D].

We say that 4-tuple (A,B, C, D) is in Dk if and only if

∀s ∈ [k] : ((As = Bs) ∧ (Cs = Ds)) ∨ ((As = Cs) ∧ (Bs = Ds)) ∨ ((As = Ds) ∧ (Bs = Cs)) .

For each coordinate s ∈ [k], (As, Bs, Cs, Ds) is in one of the following forms: (α, α, β, β), (α, β, α, β), (α, β, β, α),
or (α, α, α, α). Let us refer to the first three cases as Type 1, 2, 3, respectively. The last case can be viewed
as a degenerate case of any three types, which we denote by Type ∗. Thus, every 4-tuple (A,B, C, D) ∈ Dk

has certain type in {1, 2, 3, ∗}k. Now, we can divide Dk into 3k classes Cv with v ∈ [3]k in a natural way.
A class Cv consists of all tuples that are consistent with type with v, where ∗ is consistent with any of
1, 2, 3. Note that some tuples can belong to multiple classes and this is fine for our purpose. Example 3.1
illustrates our notation.

Example 3.1. Let k = 5. Consider
A = (1, 2, 5, 4, 3)
B = (1, 1, 3, 4, 1)
C = (0, 2, 5, 3, 1)
D = (0, 1, 3, 3, 3).

This 4-tuple (A,B, C, D) ∈ D5 and according to the classification rule above, the type of this 4-tuple v
corresponds to the vector (1, 2, 2, 1, 3). Now consider another 4-tuple in D5:

A′ = (2, 1, 6, 4, 3)
B′ = (2, 1, 3, 4, 1)
C ′ = (0, 1, 6, 5, 3)
D′ = (0, 1, 3, 5, 1).

This 4-tuple (A′, B′, C ′, D′) has type (1, ∗, 2, 1, 3) and is consistent with any of the following types:
(1, 1, 2, 1, 3), (1, 2, 2, 1, 3), (1, 3, 2, 1, 3).

For notational convenience, we introduce the following alternative notation to describe the tuples
and classes. Let I be a subset of k and let A be a point in [n]k. We denote A |I as a projection of the point
A in [n]k to a subspace [n]|I| specified by the coordinates in I. For example, let k = 4, A = (1, 1, 2, 3),
and I = {1, 2, 4}. Then we have A |I= (1, 1, 3).

Let I1, I2, I3 be an arbitrary partition of [k], where |I1| = k1, |I2| = k2, and |I3| = k3. Let
α ∈ [n]k1 , β ∈ [n]k2 , and γ ∈ [n]k3 . Then let us define πI1,I2,I3(α, β, γ) be a point in [n]k such that
πI1,I2,I3(α, β, γ) |I1= α, πI1,I2,I3(α, β, γ) |I2= β, and πI1,I2,I3(α, β, γ) |I3= γ. Note that a partition
(I1, I2, I3) corresponds to an element in [3]k.

9

Example 3.2. Let k = 4 and I1 = {1, 4}, I2 = {2}, and I3 = {3}. Let α = (3, 5), β = 5, and γ = 2.
Then πI1,I2,I3(α, β, γ) = (3, 5, 2, 5) since πI1,I2,I3(α, β, γ) |I1= (3, 5) = α, πI1,I2,I3(α, β, γ) |I2= 5 = β, and
πI1,I2,I3(α, β, γ) |I3= 2 = γ.

We say a triple (I1, I2, I3) an ordered 3-partition for [k] if I1 ∪ I2 ∪ I3 = [k] and Ii ∩ Ij = ∅ for i 6= j.
Let I be the set of all ordered 3-partition for k. Note that the set I corresponds to the set [3]k in a
natural way. Define

V(I1, I2, I3) ≡
∑

α1,β1∈[n]|I1|

α2,β2∈[n]|I2|

α3,β3∈[n]|I3|

|vπI1,I2,I3
(α1,α2,α3)vπI1,I2,I3

(α1,β2,β3)vπI1,I2,I3
(β1,α2,β3)vπI1,I2,I3

(β1,β2,α3)|.

When |Ii| = 0 for some i, we shall view αi = βi = ∅ representing a special symbol, instead of setting
V(I1, I2, I3) = 0. For example, when |I1| = 0,

V(I1, I2, I3) ≡
∑

α2,β2∈[n]|I2|

α3,β3∈[n]|I3|

|vπI1,I2,I3
(∅,α2,α3)vπI1,I2,I3

(∅,β2,β3)vπI1,I2,I3
(∅,α2,β3)vπI1,I2,I3

(∅,β2,α3)|.

Notice that we have |I| = 3k. Also we shall see that V (I1, I2, I3) sums up all possible tuples
that can be classified as (c1, c2, ..., ck), where ci = j if and only if i ∈ Ij . Furthermore, if a 4-tuple
(A,B, C, D) ∈ Dk agrees on one or more coordinates, the term vAvBvCvD may appear multiple times in
different V (I1, I2, I3) for different ordered-3-partition. Therefore, the quantities V(I1, I2, I3) indexed by
(I1, I2, I3) for all possible ordered-3-partition (I1, I2, I3) cleanly cover all the tuples in Dk. In other words,∑

(A,B,C,D)∈Dk

|vAvBvCvD| ≤
∑

(I1,I2,I3)∈I

V(I1, I2, I3). (4)

Finally, for α ∈ [n]i and β ∈ [n]j , define α⊕ β to be a point in [n]i+j by concatenating β to the end
of α in the natural way. Also, define α⊕ β ⊕ γ = (α⊕ β)⊕ γ.

Now we are ready to state and prove our major lemma.

Lemma 3.3. Let x1 = (x1
1, ..., x

n
1), ..., xk = (x1

k, ..., x
n
k) ∈ {−1, 1}n be k independent vectors, where each

vector is 4-wise independent. Let v ∈ Rnk
and for each i ∈ [n]k let

zi ≡ zi1,...,ik ≡
∏

1≤j≤k

x
ij
j .

Define D = (
∑

i∈[n]k zivi)2. Then E[D] =
∑

i∈[n]k v2
i and Var[D] ≤ 3kE2[D].

Proof. We have E[D] = E[(
∑

i zivi)2] =
∑

i v
2
i E[z2

i] +
∑

i 6=j vivjE[zizj]. For all i ∈ [n]k, we know z2
i = 1.

On the other hand, E[zizj] = E[(
∏

l x
il
l)(

∏
l x

jl
l)] =

∏
l E[xil

l xjl
l]. Furthermore, since xil

l xjl
l ∈ {−1, 1} for

any l and Pr[xil
l xjl

l = 1] = 1/2, we have E[xil
l xjl

l] = 0. Therefore, E[zizj] = 0 for any l, and consequently
E[D] =

∑
i∈[n]k v2

i .
Next we bound for variance. The setup of the proof is similar to Lemma 2.2, except in a higher dimen-

sional space. First we have Var[X] ≤
∑

A,B,C,D∈[n]k |E[zAzBzCzd]|·|vAvBvCvD| ≤
∑

A,B,C,D∈Dk
|vAvBvCvD|,

By Inequality 4, we have ∑
(A,B,C,D)∈Dk

|vAvBvCvD| ≤
∑

(I1,I2,I3)∈I

V(I1, I2, I3).

10

Now we bound each individual V(I1, I2, I3) for an arbitrary ordered 3-partition (I1, I2, I3) by E2[D].
Let |I1| = k1, |I2| = k2, and |I3| = k3. To simplify the notation, in what follows, the operator π means
the operator πI1,I2,I3 . In case k1 > 0, we have

V(I1, I2, I3)

=
∑

α1β1∈[n]k1

∑
α2,β2∈[n]k2

∑
α3,β3∈[n]k3

|vπ(α1,α2,α3)vπ(α1,β2,β3)vπ(β1,α2,β3)vπ(β1,β2,α3)|

=
∑

α2,β2∈[n]k2

α3,β3∈[n]k3

 ∑
α1∈[n]k1

|vπ(α1,α2,α3)vπ(α1,β2,β3)|

 ·
 ∑

β1∈[n]k1

|vπ(β1,α2,β3)vπ(β1,β2,α3)|



≤ 1
2

∑
α2,β2∈[n]k2

α3,β3∈[n]k3

 ∑
α1∈[n]k1

|vπ(α1,α2,α3)vπ(α1,β2,β3)|

2

+

 ∑
β1∈[n]k1

|vπ(β1,α2,β3)vπ(β1,β2,α3)|

2 ,

We may also be able to bound each term in the last line individually: ∑
α1∈[n]k1

|vπ(α1,α2,α3)vπ(α1,β2,β3)|

2

=
∑

α1,β1∈[n]k1

|vπ(α1,α2,α3)vπ(α1,β2,β3)vπ(β1,α2,α3)vπ(β1,β2,β3)| (expand the square term)

=
∑

α1,β1∈[n]k1

|vπ(α1,α2,α3)vπ(β1,β2,β3)| · |vπ(β1,α2,α3)vπ(α1,β2,β3)| (regroup the product)

≤ 1
2

∑
α1,β1∈[n]k1

(
v2
π(α1,α2,α3)v

2
π(β1,β2,β3) + v2

π(β1,α2,α3)v
2
π(α1,β2,β3)

)
(“translate” into diagonals)

=
1
2

 ∑
α1,β1∈[n]k1

v2
π(α1,α2,α3)v

2
π(β1,β2,β3)

 +
1
2

 ∑
α1,β1∈[n]k1

v2
π(β1,α2,α3)v

2
π(α1,β2,β3)

 (regroup)

=
1
2

 ∑
α1,β1∈[n]k1

v2
π(α1,α2,α3)v

2
π(β1,β2,β3)

 +
1
2

 ∑
α1,β1∈[n]k1

v2
π(α1,α2,α3)v

2
π(β1,β2,β3)

 (rename the indices)

=

 ∑
α1,β1∈[n]k1

v2
π(α1,α2,α3)v

2
π(β1,β2,β3)


Similarly, (∑

β1∈[n]k1

|vπ(β1,α2,β3)vπ(β1,β2,α3)|
)2
≤

∑
α1,β1∈[n]k1

v2
π(α1,α2,β3)v

2
π(β1,β2,α3).

11

Therefore,

1
2

∑
α2,β2∈[n]k2

α3,β3∈[n]k3

 ∑
α1∈[n]k1

|vπ(α1,α2,α3)vπ(α1,β2,β3)|

2

+

 ∑
β1∈[n]k1

|vπ(β1,α2,β3)vπ(β1,β2,α3)|

2

≤ 1
2

∑
α2,β2∈[n]k2

α3,β3∈[n]k3

 ∑
α1,β1∈[n]k1

v2
π(α1,α2,α3)v

2
π(β1,β2,β3) +

∑
α1,β1∈[n]k1

v2
π(α1,α2,β3)v

2
π(β1,β2,α3)


=

∑
α1⊕α2⊕α3∈[n]k

β1⊕β2⊕β3∈[n]k

v2
π(α1,α2,α3)v

2
π(β1,β2,β3)

=
∑

α1⊕α2⊕α3∈[n]k

β1⊕β2⊕β3∈[n]k

v2
α1⊕α2⊕α3

v2
β1⊕β2⊕β3

= E2[D].

When k1 = 0, we have

V(I1, I2, I3) =
∑

α2,β2∈[n]k2

∑
α3,β3∈[n]k3

∣∣vπ(∅,α2,α3)vπ(∅,β2,β3)vπ(∅,α2,β3)vπ(∅,β2,α3)

∣∣
≤ 1

2

∑
α2,β2

∑
α3,β3

(
v2
π(∅,α2,α3)v

2
π(∅,β2,β3) + v2

π(∅,α2,β3)v
2
π(∅,α2,β3)

)
=

∑
α2,β2
α3,β3

v2
π(∅,α2,α3)v

2
π(∅,β2,β3)

=
∑

α2⊕α3∈[n]k

β2⊕β3∈[n]k

v2
α2⊕α3

v2
β2⊕β3

= E2[D].

Therefore, in any case, V(I1, I2, I3) ≤ E2[D] for any ordered 3-partition (I1, I2, I3) and∑
(A,B,C,D)∈Dk

|vAvBvCvD| ≤
∑

(I1,I2,I3)∈I

V(I1, I2, I3) ≤ |I|E2[D] = 3kE2[D].

We note that |Dk| >
(
4
2

)k(n
2

)k = 3kn2k − o(n2k). If we set v ∈ Rnk
to be a uniform vector, we have

E(D2) ∼ 3kE2(D). Therefore, we do not expect to be able to improve this result without a different
approach or further additional techniques. Following exactly the approach of Theorem 2.5, we obtain our
main result from Lemma 3.3.

Theorem 3.4. For every ε > 0 and δ > 0, there exists a randomized algorithm that computes, given a
sequence a1, ..., am of k-tuples, in one pass and using O(3kε−2 log 1

δ (log m+log n)) memory bits, a number
Med so that the probability Med deviates from the `2 distance between product and joint distribution by
more than ε is at most δ.

12

4 Conclusion

There remain several open questions left in this space. Lower bounds, particularly bounds that
depend non-trivially on the dimension k, would be useful. There may still be room for better algorithms
for testing k-wise independence in this manner using the `2 norm, and there certainly appears to be
possible improvements in the harder case of the `1 norm. A natural generalization would be to find a
particularly efficient algorithm for testing k-out-of-n-wise independence (other than handling each set
of k variable separately). More generally, a question given in [5], to identify random variables whose
correlation exceeds some threshold according to some measure, remains widely open.

References

[1] N. Alon, L. Babai, A. Itai, “A Fast and simple randomized parallel algorithm for the maximal
independent set problem,” in Journal of Algorithms vol.7, issue 4, pp.567-583, 1986.

[2] N. Alon, Y. Matias, M. Szegedy, “The space complexity of approximating the frequency moments,”
in Journal of Computer and System Sciences, pp 137-147, 1999.

[3] V. Braverman, R. Ostrovsky, “Measuring k-wise independence of streaming data under L2 norm,”
http://arxiv.org/abs/0806.4790.

[4] V.Braverman, R. Ostrovsky, “Measuring independence of datasets,” http://arxiv.org/abs/0903.
0034.

[5] P. Indyk, A. McGregor, “Declaring independence via the sketching of sketches”, in Proceedings of
the 19th annual ACM-SIAM Symposium on Discrete Algorithms, 2008.

[6] E. L. Lehmann, “Testing statistical hypotheses,” Wadsworth and Brooks/Cole, 1986.

[7] M. Mitzenmacher, E. Upfal, “Probability and computing: randomized algorithms and probabilistic
analysis,” Cambridge University Press, 2005.

[8] V. Poosala, Y. E. Ioannidis, “Selectivity estimation without the attribute value independence as-
sumption” Proceedings of the 23rd International Conference on Very Large Data Bases, pp.486-495,
1997.

[9] M. Thorup, Y. Zhang, “Tabulation based 4-universal hashing with applications to second moment
estimation,”in Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms, 2004.

13

