
A Brief History of Generative Models for Power Lawand Lognormal DistributionsMihael Mitzenmaher�AbstratReently, I beame interested in a urrent debate over whether �le size distribu-tions are best modelled by a power law distribution or a a lognormal distribution.In trying to learn enough about these distributions to settle the question, I found arih and long history, spanning many �elds. Indeed, several reently proposed mod-els from the omputer siene ommunity have anteedents in work from deadesago. Here, I briey survey some of this history, fousing on underlying generativemodels that lead to these distributions. One �nding is that lognormal and powerlaw distributions onnet quite naturally, and hene it is not surprising that lognor-mal distributions have arisen as a possible alternative to power law distributionsaross many �elds.1 IntrodutionPower law distributions (also often referred to as heavy-tail distributions, Pareto dis-tributions, Zip�an distributions, et.) are now pervasive in omputer siene; see, forexample, [1, 8, 7, 9, 16, 19, 21, 22, 24, 25, 27, 28, 33, 34, 40, 41, 43, 45, 47, 50, 61, 69℄.1This paper was spei�ally motivated by a reent paper by Downey [25℄ hallengingthe now onventional wisdom that �le sizes are governed by a power law distribution.The argument was substantiated both by olleted data and by the development of anunderlying generative model whih suggested that �le sizes were better modeled by alognormal distribution.2 In my attempts to learn more about this question, I was drawnto the history the lognormal and power law distributions. As part of this proess, I delvedinto past and present literature, and ame aross some interesting fats that appear notto be well known in the omputer siene ommunity. This paper represents an attempt�Supported in part by an Alfred P. Sloan Researh Fellowship and NSF grant CCR-9983832. Har-vard University, Division of Engineering and Applied Sienes, 33 Oxford St., Cambridge, MA 02138.mihaelm�ees.harvard.edu. A preliminary version of this work appeared as [64℄.1I apologize for leaving out ountless further examples.2I elaborate on this spei� model in another paper [63℄.1



to disseminate what I have found, fousing spei�ally on the models of proesses thatgenerate these distributions.Perhaps the most interesting disovery is that muh of what we in the omputer si-ene ommunity have begun to understand and utilize about power law and lognormaldistributions has long been known in other �elds, suh as eonomis and biology. Forexample, models of a dynamially growing Web graph that result in a power law distri-bution for in- and out-degrees have beome the fous of a great deal of reent study. Infat, as I desribe below, extremely similar models date bak to at least the 1950's, andarguably bak to the 1920's.A seond disovery is the argument over whether a lognormal or power law distributionis a better �t for some empirially observed distribution has been repeated aross many�elds over many years. For example, the question of whether inome distribution follows alognormal or power law distribution also dates bak to at least the 1950's. The issue arisesfor other �nanial models, as detailed in [59℄. Similar issues ontinue to arise in biology[37℄, hemistry [67℄, eology [4, 80℄, astronomy [82℄, and information theory [48, 70℄.These ases serve as a reminder that the problems we fae as omputer sientists are notneessarily new, and we should look to other sienes both for tools and understanding.A third disovery from examining previous work is that power law and lognormaldistributions are intrinsially onneted. Very similar basi generative models an leadto either power law or lognormal distributions, depending on seemingly trivial variations.There is therefore a reason why this argument as to whether power law or lognormaldistributions are more aurate has arisen and repeated itself aross a variety of �elds.The purpose of this paper is therefore to explain some of the basi generative modelsthat lead to power law and lognormal distributions, and spei�ally to over how smallvariations in the underlying model an hange the result from one to the other. A seondpurpose is to provide along the way (inomplete) pointers to some of the reent andhistorially relevant sienti� literature.This survey is intended to be aessible to a general audiene. That is, it is intendedfor omputer siene theorists, omputer sientists who are not theorists, and hopefullyalso people outside of omputer siene. Therefore, while mathematial arguments andsome probability will be used, the aim is for the mathematis to be intuitive, lean,and omprehensible rather than rigorous and tehnial. In some ases details may besuppressed for readability; interested readers are referred to the original papers.2 The Distributions: Basi De�nitions and Proper-tiesWe begin by reviewing basi fats about power law and lognormal distributions.For our purposes, a non-negative random variable X is said to have a power law2



distribution if Pr[X � x℄ � x��for onstants  > 0 and � > 0. Here f(x) � g(x) represents that the limit of the ratiosgoes to 1 as x grows large. Roughly speaking, in a power law distribution asymptotiallythe tails fall aording to the power �. Suh a distribution leads to muh heavier tailsthan other ommon models, suh as exponential distributions. One spei� ommonlyused power law distribution is the Pareto distribution, whih satis�esPr[X � x℄ = �xk���for some � > 0 and k > 0. The Pareto distribution requires X � k. The density funtionfor the Pareto distribution is f(x) = �k�x���1. For a power law distribution, usually �falls in the range 0 < � � 2, in whih ase X has in�nite variane. If � � 1, then X alsohas in�nite mean.If X has a power law distribution, then in a log-log plot of Pr[X � x℄, also known asthe omplementary umulative distribution funtion, asymptotially the behavior will bea straight line. This provides a simple empirial test for whether a random variable hasa power law given an appropriate sample. For the spei� ase of a Pareto distribution,the behavior is exatly linear, asln(Pr[X � x℄) = ��(lnx� ln k):Similarly, on a log-log plot the density funtion for the Pareto distribution is also astraight line: ln f(x) = (��� 1) lnx+ � ln k + ln�:A random variable X has a lognormal distribution if the random variable Y = lnXhas a normal (i.e., Gaussian) distribution. Reall that the normal distribution Y is givenby the density funtion f(y) = 1p2�� e�(y��)2=2�2where � is the mean, � is the standard deviation (�2 is the variane), and the range is�1 < y <1. The density funtion for a lognormal distribution therefore satis�esf(x) = 1p2��xe�(lnx��)2=2�2 :Note that the hange of variables introdues an additional 1=x term outside of the expo-nential term. The orresponding omplementary umulative distribution funtion for alognormal distribution is given byPr[X � x℄ = Z 1z=x 1p2��z e�(ln z��)2=2�2dz:3



We will say that X has parameters � and �2 when the assoiated normal distributionY has mean � and variane �2, where the meaning is lear. The lognormal distributionis skewed, with mean e�+ 12�2 , median e�, and mode e���2 . A lognormal distributionhas �nite mean and variane, in ontrast to the power law distribution under naturalparameters.Despite its �nite moments, the lognormal distribution is extremely similar in shapeto power law distributions, in the following sense: if X has a lognormal distribution, thenin a log-log plot of the omplementary umulative distribution funtion or the densityfuntion, the behavior will be a straight line exept for a large portion of the body ofthe distribution. Intuitively, for example, the omplementary umulative distributionfuntion of a normal distribution appears lose to linear. Indeed, if the variane of theorresponding normal distribution is large, the distribution may appear linear on a log-logplot for several orders of magnitude.To see this, let us look the logarithm of the density funtion, whih is easier to workwith than the omplementary umulative distribution funtion (although the same ideaholds). We have ln f(x) = � lnx� lnp2�� � (lnx� �)22�2 (1)= �(ln x)22�2 + � ��2 � 1� lnx� lnp2�� � �22�2 : (2)If � is suÆiently large, then the quadrati term of equation (2) will be small for a largerange of x values, and hene the logarithm of the density funtion will appear almostlinear for a large range of values.Finally, reall that normal distributions have the property that the sum of two normalrandom variables Y1 and Y2 with �1 and �2 and varianes �21 and �22 respetively is anormal random variable with mean �1 + �2 and variane �21 + �22. It follows that theprodut of lognormal distributions is again lognormal.3 Power Laws via Preferential AttahmentWe now move from mathematial de�nitions and properties to generative models. Forthe power law distribution, we begin by onsidering the World Wide Web. The WorldWide Web an naturally be thought of as a graph, with pages orresponding to vertiesand hyperlinks orresponding to direted edges. Empirial work has shown indegrees andoutdegrees of verties in this graph obey power law distributions. There has subsequentlybeen a great deal of reent theoretial work on designing random graph models thatyield Web-like graphs [7, 16, 19, 24, 40, 41, 43, 45℄. An important riterion for anappropriate random graph model is that it yields power law distributions for the indegreesand outdegrees. 4



Most models are variations of the following theme. Let us start with a single page,with a link to itself. At eah time step, a new page appears, with outdegree 1. Withprobability � < 1, the link for the new page points to a page hosen uniformly at random.With probability 1��, the new page points to page hosen proportionally to the indegreeof the page. This model exempli�es what is often alled preferential attahment; newobjets tend to attah to popular objets. In the ase of the Web graph, new links tendto go to pages that already have links.A simple if slightly non-rigorous argument for the above model goes as follows [7, 24,41, 45℄. Let Xj(t) (or just Xj where the meaning is lear) be the number of pages withindegree j when there are t pages in the system. Then for j � 1 the probability that Xjinreases is just �Xj�1=t+ (1� �)(j � 1)Xj�1=t;the �rst term is the probability a new link is hosen at random and hooses a pagewith indegree j � 1, and the seond term is the probability that a new link is hosenproportionally to the indegrees and hooses a page with indegree j � 1. Similarly, theprobability that Xj dereases is �Xj=t+ (1� �)jXj=t:Hene, for j � 1, the growth of Xj is roughly given bydXjdt = �(Xj�1 �Xj) + (1� �)((j � 1)Xj�1 � jXj)t :Some mathematial purists may objet to utilizing a ontinuous di�erential equationto desribe what is learly a disrete proess. This intuitively appealing approah an bejusti�ed more formally using martingales [45℄ and in partiular the theoretial frameworksof Kurtz and Wormald [24, 46, 83℄.The ase of X0 must be treated speially, sine eah new page introdues a vertex ofindegree 0. dX0dt = 1� �X0t :Suppose in the steady state limit that Xj(t) = j �t; that is, pages of indegree j onstitutea fration j of the total pages. Then we an suessively solve for the j. For example,dX0dt = 0 = 1� �X0t = 1� �0;from whih we �nd 0 = 11+� . More generally, we �nd using the equation for dXj=dt thatfor j � 1, j(1 + � + j(1� �)) = j�1(� + (j � 1)(1� �)):5



This reurrene an be used to determine the j exatly. Fousing on the asymptotis,we �nd that for large jjj�1 = 1� 2� �1 + � + j(1� �) � 1� �2� �1� �� 1j! :Asymptotially, for the above to hold we have j � j� 2��1�� for some onstant , giving apower law. To see this, note that j � j� 2��1�� impliesjj�1 �  j � 1j ! 2��1�� � 1� �2� �1� �� 1j! :Stritly speaking, to show it is a power law, we should onsider �k = Pj�k j, sinewe desire the behavior of the tail of the distribution. However, we have�k �Xj�k j� 2��1�� � Z 1j=k j� 2��1��dj � 0k� 11��for some onstant 0. More generally, if the fration of items with weight j falls roughlyproportionally to j��, the fration of items with weight greater than or equal to j fallsroughly proportionally j1��, a fat we make use of throughout.Although the above argument was desribed in terms of degree on the Web graph,this type of argument is learly very general and applies to any sort of preferentialattahment. In fat the �rst similar argument dates bak to at least 1925. It wasintrodued by Yule [84℄ to explain the distribution of speies among genera of plants,whih had been shown empirially by Willis to satisfy a power law distribution. Whilethe mathematial treatment from 1925 is di�erent than modern versions, the outline ofthe general argument is remarkably similar. Mutations ause new speies to developwithin genera, and more rarely mutations lead to entirely new genera. Mutations withina genus are more likely to our in a genus with more speies, leading to the preferentialattahment.A learer and more general development of how preferential attahment leads to apower law was given by Simon [75℄ in 1955. Again, although Simon was not interestedin developing a model for the Web, he lists �ve appliations of this type of model in hisintrodution: distributions of word frequenies in douments, distributions of numbersof papers published by sientists, distribution of ities by population, distribution ofinomes, and distribution of speies among genera. Simon was aware of Yule's previouswork, and suggests his work is a generalization. Simon's argument, exept for notationand the saling of variables, is painfully similar to the outline above.As one might expet from Simon's list of appliations, power laws had been observed ina variety of �elds for some time; Simon was attempting to give a mathematial argumentexplaining these observations. The earliest apparent referene is to the work by Pareto6



[68℄ in 1897, who introdued the Pareto distribution to desribe inome distribution.The �rst known attribution of the power law distribution of word frequenies appearsto be due to Estoup in 1916 [26℄, although generally the idea (and its eluidation) areattributed to Zipf [86, 87, 88℄. Similarly, Zipf is often redited with noting that ity sizesappear to math a power law, although this idea an be traed bak further to 1913 andAuerbah [6℄. Lotka (ira 1926) found in examining the number of artiles produed byhemists that the distribution followed a power law [52℄; indeed, power laws of variousforms appear in many plaes in informetris [15℄.Although we now assoiate the argument above with the Web graph, even beforethe Web graph beame popular, more formal developments of the argument above hadbeen developed as part of the study of random trees. Spei�ally, onsider the followingreursive tree struture. Begin with a root node. At eah step, a new node is added; itsparent is hosen from the urrent verties with probability proportional to one plus thenumber of hildren of the node. This is just another example of preferential attahment;indeed, it is essentially equivalent to the simple Web graph model desribed above withthe probability � of hoosing a random node equal to 1/2. That the degree distribution ofsuh graphs obey a power law (in expetation) was proven in 1993 in works by Mahmoud,Smythe, and Szyma�nski [54℄. See also the related [53, 81, 71, 79℄.Of ourse, in reognizing the relationship between the reent work on Web graphmodels and this previous work, it would be remiss to not point out that modern devel-opments have led to many new insights. Perhaps most important is the developmentof a onnetion between Simon's model, whih appears amenable only to limiting anal-ysis based on di�erential equations, and purely ombinatorial models based on randomgraphs [14, 54, 79℄. Suh a onnetion is important for further rigorous analysis of thesestrutures. Also, urrent versions of Simon's arguments based on martingales provide amuh more rigorous foundation [14, 19, 45, 53℄. More reent work has foused on greaterunderstanding of the struture of graphs that arise from these kinds of preferential at-tahment model. It has been shown that in the Web graph model desribed above wherenew pages opy existing links, the graphs have ommunity substrutures [45℄, a propertynot found in random graphs but amply found in the atual Web [32, 44℄. The diameterof these random Web graphs have also been the subjet of reent study [5, 13℄. Still, itis important to note how muh was already known about the power law phenomenon invarious �elds well before the modern e�ort to understand power laws on the Web, andhow muh omputer sientists had to reinvent.4 Power Laws via OptimizationMandelbrot had developed other arguments for deriving power law distributions basedon information theoreti onsiderations somewhat earlier than Simon [55℄. His argumentis very similar in spirit to other reent optimization based arguments for heavy taileddistributions [17, 27, 85℄. 7



We sketh Mandelbrot's framework, whih demonstrates a power law in the rank-frequeny distribution of words. That is, the frequeny pj of the jth most-used word,given as a fration of the time that word appears, follows a power law in j, so pj � j��.This is a slightly di�erent avor than the type power law than we onsidered previously;Simon's model onsiders the fration of words that appear j times. But of ourse thetwo are related. We larify this by following an argument of Bookstein [15℄.Suppose we have a text where the number of words qk that appear k times is givenby qk = Qk�� for � > 1. Further suppose for onveniene we have one most frequentword that appears km times, so that we may write qk = (k=km)��. The number of wordsthat appear k or more times is then approximatelyZ kmk � xkm��� dx;and hene the rank j of a word that appears k times is approximatelyj = jm�� 1 "�jmk ���1 � 1# :Now solving for k in terms of j, we �nd that the jth most-used word appears approxi-mately k = jm "(�� 1)jjm + 1#�1=(��1)times, yielding a power law for the frequeny pj as a funtion of j.We now begin Mandelbrot's argument. Consider some language onsisting of n words.The ost of using the jth word of the language in a transmission is Cj. For example,if we think of English text, the ost of a word might be thought of as the number ofletters plus the additional ost of a spae. Hene a natural ost funtion has Cj � logd jfor some alphabet size d. Suppose that we wish to design the language to optimize theaverage amount of information per unit transmission ost. Here, we take the averageamount of information to be the entropy. We think of eah word in our transmissionas being seleted randomly, and the probability that a word in the transmission is thejth word of the language is pj. Then the average information per word is the entropyH = �Pnj=1 pj log2 pj, and the average ost per word is C = Pnj=1 pjCj. The question ishow would the pj be hosen to minimize A = C=H. Taking derivatives, we �nddAdpj = CjH + C log2(epj)H2 :Hene all the derivatives are 0 (and A is in fat minimized) when pj = 2�HCj=C=e. UsingCj � logd j, we obtain a power law for the pj.3 Mandelbrot argues that a variation of3The eagle-eyed reader might note that tehnially the result above does not quite math a powerlaw as we have de�ned it; just beause Cj � logd j does not stritly give us pj � j��. In this ase this isa minor point; really Cj is within an additive onstant of logd j, and we therefore �nd that pj is withina onstant multipilative fator of a power law. We ignore this distintion heneforth.8



this model mathes empirial results for English quite well.Carlson and Doyle suggest a similar framework for analyzing �le sizes and forest �les[17℄. Fabrikant, Koutsoupias, and Papadimitriou introdue ombinatorial models for theInternet graph (whih should not be onfused with the Web graph; the Internet graphonsists of the servers and links between them as opposed to Web pages) and �le sizesbased on loal optimization that also yield power laws [27℄.As an aside, I found when reviewing the literature that Mandelbrot strongly arguedagainst Simon's alternative assumptions and derivations based on preferential attahmentwhen his artile ame out. This led to what is in retrospet an amusing but apparentlyat the time quite heated exhange between Simon and Mandelbrot in the journal Infor-mation and Control [56, 76, 57, 77, 58, 78℄.4It is worth noting that eonomists appear to have given the nod to Simon and thepreferential attahment model. Indeed, a reent popular eonomis text by Krugman[42℄ o�ers a derivation of the power law similar to Simon's argument.5 A more formaltreatment is given by Gabaix [29℄.5 Multipliative proessesLognormal distributions are generated by proesses that follow what the eonomist Gibratalled the law of proportionate e�et [30, 31℄. We here use the term multipliative proessto desribe the underlying model. In biology, suh proesses are used to desribed thegrowth of an organism. Suppose we start with an organism of size X0. At eah step j,4At the risk of o�ending the original authors, a few exerpts from the exhange are worth iting todemonstrate the disagreement. The abstrat of Mandelbrot's initial note begins, \This note is a disus-sion of H. A. Simon's model (1955) onerning the lass of frequeny distributions generally assoiatedwith the name of G. K. Zipf. The main purpose is to show that Simon's model is analytially irularin the ase of the linguisti laws of Estouf-Zipf and Willis-Yule." [56℄ The abstrat of Simon's rebuttalbegins, \This note takes issue with a reent ritiism by Dr. B. Mandelbrot of a ertain stohasti modelto explain word-frequeny data. Dr. Mandelbrot's prinipal empirial and mathematial objetions tothe model are shown to be unfounded." [76℄ Mandelbrot begins his \Final Note" in response to Simon'srebuttal as follows: \In a \Note" published in this Journal in 1959 (Mandelbrot, 1959), we had shownthe impossibility of ever explaining the Pareto-Yule-Zipf lass of skew distribution funtions by using themodel due to H. A. Simon (1955). That model was most ingenious and tempting but it turned out tobe totally inadequate to derive the desired results." [57℄ Simon's further rebuttal ontains the sentene,\Thus we have ome to the end of the list of Dr. Mandelbrot's objetions to my approximation without�nding a single one that is valid." [77℄ In the �nal volley of the series of exhanges (Mandelbrot feltit neesary to add a \Post Sriptum" after his \Final Note") the abstrats are short and to the point.Mandelbrot says, \My ritiism has not hanged sine I �rst had the privilege of ommenting upon adraft of Simon (1955)." [58℄ Simon's �nal word is: \Dr. Mandelbrot has proposed a new set of objetionsto my 1955 models of the Yule distribution. Like his earlier objetions, these are invalid." [78℄5As an interesting example of the breadth of the sope of power-law behavior, one review of Krugman'sbook, written by an urban geographer, auses the author of exessive hubris for not noting the signi�antontributions made by urban geographers with regard to Simon's model [11℄.9



the organism may grow or shrink, aording to a random variable Fj, so thatXj = FjXj�1:The idea is that the random growth of an organism is expressed as a perentage of itsurrent weight, and is independent of its urrent atual size. If the Fk; 1 � k � j; are allgoverned by independent lognormal distributions, then so is eah Fj, indutively, sinethe produt of lognormal distributions is again lognormal.More generally, lognormal distributions may be obtained even if the Fj are not them-selves lognormal. Spei�ally, onsiderlnXj = lnX0 + jXk=1 lnFk:Assuming the random variables lnFk satisfy appropriate onditions, the Central LimitTheorem says that Pjk=1 lnFk onverges to a normal distribution, and hene for suÆ-iently large j, Xj is well approximated by a lognormal distribution. In partiular, if thelnFk are independent and identially distributed variables with �nite mean and variane,then asymptotially Xj will approah a lognormal distribution.Multipliative proesses are used in biology and eology to desribe the growth oforganisms or the population of a speies. In eonomis, perhaps the most well-knownuse of the lognormal distribution derives from the Blak-Sholes option priing model[12℄, whih is a spei� appliation of Ito's lemma (see, e.g., [35, 36℄). In a simpli�edversion of this setting [20, 35℄, the prie of a seurity moves in disrete time steps, and theprie Xj hanges aording to Xj = FjXj�1, where Fj is lognormally distributed. Usingthis model, Blak and Sholes demonstrate how to use options to guarantee a risk-freereturn equivalent to the prevailing interest rate in a perfet market. Other appliationsin for example geology and atmospheri hemistry are given in [23℄. More reently,as desribed below, Adami and Huberman suggest that multipliative proesses maydesribe the growth of sites on the Web as well as the growth of user traÆ on Web sites[33, 34℄. Lognormal distributions have also been suggested for �le sizes [8, 9, 25℄.The onnetion between multipliative proesses and the lognormal distribution anbe traed bak to Gibrat around 1930 [30, 31℄, although Kapteyn desribed in other termsan equivalent proess in 1903 [38℄, and MAlister desribed the lognormal distributionaround 1879 [60℄. Aithison and Brown suggest that the lognormal distribution may be abetter �t for inome distribution than a power law distribution, representing perhaps the�rst time the question of whether a power law distribution or a lognormal distributiongives a better �t was fully developed [2, 3℄. It is interesting that when examining inomedistribution data, Aithison and Brown observe that for lower inomes a lognormal dis-tribution appears a better �t, while for higher inomes a power law distribution appearsbetter; this is ehoed in later work by Montroll and Shlesinger [65, 66℄, who o�er a pos-sible mathematial justi�ation disussed below. Similar observations have been givenfor �le sizes [8, 9℄. 10



5.1 Multipliative Models and Power Law DistributionsAlthough the multipliative model is used to generate lognormal or approximately dis-tributions, only a small hange from the lognormal generative proess yields a generativeproess with a power law distribution. To provide a onrete example, we onsider theinteresting history of work on inome distributions.Reall that Pareto introdued the Pareto distribution in order to explain inome dis-tribution at the tail end of the nineteenth entury. Champernowne [18℄, in a work slightlypredating Simon (and aknowledged by Simon, who suggested his work generalized andextended Champernowne), o�ered an explanation for this behavior. Suppose that webreak inome into disrete ranges in the following manner. We assume there is someminimum inome m. For the �rst range, we take inomes between m and m, for some > 1; for the seond range, we take inomes between m and 2m. We therefore saythat a person is in lass j for j � 1 if their inome is between mj�1 and mj. Champer-nowne assumes that over eah time step, the probability of an individual moving fromlass i to lass j, whih we denote by pij, depends only on the value of j � i. He thenonsiders the equilibrium distribution of people among lasses. Under this assumption,Pareto distributions an be obtained.Let us examine a spei� ase, where  = 2, pij = 2=3 if j = i � 1, and pij = 1=3if j = i + 1. Of ourse the ase i = 1 is a speial ase; in this ase p11 = 2=3. In thisexample, outside of lass 1, the expeted hange in inome over any step is 0. It is alsoeasy to hek that in this ase the equilibrium probability of being in lass k is just 1=2k,and hene the probability of being in lass greater than or equal to k is 1=2k�1. Henethe probability that a person's inome X is larger than 2k�1m in equilibrium is given byPr[X � 2k�1m℄ = 1=2k�1;or Pr[X � x℄ = m=xfor x = 2k�1m. This is a power law distribution.Note, however, the spei� model above looks remarkably like a multipliative model.Moving from one lass to another an be thought of as either doubling or halving yourinome over one time step. That is, if Xt is your inome after t time steps, thenXt = FtXt�1;where Ft is 1=2 with probability 2=3 and 2 with probability 1=3. Again, E[Xt℄ = E[Xt�1℄.Our previous disussion therefore suggests that Xt should onverge to a lognormal dis-tribution for large t.What is the di�erene between the Champernowne model and the multipliativemodel? In the multipliative model, inome an beome arbitrarily lose to zero throughsuessive dereases; in the Champernowne model, there is a minimum inome orre-sponding to the lowest lass below whih one annot fall. This small hange allows one11



model to produe a power law distribution while the other produes a lognormal. As longas there is a bounded minimum that ats as a lower reetive barrier to the multipliativemodel, it will yield a power law instead of a lognormal distribution. The theory of thisphenomenon is more fully developed in [29, 39℄.6 Monkeys Typing RandomlyWe return now to Mandelbrot's optimization argument for the power law behavior ofword frequeny in written language. A potentially serious objetion to Mandelbrot'sargument was developed by the psyhologist Miller [62℄, who demonstrated that thepower law behavior of word frequeny arises even without an underlying optimizationproblem. This result, explained below, should perhaps serve as warning: just beauseone �nds a ompelling mehanism to explain a power law does not mean that there arenot other, perhaps simpler explanations.Miller suggests the following experiment. A monkey types randomly on a keyboardwith n haraters and a spae bar. A spae is hit with probability q; all other haratersare hit with equal probability (1� q)=n. A spae is used to separate words. We onsiderthe frequeny distribution of words.It is lear that as the monkey types eah word with  (non-spae) haraters ourswith probability q = �1� qn � q;and there are n words of length . (We allow the empty word of length 0 for onveniene.)The words of longer length are less likely and hene our lower in the rank order ofword frequeny. In partiular, the word with frequeny ranks 1 + (nj � 1)=(n � 1) to(nj+1 � 1)=(n � 1) have j letters. Hene, the word with frequeny rank rj = nj ourswith probability qj = q �1� qn �logn rj = q (rj)logn(1�q)�1 ;and the power law behavior is apparent. Hene the power law assoiated with word fre-queny requires neither preferential attahment nor optimization; monkeys typing ran-domly would produe it.Bell, Cleary, and Witten observe empirially that when the probabilities of eah letterare not equal, a smoother math to the power law develops [10℄. I am urrently unawareof a proof similar to the one above demonstrating that power law behavior ours whenthe probabilities for eah of the letters are arbitrary. Indeed, to onfuse the issue, onepaper on the subjet laims that if the letter frequenies are not equal, a lognormaldistribution ours [70℄ (see also [51℄, where this laim is repeated). It is worth examiningthis argument more arefully, sine it demonstrates the onfusion that an arise in tryingto distinguish models that generate power law and lognormal distributions.12



Perline notes that in the experiment with monkeys typing randomly, if we onsiderwords only of some �xed length m, for m suÆiently large their frequeny-rank distribu-tion will approximate a lognormal distribution, following the paradigm of multipliativeproesses. To see this, let the probabilities for our n haraters be p1; p2; : : : ; pn. Considerthe generation a random m-letter word. Let Xi take on the value pj if the ith letter is j.Then Ym = X1X2 : : :Xm is a random variable whose value orresponds to the probabilitythat a word hosen uniformly at random from all m-letter words appears as the monkeystype. We have that lnYm = Pmk=1 lnXi; sine the Xi are independent and identiallydistributed, logYm onverges to a normal distribution by the Central Limit Theorem,and hene Ym onverges to a lognormal distribution. Notie that this holds true even ifall letter frequenies are equal, although in this ase the resulting distribution is trivial.Perline then argues that if we onsider all words of length up to m, we still obtainasymptoti onvergene to a lognormal distribution. This follows from a generalizationof the Central Limit Theorem due to Ansombe. Intuitively, this is beause most wordshave length lose to m, so the words with small length are just noise in the distribution.This result does require that the probability some two letters have di�erent probabilitiesof being hit.From this, it might be tempting to onlude that the distribution if the word lengthis unrestrited is also lognormal when letters do not all have the same probabilities.However, this does not follow. The problem is that for eah value ofm we obtain a slightlydi�erent lognormal distribution. Hene it is not neessarily true that in the limit as minreases we are getting loser and loser to some �nal lognormal distributions. Rather,we have a sequene of lognormal distributions that is onverging to some distribution.To justify that the result need not be lognormal, I present an amusing example of myown devising.Consider an alphabet with two letters: \a" ours with probability q, \b" ours withprobability q2, and a spae ours with probability 1�q�q2. The value q must be hosenso that 1� q � q2 > 0. In this ase, every valid word the monkey an type ours withprobability qj(1� q � q2) for some integer j. Let us say a word has pseudo-rank j if itours with probability qj(1 � q � q2). There is 1 word with pseudo-rank 0 (the emptyword), 1 with pseudo-rank 1 (\a"), 2 with pseudo-rank 2 (\aa" and \b"), and so on.A simple indution yields that the number of words with pseudo-rank k is in fat the(k + 1)st Fibonai number Fk+1 (where here we start with F0 = 0 and F1 = 1). Thisfollows obviously from the fat that to obtain the words with pseudo-rank k we appendan \a" to a word with pseudo-rank k � 1, or a \b" to a word with pseudo-rank k � 2.Reall that Fk � �k=p5 for large k, where � = (1+p5)=2. Also Pki=1 Fk = Fk+2� 1.Now the argument is entirely similar to the ase where all items have the same probability.If we ask for the frequeny of the rj = Fjth most frequent item, it has pseudo-rank j�2,and hene its frequeny isqj�2(1� q � q2) � qlog�p5rj�2(1� q � q2) = rlog� qj qlog�p5�2(1� q � q2);13



and again we have power law behavior.There is nothing speial about having two haraters for this example; one ouldeasily expand it to inlude more omplex generalized Fibonai sequenes. A suitablegeneralization is in fat appears feasible for any probabilities p1; p2; : : : ; pn assoiated withthe n haraters, although a formal proof is beyond the sope of this survey.6 Roughly,let p1 be the largest of the pi, and let pj = pj1 for j � 1. Then the number of wordswith frequeny greater than or equal to pk1 grows approximately proportionally to (1=)k,where  is the unique real root between 0 and 1 of Pnj=1 xj = 1. This is all we need forthe monkeys to produe a power law distribution, following the arguments above.7 Double Pareto DistributionsInterestingly, there is another variation on the multipliative generative model also yieldspower law behavior. Reall that in the multipliative model, if we begin with valueX0 andevery step yields an independent and identially distributed multiplier from a lognormaldistribution F , then any resulting distribution Xt after t steps is lognormal. Suppose,however, that instead of examining Xt for a spei� value of t, we examine the randomvariable XT where T itself is a random variable. As an example, when onsideringinome distribution, in seeing the data we may not know how long eah person has lived.If di�erent age groups are intermixed, the number of multipliative steps eah personmay be thought to have undergone may be thought of as a random variable.This e�et was notied as early as 1982 by Montroll and Shlesinger [65, 66℄. Theyshow that a mixture of lognormal distributions based on a geometri distribution wouldhave essentially a lognormal body but a power law distribution in the tail. Hubermanand Adami suggest a pleasantly simple variation of the above result; in the ase wherethe time T is an exponential random variable, and we may think of the number ofmultipliative steps as being ontinuous, the resulting distribution of XT has a powerlaw distribution [33, 34℄. Huberman and Adami go on to suggest that this result anexplain the power law distribution observed for the number of pages per site. As theWeb is growing exponentially, the age of a site an roughly be thought of as distributedlike an exponential random variable. If the growth of the number of pages on a Web sitefollows a multipliative proess, the above result suggests a power law distribution.In more reent independent work, Reed provides the orret full distribution for theabove model, whih yields what he alls a double Pareto distribution [72℄. Spei�ally,the resulting distribution has one Pareto tail distribution for small values (below somepoint) and another Pareto tail distribution for large values (above the same point).76I am urrently onstruting a formal treatment of this argument, whih appears to require somenon-trivial analyti number theory. This work will hopefully appear in the near future.7For ompleteness we note that Huberman and Adami onentrate only on the tail of the densityfuntion, and orretly determine the power law behavior. However, they miss the two-sided nature ofthe distribution. Reed gives the omplete orret form, as we do below.14



For example, onsider for simpliity the ase where if we stop a proess at time t theresult is a lognormal random variable with mean 0 and variane t. Then if we stop theproess at an exponentially distributed time with mean 1=�, the density funtion of theresult is f(x) = Z 1t=0 �e��t 1p2�txe�(lnx)2=2tdt:Using the substitution t = u2 givesf(x) = 2�p2�x Z 1u=0 e��u2�(lnx)2=2u2du:An integral table gives us the identityZ 1z=0 e�az2�b=z2 = 12r�a e�2pab;whih allows us to solve for the resulting form. Note that in the exponent p2ab ofthe identity we have b = (lnx)2=2. Beause of this, there are two di�erent behaviors,depending on whether x � 1 or x � 1. For x � 1, f(x) = �q�=2�x�1�p2�, so the resultis a power law distribution. For x � 1, f(x) = �q�=2� x�1+p2�.The double Pareto distribution falls niely between the lognormal distribution andthe Pareto distribution. Like the Pareto distribution, it is a power law distribution. Butwhile the log-log plot of the density of the Pareto distribution is a single straight line, forthe double Pareto distribution the log-log plot of the density onsists of two straight linesegments that meet at a transition point. This is similar to the lognormal distribution,whih has a transition point around its median e� due to the quadrati term, as shownin equation (1). Hene an appropriate double Pareto distribution an losely math thebody of a lognormal distribution and the tail of a Pareto distribution. For example,Figure 1 shows the omplementary umulative distribution funtion for a lognormal anda double Pareto distribution. (These graphs have only been minimally tuned to give areasonable math.) The plots math quite well with a standard sale for probabilities,as shown on the left. On the log-log sale, however, one an see the di�erene in the tailbehavior. The double Pareto distribution follows a power law; the lognormal distributionhas a lear urvature.Reed also suggests a generalization of the above alled a double Pareto-lognormaldistribution with similar properties [73℄. The double Pareto-lognormal distribution hasmore parameters, but might allow loser mathes with empirial distributions.It seems reasonable that in many proesses the time an objet has lived should beonsidered a random variable as well, and hene this model may prove more aurate formany situations. For example, that the double Pareto tail phenomenon ould explain whyinome distributions and �le size distributions appear better modeled by a distributionwith a lognormal body and a Pareto tail [2, 8, 9, 65, 66℄. Reed presents empirial evidene15
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Figure 1: Shapes of lognormal and double Pareto distributions.in favor of using the double Pareto and double-Pareto lognormal distributions for inomesand other appliations [72, 73℄.To give an idea of why it might be natural for the time parameter to be (roughly)exponentially distributed, I briey desribe a model that I introdued in [63℄. This modelombines ideas from the theory of reursive trees, preferential attahment, and the doublePareto framework. Consider a graph proess that works as follows: at eah step, withprobability , a new node is introdued that beomes the root of a new tree. Eahnew node has an assoiated size hosen independently and uniformly at random from adistribution D1. With probability 1�, an existing node is hosen uniformly at random,and it generates a hild. The size of a hild is equal to the size of its parent, multipliedby some multipliative fator hosen by a distribution D2. It is easy to show that thedistribution of the depths of the nodes generated in this manner onverges to a geometridistribution. Along eah branh of the tree, the size of the nodes follows a multipliativeproess. If D1 and D2 are lognormal distributions, then the size of a randomly hosennode is a geometri mixture of lognormally distributed random variables, whih loselymathes the exponential mixture required for a double Pareto distribution. In fat, thetail behaviors are the same. I use this model to explain �le size distributions in [63℄; [74℄analyzes other similar models.This line of thought also ties bak into the disussion of monkeys typing randomly.In the ase of unrestrited word lengths and unequal letter probabilities, the word lengthis geometrially distributed, and the probability of a word of any (large) �xed length isapproximately lognormal, with the appropriate mean and variane being proportional tothe length of the word. Hene the underlying distribution of word lengths is a geometrimixture of approximately lognormal random variables as in the framework above, andhene the resulting power law is unsurprising.
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8 ConlusionsPower law distributions and lognormal distributions are quite natural models and anbe generated from simple and intuitive generative proesses. Beause of this, they haveappeared in many areas of siene. This example should remind us of the importane ofseeking out and reognizing work in other disiplines, even if it lies outside our normalpurview. Sine omputer sientists invented searh engines, we really have little exuse.On a personal note, I was astounded at how the Web and searh engines have transformedthe possibilities for mining previous researh; many of the deades-old artiles (inludingthe 1925 artile by Yule!) ited here are in fat available on the Web.It is not lear that the above disussion settles one way or another whether lognormalor power law distributions are better models for things like �le size distributions. Giventhe lose relationship between the two models, it is not lear that a de�nitive answeris possible; it may be that in seemingly similar situations slightly di�erent assumptionsprevail. The fat that power law distributions arise for multipliative models one theobservation time is random or a lower boundary is put into e�et, however, may suggestthat power laws are more robust models. Indeed, following the work of Reed [72, 73℄, wereommend the double Pareto distribution and its variants as worthy of further onsid-eration in the future.From a more pragmati point of view, it might be reasonable to use whihever distri-bution makes it easier to obtain results. This runs the risk of being inaurate; perhapsin some ases the fat that power law distributions an have in�nite mean and varianeare salient features, and therefore substituting a lognormal distribution loses this impor-tant harateristi. Also, if one is attempting to predit future behavior based on urrentdata, misrepresenting the tail of the distribution ould have severe onsequenes. Forexample, large �les above a ertain size might be rare urrently, and hene both lognor-mal and power law distibutions based on urrent data might apture these rare eventsadequately. As omputer systems with more memory proliferate, and even larger �lesbeome more frequent, the predition from two models may vary more substantially. Thereent work [51℄ argues that for at least some network appliations the di�erene in tailsis not important. We believe that formalizing this idea is an important open question.Spei�ally, it would be useful to know in a more formal sense in what situations thesmall di�erenes between power laws and lognormal distributions manifest themselves invastly di�erent qualitative behavior, and in what ases a power law distribution an besuitably approximated by a lognormal distributions.9 AknowledgmentsThe author would like to thank John Byers, Mark Crovella, Allen Downey, Alan Frieze,Jon Kleinberg, and Eli Upfal for suggestions on how to improve this work. For furtherreading, the author strongly reommends the artile by Xavier Gabaix [29℄, whih pro-17
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