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Abstract— The capacity of sticky channels, a subclass of
insertion channels where each symbol may be duplicated multiple
times, is considered. The primary result is to provide nearly
tight numerical upper and lower bounds for the i.i.d. duplication
channel.
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I. INTRODUCTION

In this paper we consider the capacity of sticky channels,
a subclass of insertion channels where transmitted symbol is
independently duplicated a random number of times at the
receiver, according to some fixed distribution on the positive
integers. We focus on the binary case, although our approaches
generalize. As an example, when typing at a keyboard, if
the key is held too long, multiple copies of the pressed
symbol can appear even though only one copy of the symbol
was intended. We consider both lower and upper bounds on
capacity, with our primary result being numerical approaches
that give nearly tight numerical upper and lower bounds for
the i.i.d. duplication channel, where each bit is duplicated with
probability p.

A key feature of binary sticky channels that we take
advantage of is that contiguous blocks of zeroes (resp. ones)
at the sender correspond to blocks of zeroes (resp. ones) at
the receiver. It is this property that intuitively makes sticky
channels easier than more general insertion/deletion channels.
As an example, suppose that a channel duplicates every bit
sent so that exactly two copies arrive. In this case, the original
transmission is trivial to recover!

A primary motivation for studying sticky channels is to
gain more insight into insertion and deletion channels, which
have proven extremely challenging. (See, for example, [2],
[4], [5], [7].) General methods for computing the capacity
of such channels remains an open problem, and codes for
such channels thus far appear rather weak. Sticky channels
represent possibly the simplest possible channel of this type.
One might hope, in the future, that capacity bounds or codes
for more general insertion/deletion channels could arise from
a reduction involving sticky channels. Further, while it may
overly optimistic to hope that studying sticky channels may
provide a path toward better results for general insertion
and deletion channels, having nearly tight capacity bounds
on a subclass of channels would be useful for determining
the quality of more general approaches. Sticky channels also
appear natural in practice. Duplications and deletions can
occur over channels where there are timing discrepancies in
the clocks of the sender and receiver. In such channels, it may
be possible to speed up the receiver clock so that all induced
errors are symbol duplications instead of deletions, at the risk
of possibly introducing more errors.

We provide a numerical approach for computing lower
bounds for the capacity of sticky channels which appears
to give nearly tight results. We explicitly demonstrate our
approach by considering two channels: the elementary i.i.d.
duplication channel, where each bit is independently dupli-
cated with probability p, and the geometric i.i.d. duplication
channel, where each bit is independently replaced with a
geometrically distributed number of copies. We also consider
upper bounds, which prove more complex, and hence we
consider only the elementary i.i.d. duplication channel. Our
results demonstrate that our lower bounds are nearly tight for
this channel.

II. A CAPACITY CORRESPONDENCE

We begin by demonstrating a general correspondence be-
tween the capacity of a binary sticky channel and the capacity
per unit cost of a derived channel with an alphabet correspond-
ing to the positive integers. This derived channel can be used
to calculate bounds for the sticky channel.

Consider a message X sent over the sticky channel, yielding
a received sequence Y . Each maximal block of contiguous
zeros (or ones) in X will give a maximal block of contiguous
zeros (or ones) in Y . If we restrict ourselves to codewords that
begin with a zero, we may view the sticky channel as having
input and output symbols that are integers, corresponding to
length of each maximal block. For the case of the sticky chan-
nel, henceforth denoted by SC, each bit is duplicated a number
of times given by some distribution D over the integers; we
call D the duplication distribution. We may represent this
channel by a matrix P , where Pij is the probability that a
block of i contiguous bits, all 0 (resp. 1), at the sender yields
a block of length j ≥ i contiguous bits, also all 0 (resp 1),
at the receiver. When doing numerical calculations, it can be
advantageous to assume that P is finite, which corresponds
to assuming that blocks in the input have a fixed maximum
length and the duplications distribution has a finite support;
we return to this point below.

Consider the derived channel obtained by using block
lengths as symbols. We call this derived channel the sticky
block channel, or SBC. As an example, suppose that we have
the following input to the SC:

0011000101101111001011.

When viewed as an input to the SBC, the corresponding input
would be written as

2 2 3 1 1 2 1 4 2 1 1 2.

The mapping between SC and SBC outputs is similarly trivial.
Notice that the SBC is memoryless. It is natural to assign the

symbol (integer) i a cost i in the SBC, since it corresponds to
i bits in the SC. We claim that it is immediate that the capacity
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of the SC, under the duplication distribution D, is equal to the
capacity per unit cost of the SBC given by the matrix P .

Although the correspondence is very natural, in order to
point out a few details, we formalize a proof, following
the notation of [8]. Let an (n, M, ν, ε) code be one with
blocklength n, M codewords, a bound ν on the total cost
of a codeword, and average error probability at most ε. As
in Definition 2 of [8], a number R > 0 is an ε-achievable
rate per unit cost if for every γ > 0, there exists ν0 > 0
such that for ν ≥ ν0, an (n, M, ν, ε) code can be found with
log M > ν(R− γ). Further, R is achievable per unit cost if it
is ε-achievable per unit cost for all 0 < ε < 1, and the capacity
per unit cost is the least upper bound over the achievable R.

Theorem 2.1: The capacity per unit cost of the SBC equals
the capacity of the SC.

Proof: First, we argue that any rate per unit cost
achievable by the SBC is achievable (up to o(1) differences)
by the SC channel. If the SBC has capacity per unit cost C,
then for every ε, γ > 0, for sufficiently large n there exists
an (n, M, ν, ε) code with log M > ν(C − γ). Moreover, as
shown in [8], we may assume that ν is linear in n. Such a
code immediately maps to a code for the SC, except that the
cost per codeword in the SBC, which corresponds to the length
in the SC, can vary. If we accepted variable length codewords,
we could conclude the argument here; we instead aim for fixed
length codewords.

We restrict ourselves to the subset M ′ of codewords with
error probability at most 2ε; by standard arguments M ′ must
contain at least half the codewords. We can further restrict
ourselves to the subset M ′′ of codewords from M ′ of a specific
cost ν′ with n ≤ ν′ ≤ ν for which (log M ′′)/ν′ is largest.
We then have that log M ′′/ν′ > C − 2γ (for n sufficiently
large and γ sufficiently small.) This gives us a code on the
SC channel with rate at least C − 2γ and error probability 2ε,
from which one direction of the claim follows.

Similarly, if the SC has capacity C, we can use codes for
the SC to obtain codes for the SBC, with the rate of the
SC mapping to the rate per unit cost of the SBC. A similar
problem arises here in that the length n of a block in bits for
the SC does not correspond to a fixed number of symbols in
the SBC. However, the number of symbols in the SBC is at
most n; we can consider all n possible codeword lengths in
the SBC, and choose the length � that gives the largest subset
M ′ of codewords of that length. As M ′ > M/n this only
affects the capacity per unit cost of the SBC by o(1) terms,
so we find that a capacity C for the SC gives a capacity per
unit cost C for the SBC.

We note that we can also apply the analyses of this paper,
including Theorem 2.1, to channels corresponding to finite
matrices P that do not arise from a duplication distribution,
but instead simply satisfy the requirement that

∑
j≥1 Pij = 1.

For example, suppose block lengths at the sender are at most
L bits, and a sent block of length k is received as a block
of length k + 1 with probability k/c for a constant c > L
and as a block of length k otherwise. That is, a block may
obtain an extra bit with probability proportional to the length
of the block. Such a channel can also be analyzed using the
SC/SBC correspondence. In this regard, our approach can also
be used to handle deletions, as long as we can guarantee that
it is never the case that all the bits of a block are deleted, so
that the block structure is preserved.

We emphasize that when considering the capacity per unit

cost of the SBC, we consider the limit I(X ; Y )/|X | as |X |
grows; this is the standard definition, corresponding to the
cost for the sender. However, in the general setting we have
described we could also consider I(X ; Y )/E[|Y |], which
would correspond to the (expected) cost for the receiver. For
sticky channels governed by a duplication distribution these
values are equal, but they need not be so in the more general
block setting with general finite matrices P .

Also, while we have thus far discussed only binary al-
phabets, we can extend these ideas to determine a similar
correspondence for non-binary alphabets. Suppose that the
alphabet for the sticky channel consists of the integers in the
range [0, m − 1]. A natural corresponding representation for
the sticky block channel has each symbol consist of an ordered
pair with the first field being a block length and the second
field being number in the range [1, m − 1] representing the
difference modulo m between the two corresponding symbols
in the sticky channel. For example, for a 4-ary channel, the
SC input

2 2 2 2 1 1 3 0 0 0 1 0 0 2

would be represented as

(4, 2) (2, 3) (1, 2) (3, 1) (1, 1) (2, 3) (1, 2).

Note for the first symbol of the SBC we can adopt the
convention that the second field gives the first symbol from
the SC; this does not affect the capacity.

Here, the symbol (i, j) for the SBC should have a cost of
i, since it corresponds to i symbols in the SC. The capacity
of the SC under the duplication distribution D again has an
immediate correspondence to the capacity per unit cost of the
SBC.

III. LOWER BOUNDS

This correspondence gives us a means to find a lower
bound for the capacity of the SC; simply find a lower bound
on the capacity per unit cost of the corresponding SBC.
When the block lengths in the SC have bounded finite length
and the duplication distribution has finite support, then the
corresponding matrix P is finite. In this case, capacity per unit
cost given a matrix P can be computed numerically, using
a variation of the Blahut-Arimoto algorithm for calculating
the capacity, under the conditions that we are dealing with
finite alphabets and positive symbol costs, as is the case here
[6]. This approach does not give an actual efficient coding
scheme, but yields a distribution of block lengths, from which
the capacity per unit cost can be derived. (This approach can
also be efficiently applied in the case of m-ary alphabets,
taking advantage of the symmetry among all SBC symbols
corresponding to the same block length.)

We emphasize that the only methods we are aware of
for effectively computing the capacity per unit cost require
finite alphabets for the derived SBC. As this approach uses a
numerical algorithm, it does not give a closed-form expression
for the capacity; finding such an expression remains an open
question.

We can therefore find lower bounds for channels where D
has finite support by enforcing a finite maximum block length.
This truncation necessarily causes the derived bound to be
less than the actual capacity, but the expectation is that, for
most channels, with reasonable maximum block lengths the
calculation will yield quite good bounds. By taking increasing
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values for the bound on lengths of blocks, we can obtain
bounds closer and closer to the true capacity. Our experiments
demonstrate that these bounds converge very quickly for the
channels we study.

For the elementary i.i.d. duplication channel, where each
bit is duplicated with probability p, D has finite support. For
the geometric i.i.d. duplication channel, where each sent bit
yields k copies with probability (1−p)pk−1, it does not. In this
case we can treat as equivalent all received blocks above some
threshold length, effectively truncating the ouptut distribution
beyond a certain point. This truncation also still gives a lower
bound on the capacity per unit cost, as we are throwing away
information at the receiver. Increasing the threshold should
improve the accuracy of our bound.

IV. UPPER BOUNDS

While we can gain some insight into how tight our derived
lower bounds are by increasing the maximum input block
length and considering the corresponding change, such an
approach does not lead to a corresponding upper bound.

More formal upper bounds can be obtained using infor-
mation divergence. A similar approach was suggested for
deletion channels in [3]. In this setting, however, we are
aiming for very tight bounds, making the approach much
more challenging. An advantage we have here is that we
have explicit approximations to the optimal input distribution,
arising from the distributions we find via the lower bound
techniques that can serve as a guide in obtaining upper bounds.

We recall this approach in the setting of discrete memoryless
channels. For example, consider a channel X → Y with
input alphabet X and output alphabet Y , governed by the
distribution QY |X , and consider any distribution B(y) on
Y . Then we have that the capacity of the channel is upper
bounded by

max
x

D(QY |X=x || B) =
∑
y∈Y

Q(y|x) log[Q(y|x)/B(y)].

This upper bound approach generalizes to the setting of
capacity per unit cost [1]. Specifically, for a non-negative cost
function c(x) and distribution B(y), the capacity per unit cost
C′ has the upper bound

C′ ≤ max
x∈X

D(QY |X=x || B)
c(x)

.

While one could in fact use any distribution B to obtain
an upper bound, for achieving tight bounds, we are nat-
urally guided to use the information we have about near-
optimal input distributions from our lower bound approach.
We therefore look for distributions B derived from a suitable
input distribution A on X . Specifically, we have B(y) =∑

x∈X A(x)Q(y|x), and let

IA(x) ≡ D(QY |X || B) =
∑
y∈Y

Q(y|x) log[Q(y|x)/B(y)].

We then have the upper bound

C′ ≤ max
x∈X

IA(x)
c(x)

.

As our lower bound computation naturally gives us a
truncated input distribution that is near capacity, for this
distribution IA(x)/c(x) should be close to the true capacity
for x in the support of the input distribution. Truncated

distributions are unsuitable, however, because giving a zero
probability to some output symbol yields a trivial infinite upper
bound. We must therefore extend the truncated distribution by
adding a suitable tail, with the hope that such an addition will
still yield an upper bound close to the true capacity.

This approach poses non-trivial challenges in this setting.
Because we must bound the maximum of IA(x)/c(x) over all
symbols in the input alphabet, we may have to choose the tail
based on the ability to analyze it for x growing toward infinity,
rather than its actual performance, weakening the bound. At
the same time, there is generally a “bump” in IA(x)/c(x)
caused by the transition between the original distribution and
the added tail; one must try to make this transition between
distributions as smooth as possible so as to minimize the
increase in the upper bound due to this bump. Because of
this, it appears difficult to achieve tight bounds generally. We
have successfully used geometric distributions for a tail for
the input for the elementary i.i.d. duplication channel, as we
now describe.

Suppose that for the the elementary i.i.d. duplication channel
we start with an input distribution L(x), such as the distribu-
tion derived from the lower bound calculation, and augment it
with a geometric tail. That is, we take the derived distribution
L(x) and replace it with A(x) given by

A(x) =

{
L(x) if x < m

γ
(
1 −∑m−1

i=1 L(x)
)

(1 − γ)x−m if x ≥ m

for some constants 0 < γ < 1 and m. Suitable values of
γ and m can be searched for numerically. We now consider
the behavior of IA(x)/c(x) for x ≥ 2m. First, note that for

y ≥ 2m, letting δ = γ
(
1 −∑m−1

i=1 L(x)
)

(1−γ)−m, we have

B(y) =
y∑

x=�y/2�
A(x)

(
x

y − x

)
py−x(1 − p)2x−y

= δ

(
p

1 − p

)y y∑
x=�y/2�

(
x

y − x

)(
(1 − p)2(1 − γ)

p

)x

.

We simplify this expression by using the connection to the Fi-
bonacci polynomials. Recall the Fibonacci polynomial Fn(x)
satisfies for n ≥ 1 the identity

Fn(z) =
�(n−1)/2�∑

j=0

(
n − j − 1

j

)
zn−2j−1,

and further that

Fn(z) =
1√

z2 + 4

((
z +

√
z2 + 4
2

)n

+

(
z −√

z2 + 4
2

)n)
.

Then simple algebraic manipulation yields

y∑
x=�y/2�

(
x

y − x

)
µx =

�y/2�∑
x′=0

(
y − x′

x′

)
µy−x′

= (
√

µ)y
�y/2�∑
x′=0

(
y − x′

x′

)
(
√

µ)y−2x′

= (
√

µ)y
Fy+1(

√
µ).

Hence, simplifying for B(y), we have

B(y) = δ(p(1 − γ))y/2Fy+1((1 − p)
√

(1 − γ)/p).
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For convenience we leave B(y) in this form, and note the key
point, which is that B(y) ≈ δ ′ρ−y for some constants ρ and
δ′; specifically, we may take

ρ =
2

(1 − p)(1 − γ) +
√

4p(1 − γ) + (1 − p)2(1 − γ)2
.

If Fn(z) depended on a single exponential term in n, instead
of the sum of two, this approximation would be an equality,
and our work would be much simpler; however, in practice
we can simply note that for suitably large y, we have that

log(1/B(y)) ≤ log(1/δ′) + y log ρ + ε

for an appropriately small chose of ε which can be determined
numerically. We therefore find

IA(x) =
2x∑

y=x

Q(y|x) log[Q(y|x)/B(y)]

= −H(Y |X = x) +
2x∑

y=x

Q(y|x) log(1/B(y))

≤ −H(Y |X = x) + log(1/δ′) + ε +
2x∑

y=x

yQ(y|x) log ρ

= −H(Y |X = x) + log(1/δ′) + ε + (1 + p)x log ρ.

A straightforward calculation shows that H(Y | X = x) =
o(x). We therefore have that IA(x)/x converges to (1 +
p) log ρ. Moreover, H(Y | X = x) is increasing in x, since
it corresponds to a binomial random variable with x trials.
Therefore, for large enough x, so that

H(Y | X = x) > log(1/δ′) + ε,

we find as c(x) = x,

IA(x)/c(x) < (1 + p) log ρ.

Using these facts, we can determine upper bounds numerically
with this approach.

This approach should be useful for other sticky channels,
such as the geometric i.i.d. duplication channel, but there
are both theoretical and numerical challenges. First, studying
the asymptotics of D(QY |X=x || B)/c(x) becomes harder,
since technically for all values of y the output distribution
B(y) depends on values of A(x) with x < m, so that
A(x) = L(x). We could avoid this in analyzing the elementary
i.i.d. duplication channel once y ≥ 2m. Second, it is not
clear geometric tail distributions are suitable; one may have
to massage the transition for the distribution A(x) around
the value m more carefully. Simplifying and generalizing this
upper bound argument for additional sticky channels therefore
remains an open question.

V. NUMERICAL CAPACITY CALCULATIONS

We perform calculations for lower bounds on the capacity
of the elementary i.i.d. duplication channel and the geometric
i.i.d. duplication channel based on Section III. We also con-
sider upper bounds for the elementary i.i.d. duplication channel
as described in Section IV.

Before beginning, for comparison purposes it is worth
noting that the i.i.d. duplication channel has a simple, zero-
error coding scheme that works for any duplication probability
p. Using the correspondence with the SBC, we lay out symbols
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Fig. 1. Capacity lower bounds for the elementary i.i.d. duplication channel
based on numerically calculated optimal input distributions and random
(truncated) input distributions for maximal block lengths of 8 and 16 bits.
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Fig. 2. Capacity lower bounds for the geometric i.i.d. duplication channel
based on numerically calculated optimal input distributions and random
(truncated) input distributions for maximal block lengths of 8 and 16 bits.

as blocks; by using alternating blocks of 1 bit or 3 bits,
we guarantee no confusion in decoding even if duplications
occur. We can use a 1-bit block to represent a 0 and a 3-
bit block to represent a 1. Using a random input distribution,
this already yields a capacity per unit cost for the SBC (and
hence a capacity for the sticky channel) of 0.5; the optimal
input distribution increases the capacity to nearly 0.5515.
More generally, one could handle any finite or countably
infinite alphabet without confusion by using blocks of length
1, 3, 7, . . . , 2i − 1, . . . as needed. The optimal distribution in
this case yields a capacity lower bound of nearly 0.6025. These
schemes provides a nice baseline when considering our results.
Of course this approach does not work for more general
channels such as the geometric i.i.d. duplication channel.

Also, for the i.i.d. duplication channel, the capacity is
trivially 1 when p = 0 or p = 1, and the optimal input
distributions are uniform, corresponding to block lengths that
are geometrically distributed with mean two.

A. Lower Bounds

For the elementary i.i.d. duplication channel, we present
results of capacity lower bound calculations where the input
stream is limited to maximal blocks of 8 bits and 16 bits in
Figure 1; these curves are labeled by “Opt.” (The maximal
blocks in the received streams are naturally limited to 16 and
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Block Length 1 2 3 4 5 6 7 8

p = 0.1 0.5138 0.2330 0.1210 0.0625 0.0321 0.0201 0.0045 0.0121
p = 0.5 0.5804 0.1888 0.1128 0.0502 0.0298 0.0225 0.0001 0.0155
p = 0.9 0.5169 0.2527 0.1215 0.0581 0.0277 0.0133 0.0063 0.0035

TABLE I

COMPUTED OPTIMAL DISTRIBUTIONS, TO FOUR DECIMAL PLACES, FOR THE ELEMENTARY I.I.D DUPLICATION CHANNEL.

Block Length 1 2 3 4 5 6 7 8

p = 0.1 0.5078 0.2384 0.1200 0.0626 0.0331 0.0197 0.0057 0.0127
p = 0.2 0.5192 0.2202 0.1142 0.0609 0.0379 0.0218 0.0000 0.0257
p = 0.3 0.5369 0.1928 0.1132 0.0487 0.0627 0.0044 0.0000 0.0413
p = 0.4 0.5631 0.1526 0.1115 0.0545 0.0624 0.0000 0.0000 0.0559
p = 0.5 0.6017 0.0907 0.1168 0.0773 0.0424 0.0000 0.0000 0.0712
p = 0.6 0.6547 0.0000 0.1416 0.0104 0.0131 0.0000 0.0000 0.0862

TABLE II

COMPUTED OPTIMAL DISTRIBUTIONS, TO FOUR DECIMAL PLACES, FOR THE GEOMETRIC I.I.D DUPLICATION CHANNEL.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
γ 0.40 0.36 0.36 0.36 0.37 0.39 0.40 0.40 0.40

Lower Bound 0.7405 0.6611 0.6400 0.6488 0.6788 0.7273 0.7914 0.8674 0.9469
Upper Bound 0.7406 0.6618 0.6404 0.6499 0.6797 0.7277 0.7915 0.8675 0.9479
lim IA(x)/x 0.7218 0.6276 0.6263 0.6269 0.6504 0.6977 0.7243 0.7284 0.7326

TABLE III

COMPARING UPPER AND LOWER BOUNDS FOR THE ELEMENTARY I.I.D. DUPLICATION CHANNEL.

32 bits, respectively.) As can be seen, the difference is small
enough that the two curves are almost indistinguishable in the
figure, and further increases in the maximal block length yield
similarly small gain. For example, calculations of capacity
with maximal blocks of 20 bits in the input rounded to 4
decimal places agree with the result from 16 bits, except where
the rounding leads to a difference in the fourth decimal place.
This provides evidence for our conjecture that the calculations
yield results quite close to the actual capacity. The capacity
lower bound is minimized at around p ≈ 0.31, where it is
approximately 0.64.

A further interesting behavior is worth noting. For the
elementary i.i.d. duplication channel, for values of p near 0 and
1, the optimal input distribution remains close to geometrically
distributed with mean 2, as they would be if each bit was
independent and uniform. The distribution drifts from this at
intermediate values of p; some examples (for blocks up to
8 bits) are shown in Table I. The distributions are nearly
geometric at p = 0.1 and p = 0.9; the deviation from the
geometric is stronger but still slight for intermediate values
such as p = 0.5.

Indeed, the capacity achieved by geometric distributions
is not too much less than for our computed optimal curves,
as shown in Figure 1; these curves are labeled by “Rand.”
(We calculate the capacity with the probability that a block
of maximal length k being 2−k+1 instead of 2−k.) This
fact may prove useful for designing computationally efficient
coding schemes that perform close to capacity in practice, by
having them use random input distributions instead of specially
tailored distributions.

The geometric i.i.d. duplication channel naturally exhibits
more complicated behaviors. For our calculations, we require
bounds on the maximal block length in the received sequence.
Because of this, we limited our calculations for this channel

to p ≤ 0.6. At p = 0.6, a received block will be, on average,
slightly more than twice as long as the corresponding input
block; we allow received blocks to be as long as five times
the maximal length of a maximal input block. Longer received
blocks are treated as truncated at this length, and the matrix
P is computed accordingly.

In Figure 2, we present results of capacity calculations
where the input stream is limited to maximal blocks of 8
bits and 16 bits. Again, the difference between using maximal
blocks of 8 bits and 16 bits is quite small. For this channel
the capacity falls to 0 as p goes to 1.

We also again present results for random codebooks. They
perform nearly as well as the optimal calculated truncated
distributions for small values of p, but as p grows larger,
the difference appears to increase steadily. Indeed, in contrast
to the elementary i.i.d. duplication channel, we find that as
p increases the optimal calculated distribution differs signif-
icantly and increasingly from a geometric distribution; the
numerically computed optimal distributions appear to become
more focused on a small and well-spread set of values. Some
examples for blocks up to 8 bits are shown in Table II. This
perhaps explains the challenge in applying our upper bound
techniques to this channel; a more complicated tail distribution
may be required.

In summary, our results suggest that our calculated lower
bounds are extremely close to the true capacity, as increasing
the maximum input and output block lengths leads to only
very small differences in the final answers. Also, codes with
codewords chosen uniformly at random (even with blocks
of limited run-lengths) would appear to perform close to
capacity for the elementary i.i.d. duplication channel, and for
the geometric i.i.d. duplication channel with small p.
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B. Upper Bounds

We present numerically derived upper bounds for the ele-
mentary i.i.d. duplication channel. In all cases below, we began
with a distribution based on our lower bound calculation, with
input blocks limited to 30 bits. In all cases, we began by
augmenting it with a geometric tail from block length m = 24.
We attempted to stay with values of p and γ for which the
asymptotic value of IA(x)/x were conservatively far from the
derived upper bound. While further optimization of parameter
choices might improve things slightly, we found very good
results with these choices.

We present results in Table III. For ease of presentation, we
have rounded our derived lower bounds down in the fourth
decimal place, and the derived upper bounds up in the fourth
decimal place. In some cases, the results were actually the
same to four decimal places. We emphasize that our point here
is not the numbers themselves, which could be improved with
further calculation, but that for this and possibly other sticky
channels, quite tight bounds are possible with these techniques.
Table III demonstrates that the derived lower bounds are quite
close to the derived upper bounds across the range of values
of p.

VI. CONCLUSION

We have given numerical methods for calculating bounds on
the capacity of sticky channels, explicitly showing quite tight
bounds in the case of the elementary i.i.d. duplication channel.
These capacity results should allow this channel to serve as
a test case for future work on more general methods for ca-
pacity bounds for insertion-deletion channels. Similarly, these
results should serve as a goalpost for efficient codes, either
for these specific channels or more general insertion-deletion
channels. Many open questions remain, include generalizing
or simplifying our upper bound approach, finding closed-
form expressions for capacity bounds for sticky channels, and
providing efficient coding techniques for sticky channels.
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