
A Brief History of Generative Models for Power Lawand Lognormal DistributionsMi
hael Mitzenma
her�Abstra
tRe
ently, I be
ame interested in a 
urrent debate over whether �le size distribu-tions are best modelled by a power law distribution or a a lognormal distribution.In trying to learn enough about these distributions to settle the question, I found ari
h and long history, spanning many �elds. Indeed, several re
ently proposed mod-els from the 
omputer s
ien
e 
ommunity have ante
edents in work from de
adesago. Here, I brie
y survey some of this history, fo
using on underlying generativemodels that lead to these distributions. One �nding is that lognormal and powerlaw distributions 
onne
t quite naturally, and hen
e it is not surprising that lognor-mal distributions have arisen as a possible alternative to power law distributionsa
ross many �elds.1 Introdu
tionPower law distributions (also often referred to as heavy-tail distributions, Pareto dis-tributions, Zip�an distributions, et
.) are now pervasive in 
omputer s
ien
e; see, forexample, [1, 8, 7, 9, 16, 19, 21, 22, 24, 25, 27, 28, 33, 34, 40, 41, 43, 45, 47, 50, 61, 69℄.1This paper was spe
i�
ally motivated by a re
ent paper by Downey [25℄ 
hallengingthe now 
onventional wisdom that �le sizes are governed by a power law distribution.The argument was substantiated both by 
olle
ted data and by the development of anunderlying generative model whi
h suggested that �le sizes were better modeled by alognormal distribution.2 In my attempts to learn more about this question, I was drawnto the history the lognormal and power law distributions. As part of this pro
ess, I delvedinto past and present literature, and 
ame a
ross some interesting fa
ts that appear notto be well known in the 
omputer s
ien
e 
ommunity. This paper represents an attempt�Supported in part by an Alfred P. Sloan Resear
h Fellowship and NSF grant CCR-9983832. Har-vard University, Division of Engineering and Applied S
ien
es, 33 Oxford St., Cambridge, MA 02138.mi
haelm�ee
s.harvard.edu. A preliminary version of this work appeared as [64℄.1I apologize for leaving out 
ountless further examples.2I elaborate on this spe
i�
 model in another paper [63℄.1



to disseminate what I have found, fo
using spe
i�
ally on the models of pro
esses thatgenerate these distributions.Perhaps the most interesting dis
overy is that mu
h of what we in the 
omputer s
i-en
e 
ommunity have begun to understand and utilize about power law and lognormaldistributions has long been known in other �elds, su
h as e
onomi
s and biology. Forexample, models of a dynami
ally growing Web graph that result in a power law distri-bution for in- and out-degrees have be
ome the fo
us of a great deal of re
ent study. Infa
t, as I des
ribe below, extremely similar models date ba
k to at least the 1950's, andarguably ba
k to the 1920's.A se
ond dis
overy is the argument over whether a lognormal or power law distributionis a better �t for some empiri
ally observed distribution has been repeated a
ross many�elds over many years. For example, the question of whether in
ome distribution follows alognormal or power law distribution also dates ba
k to at least the 1950's. The issue arisesfor other �nan
ial models, as detailed in [59℄. Similar issues 
ontinue to arise in biology[37℄, 
hemistry [67℄, e
ology [4, 80℄, astronomy [82℄, and information theory [48, 70℄.These 
ases serve as a reminder that the problems we fa
e as 
omputer s
ientists are notne
essarily new, and we should look to other s
ien
es both for tools and understanding.A third dis
overy from examining previous work is that power law and lognormaldistributions are intrinsi
ally 
onne
ted. Very similar basi
 generative models 
an leadto either power law or lognormal distributions, depending on seemingly trivial variations.There is therefore a reason why this argument as to whether power law or lognormaldistributions are more a

urate has arisen and repeated itself a
ross a variety of �elds.The purpose of this paper is therefore to explain some of the basi
 generative modelsthat lead to power law and lognormal distributions, and spe
i�
ally to 
over how smallvariations in the underlying model 
an 
hange the result from one to the other. A se
ondpurpose is to provide along the way (in
omplete) pointers to some of the re
ent andhistori
ally relevant s
ienti�
 literature.This survey is intended to be a

essible to a general audien
e. That is, it is intendedfor 
omputer s
ien
e theorists, 
omputer s
ientists who are not theorists, and hopefullyalso people outside of 
omputer s
ien
e. Therefore, while mathemati
al arguments andsome probability will be used, the aim is for the mathemati
s to be intuitive, 
lean,and 
omprehensible rather than rigorous and te
hni
al. In some 
ases details may besuppressed for readability; interested readers are referred to the original papers.2 The Distributions: Basi
 De�nitions and Proper-tiesWe begin by reviewing basi
 fa
ts about power law and lognormal distributions.For our purposes, a non-negative random variable X is said to have a power law2



distribution if Pr[X � x℄ � 
x��for 
onstants 
 > 0 and � > 0. Here f(x) � g(x) represents that the limit of the ratiosgoes to 1 as x grows large. Roughly speaking, in a power law distribution asymptoti
allythe tails fall a

ording to the power �. Su
h a distribution leads to mu
h heavier tailsthan other 
ommon models, su
h as exponential distributions. One spe
i�
 
ommonlyused power law distribution is the Pareto distribution, whi
h satis�esPr[X � x℄ = �xk���for some � > 0 and k > 0. The Pareto distribution requires X � k. The density fun
tionfor the Pareto distribution is f(x) = �k�x���1. For a power law distribution, usually �falls in the range 0 < � � 2, in whi
h 
ase X has in�nite varian
e. If � � 1, then X alsohas in�nite mean.If X has a power law distribution, then in a log-log plot of Pr[X � x℄, also known asthe 
omplementary 
umulative distribution fun
tion, asymptoti
ally the behavior will bea straight line. This provides a simple empiri
al test for whether a random variable hasa power law given an appropriate sample. For the spe
i�
 
ase of a Pareto distribution,the behavior is exa
tly linear, asln(Pr[X � x℄) = ��(lnx� ln k):Similarly, on a log-log plot the density fun
tion for the Pareto distribution is also astraight line: ln f(x) = (��� 1) lnx+ � ln k + ln�:A random variable X has a lognormal distribution if the random variable Y = lnXhas a normal (i.e., Gaussian) distribution. Re
all that the normal distribution Y is givenby the density fun
tion f(y) = 1p2�� e�(y��)2=2�2where � is the mean, � is the standard deviation (�2 is the varian
e), and the range is�1 < y <1. The density fun
tion for a lognormal distribution therefore satis�esf(x) = 1p2��xe�(lnx��)2=2�2 :Note that the 
hange of variables introdu
es an additional 1=x term outside of the expo-nential term. The 
orresponding 
omplementary 
umulative distribution fun
tion for alognormal distribution is given byPr[X � x℄ = Z 1z=x 1p2��z e�(ln z��)2=2�2dz:3



We will say that X has parameters � and �2 when the asso
iated normal distributionY has mean � and varian
e �2, where the meaning is 
lear. The lognormal distributionis skewed, with mean e�+ 12�2 , median e�, and mode e���2 . A lognormal distributionhas �nite mean and varian
e, in 
ontrast to the power law distribution under naturalparameters.Despite its �nite moments, the lognormal distribution is extremely similar in shapeto power law distributions, in the following sense: if X has a lognormal distribution, thenin a log-log plot of the 
omplementary 
umulative distribution fun
tion or the densityfun
tion, the behavior will be a straight line ex
ept for a large portion of the body ofthe distribution. Intuitively, for example, the 
omplementary 
umulative distributionfun
tion of a normal distribution appears 
lose to linear. Indeed, if the varian
e of the
orresponding normal distribution is large, the distribution may appear linear on a log-logplot for several orders of magnitude.To see this, let us look the logarithm of the density fun
tion, whi
h is easier to workwith than the 
omplementary 
umulative distribution fun
tion (although the same ideaholds). We have ln f(x) = � lnx� lnp2�� � (lnx� �)22�2 (1)= �(ln x)22�2 + � ��2 � 1� lnx� lnp2�� � �22�2 : (2)If � is suÆ
iently large, then the quadrati
 term of equation (2) will be small for a largerange of x values, and hen
e the logarithm of the density fun
tion will appear almostlinear for a large range of values.Finally, re
all that normal distributions have the property that the sum of two normalrandom variables Y1 and Y2 with �1 and �2 and varian
es �21 and �22 respe
tively is anormal random variable with mean �1 + �2 and varian
e �21 + �22. It follows that theprodu
t of lognormal distributions is again lognormal.3 Power Laws via Preferential Atta
hmentWe now move from mathemati
al de�nitions and properties to generative models. Forthe power law distribution, we begin by 
onsidering the World Wide Web. The WorldWide Web 
an naturally be thought of as a graph, with pages 
orresponding to verti
esand hyperlinks 
orresponding to dire
ted edges. Empiri
al work has shown indegrees andoutdegrees of verti
es in this graph obey power law distributions. There has subsequentlybeen a great deal of re
ent theoreti
al work on designing random graph models thatyield Web-like graphs [7, 16, 19, 24, 40, 41, 43, 45℄. An important 
riterion for anappropriate random graph model is that it yields power law distributions for the indegreesand outdegrees. 4



Most models are variations of the following theme. Let us start with a single page,with a link to itself. At ea
h time step, a new page appears, with outdegree 1. Withprobability � < 1, the link for the new page points to a page 
hosen uniformly at random.With probability 1��, the new page points to page 
hosen proportionally to the indegreeof the page. This model exempli�es what is often 
alled preferential atta
hment; newobje
ts tend to atta
h to popular obje
ts. In the 
ase of the Web graph, new links tendto go to pages that already have links.A simple if slightly non-rigorous argument for the above model goes as follows [7, 24,41, 45℄. Let Xj(t) (or just Xj where the meaning is 
lear) be the number of pages withindegree j when there are t pages in the system. Then for j � 1 the probability that Xjin
reases is just �Xj�1=t+ (1� �)(j � 1)Xj�1=t;the �rst term is the probability a new link is 
hosen at random and 
hooses a pagewith indegree j � 1, and the se
ond term is the probability that a new link is 
hosenproportionally to the indegrees and 
hooses a page with indegree j � 1. Similarly, theprobability that Xj de
reases is �Xj=t+ (1� �)jXj=t:Hen
e, for j � 1, the growth of Xj is roughly given bydXjdt = �(Xj�1 �Xj) + (1� �)((j � 1)Xj�1 � jXj)t :Some mathemati
al purists may obje
t to utilizing a 
ontinuous di�erential equationto des
ribe what is 
learly a dis
rete pro
ess. This intuitively appealing approa
h 
an bejusti�ed more formally using martingales [45℄ and in parti
ular the theoreti
al frameworksof Kurtz and Wormald [24, 46, 83℄.The 
ase of X0 must be treated spe
ially, sin
e ea
h new page introdu
es a vertex ofindegree 0. dX0dt = 1� �X0t :Suppose in the steady state limit that Xj(t) = 
j �t; that is, pages of indegree j 
onstitutea fra
tion 
j of the total pages. Then we 
an su

essively solve for the 
j. For example,dX0dt = 
0 = 1� �X0t = 1� �
0;from whi
h we �nd 
0 = 11+� . More generally, we �nd using the equation for dXj=dt thatfor j � 1, 
j(1 + � + j(1� �)) = 
j�1(� + (j � 1)(1� �)):5



This re
urren
e 
an be used to determine the 
j exa
tly. Fo
using on the asymptoti
s,we �nd that for large j
j
j�1 = 1� 2� �1 + � + j(1� �) � 1� �2� �1� �� 1j! :Asymptoti
ally, for the above to hold we have 
j � 
j� 2��1�� for some 
onstant 
, giving apower law. To see this, note that 
j � 
j� 2��1�� implies
j
j�1 �  j � 1j ! 2��1�� � 1� �2� �1� �� 1j! :Stri
tly speaking, to show it is a power law, we should 
onsider 
�k = Pj�k 
j, sin
ewe desire the behavior of the tail of the distribution. However, we have
�k �Xj�k 
j� 2��1�� � Z 1j=k 
j� 2��1��dj � 
0k� 11��for some 
onstant 
0. More generally, if the fra
tion of items with weight j falls roughlyproportionally to j��, the fra
tion of items with weight greater than or equal to j fallsroughly proportionally j1��, a fa
t we make use of throughout.Although the above argument was des
ribed in terms of degree on the Web graph,this type of argument is 
learly very general and applies to any sort of preferentialatta
hment. In fa
t the �rst similar argument dates ba
k to at least 1925. It wasintrodu
ed by Yule [84℄ to explain the distribution of spe
ies among genera of plants,whi
h had been shown empiri
ally by Willis to satisfy a power law distribution. Whilethe mathemati
al treatment from 1925 is di�erent than modern versions, the outline ofthe general argument is remarkably similar. Mutations 
ause new spe
ies to developwithin genera, and more rarely mutations lead to entirely new genera. Mutations withina genus are more likely to o

ur in a genus with more spe
ies, leading to the preferentialatta
hment.A 
learer and more general development of how preferential atta
hment leads to apower law was given by Simon [75℄ in 1955. Again, although Simon was not interestedin developing a model for the Web, he lists �ve appli
ations of this type of model in hisintrodu
tion: distributions of word frequen
ies in do
uments, distributions of numbersof papers published by s
ientists, distribution of 
ities by population, distribution ofin
omes, and distribution of spe
ies among genera. Simon was aware of Yule's previouswork, and suggests his work is a generalization. Simon's argument, ex
ept for notationand the s
aling of variables, is painfully similar to the outline above.As one might expe
t from Simon's list of appli
ations, power laws had been observed ina variety of �elds for some time; Simon was attempting to give a mathemati
al argumentexplaining these observations. The earliest apparent referen
e is to the work by Pareto6



[68℄ in 1897, who introdu
ed the Pareto distribution to des
ribe in
ome distribution.The �rst known attribution of the power law distribution of word frequen
ies appearsto be due to Estoup in 1916 [26℄, although generally the idea (and its elu
idation) areattributed to Zipf [86, 87, 88℄. Similarly, Zipf is often 
redited with noting that 
ity sizesappear to mat
h a power law, although this idea 
an be tra
ed ba
k further to 1913 andAuerba
h [6℄. Lotka (
ir
a 1926) found in examining the number of arti
les produ
ed by
hemists that the distribution followed a power law [52℄; indeed, power laws of variousforms appear in many pla
es in informetri
s [15℄.Although we now asso
iate the argument above with the Web graph, even beforethe Web graph be
ame popular, more formal developments of the argument above hadbeen developed as part of the study of random trees. Spe
i�
ally, 
onsider the followingre
ursive tree stru
ture. Begin with a root node. At ea
h step, a new node is added; itsparent is 
hosen from the 
urrent verti
es with probability proportional to one plus thenumber of 
hildren of the node. This is just another example of preferential atta
hment;indeed, it is essentially equivalent to the simple Web graph model des
ribed above withthe probability � of 
hoosing a random node equal to 1/2. That the degree distribution ofsu
h graphs obey a power law (in expe
tation) was proven in 1993 in works by Mahmoud,Smythe, and Szyma�nski [54℄. See also the related [53, 81, 71, 79℄.Of 
ourse, in re
ognizing the relationship between the re
ent work on Web graphmodels and this previous work, it would be remiss to not point out that modern devel-opments have led to many new insights. Perhaps most important is the developmentof a 
onne
tion between Simon's model, whi
h appears amenable only to limiting anal-ysis based on di�erential equations, and purely 
ombinatorial models based on randomgraphs [14, 54, 79℄. Su
h a 
onne
tion is important for further rigorous analysis of thesestru
tures. Also, 
urrent versions of Simon's arguments based on martingales provide amu
h more rigorous foundation [14, 19, 45, 53℄. More re
ent work has fo
used on greaterunderstanding of the stru
ture of graphs that arise from these kinds of preferential at-ta
hment model. It has been shown that in the Web graph model des
ribed above wherenew pages 
opy existing links, the graphs have 
ommunity substru
tures [45℄, a propertynot found in random graphs but amply found in the a
tual Web [32, 44℄. The diameterof these random Web graphs have also been the subje
t of re
ent study [5, 13℄. Still, itis important to note how mu
h was already known about the power law phenomenon invarious �elds well before the modern e�ort to understand power laws on the Web, andhow mu
h 
omputer s
ientists had to reinvent.4 Power Laws via OptimizationMandelbrot had developed other arguments for deriving power law distributions basedon information theoreti
 
onsiderations somewhat earlier than Simon [55℄. His argumentis very similar in spirit to other re
ent optimization based arguments for heavy taileddistributions [17, 27, 85℄. 7



We sket
h Mandelbrot's framework, whi
h demonstrates a power law in the rank-frequen
y distribution of words. That is, the frequen
y pj of the jth most-used word,given as a fra
tion of the time that word appears, follows a power law in j, so pj � 
j��.This is a slightly di�erent 
avor than the type power law than we 
onsidered previously;Simon's model 
onsiders the fra
tion of words that appear j times. But of 
ourse thetwo are related. We 
larify this by following an argument of Bookstein [15℄.Suppose we have a text where the number of words qk that appear k times is givenby qk = Qk�� for � > 1. Further suppose for 
onvenien
e we have one most frequentword that appears km times, so that we may write qk = (k=km)��. The number of wordsthat appear k or more times is then approximatelyZ kmk � xkm��� dx;and hen
e the rank j of a word that appears k times is approximatelyj = jm�� 1 "�jmk ���1 � 1# :Now solving for k in terms of j, we �nd that the jth most-used word appears approxi-mately k = jm "(�� 1)jjm + 1#�1=(��1)times, yielding a power law for the frequen
y pj as a fun
tion of j.We now begin Mandelbrot's argument. Consider some language 
onsisting of n words.The 
ost of using the jth word of the language in a transmission is Cj. For example,if we think of English text, the 
ost of a word might be thought of as the number ofletters plus the additional 
ost of a spa
e. Hen
e a natural 
ost fun
tion has Cj � logd jfor some alphabet size d. Suppose that we wish to design the language to optimize theaverage amount of information per unit transmission 
ost. Here, we take the averageamount of information to be the entropy. We think of ea
h word in our transmissionas being sele
ted randomly, and the probability that a word in the transmission is thejth word of the language is pj. Then the average information per word is the entropyH = �Pnj=1 pj log2 pj, and the average 
ost per word is C = Pnj=1 pjCj. The question ishow would the pj be 
hosen to minimize A = C=H. Taking derivatives, we �nddAdpj = CjH + C log2(epj)H2 :Hen
e all the derivatives are 0 (and A is in fa
t minimized) when pj = 2�HCj=C=e. UsingCj � logd j, we obtain a power law for the pj.3 Mandelbrot argues that a variation of3The eagle-eyed reader might note that te
hni
ally the result above does not quite mat
h a powerlaw as we have de�ned it; just be
ause Cj � logd j does not stri
tly give us pj � j��. In this 
ase this isa minor point; really Cj is within an additive 
onstant of logd j, and we therefore �nd that pj is withina 
onstant multipil
ative fa
tor of a power law. We ignore this distin
tion hen
eforth.8



this model mat
hes empiri
al results for English quite well.Carlson and Doyle suggest a similar framework for analyzing �le sizes and forest �les[17℄. Fabrikant, Koutsoupias, and Papadimitriou introdu
e 
ombinatorial models for theInternet graph (whi
h should not be 
onfused with the Web graph; the Internet graph
onsists of the servers and links between them as opposed to Web pages) and �le sizesbased on lo
al optimization that also yield power laws [27℄.As an aside, I found when reviewing the literature that Mandelbrot strongly arguedagainst Simon's alternative assumptions and derivations based on preferential atta
hmentwhen his arti
le 
ame out. This led to what is in retrospe
t an amusing but apparentlyat the time quite heated ex
hange between Simon and Mandelbrot in the journal Infor-mation and Control [56, 76, 57, 77, 58, 78℄.4It is worth noting that e
onomists appear to have given the nod to Simon and thepreferential atta
hment model. Indeed, a re
ent popular e
onomi
s text by Krugman[42℄ o�ers a derivation of the power law similar to Simon's argument.5 A more formaltreatment is given by Gabaix [29℄.5 Multipli
ative pro
essesLognormal distributions are generated by pro
esses that follow what the e
onomist Gibrat
alled the law of proportionate e�e
t [30, 31℄. We here use the term multipli
ative pro
essto des
ribe the underlying model. In biology, su
h pro
esses are used to des
ribed thegrowth of an organism. Suppose we start with an organism of size X0. At ea
h step j,4At the risk of o�ending the original authors, a few ex
erpts from the ex
hange are worth 
iting todemonstrate the disagreement. The abstra
t of Mandelbrot's initial note begins, \This note is a dis
us-sion of H. A. Simon's model (1955) 
on
erning the 
lass of frequen
y distributions generally asso
iatedwith the name of G. K. Zipf. The main purpose is to show that Simon's model is analyti
ally 
ir
ularin the 
ase of the linguisti
 laws of Estouf-Zipf and Willis-Yule." [56℄ The abstra
t of Simon's rebuttalbegins, \This note takes issue with a re
ent 
riti
ism by Dr. B. Mandelbrot of a 
ertain sto
hasti
 modelto explain word-frequen
y data. Dr. Mandelbrot's prin
ipal empiri
al and mathemati
al obje
tions tothe model are shown to be unfounded." [76℄ Mandelbrot begins his \Final Note" in response to Simon'srebuttal as follows: \In a \Note" published in this Journal in 1959 (Mandelbrot, 1959), we had shownthe impossibility of ever explaining the Pareto-Yule-Zipf 
lass of skew distribution fun
tions by using themodel due to H. A. Simon (1955). That model was most ingenious and tempting but it turned out tobe totally inadequate to derive the desired results." [57℄ Simon's further rebuttal 
ontains the senten
e,\Thus we have 
ome to the end of the list of Dr. Mandelbrot's obje
tions to my approximation without�nding a single one that is valid." [77℄ In the �nal volley of the series of ex
hanges (Mandelbrot feltit ne
esary to add a \Post S
riptum" after his \Final Note") the abstra
ts are short and to the point.Mandelbrot says, \My 
riti
ism has not 
hanged sin
e I �rst had the privilege of 
ommenting upon adraft of Simon (1955)." [58℄ Simon's �nal word is: \Dr. Mandelbrot has proposed a new set of obje
tionsto my 1955 models of the Yule distribution. Like his earlier obje
tions, these are invalid." [78℄5As an interesting example of the breadth of the s
ope of power-law behavior, one review of Krugman'sbook, written by an urban geographer, a

uses the author of ex
essive hubris for not noting the signi�
ant
ontributions made by urban geographers with regard to Simon's model [11℄.9



the organism may grow or shrink, a

ording to a random variable Fj, so thatXj = FjXj�1:The idea is that the random growth of an organism is expressed as a per
entage of its
urrent weight, and is independent of its 
urrent a
tual size. If the Fk; 1 � k � j; are allgoverned by independent lognormal distributions, then so is ea
h Fj, indu
tively, sin
ethe produ
t of lognormal distributions is again lognormal.More generally, lognormal distributions may be obtained even if the Fj are not them-selves lognormal. Spe
i�
ally, 
onsiderlnXj = lnX0 + jXk=1 lnFk:Assuming the random variables lnFk satisfy appropriate 
onditions, the Central LimitTheorem says that Pjk=1 lnFk 
onverges to a normal distribution, and hen
e for suÆ-
iently large j, Xj is well approximated by a lognormal distribution. In parti
ular, if thelnFk are independent and identi
ally distributed variables with �nite mean and varian
e,then asymptoti
ally Xj will approa
h a lognormal distribution.Multipli
ative pro
esses are used in biology and e
ology to des
ribe the growth oforganisms or the population of a spe
ies. In e
onomi
s, perhaps the most well-knownuse of the lognormal distribution derives from the Bla
k-S
holes option pri
ing model[12℄, whi
h is a spe
i�
 appli
ation of Ito's lemma (see, e.g., [35, 36℄). In a simpli�edversion of this setting [20, 35℄, the pri
e of a se
urity moves in dis
rete time steps, and thepri
e Xj 
hanges a

ording to Xj = FjXj�1, where Fj is lognormally distributed. Usingthis model, Bla
k and S
holes demonstrate how to use options to guarantee a risk-freereturn equivalent to the prevailing interest rate in a perfe
t market. Other appli
ationsin for example geology and atmospheri
 
hemistry are given in [23℄. More re
ently,as des
ribed below, Adami
 and Huberman suggest that multipli
ative pro
esses maydes
ribe the growth of sites on the Web as well as the growth of user traÆ
 on Web sites[33, 34℄. Lognormal distributions have also been suggested for �le sizes [8, 9, 25℄.The 
onne
tion between multipli
ative pro
esses and the lognormal distribution 
anbe tra
ed ba
k to Gibrat around 1930 [30, 31℄, although Kapteyn des
ribed in other termsan equivalent pro
ess in 1903 [38℄, and M
Alister des
ribed the lognormal distributionaround 1879 [60℄. Ait
hison and Brown suggest that the lognormal distribution may be abetter �t for in
ome distribution than a power law distribution, representing perhaps the�rst time the question of whether a power law distribution or a lognormal distributiongives a better �t was fully developed [2, 3℄. It is interesting that when examining in
omedistribution data, Ait
hison and Brown observe that for lower in
omes a lognormal dis-tribution appears a better �t, while for higher in
omes a power law distribution appearsbetter; this is e
hoed in later work by Montroll and S
hlesinger [65, 66℄, who o�er a pos-sible mathemati
al justi�
ation dis
ussed below. Similar observations have been givenfor �le sizes [8, 9℄. 10



5.1 Multipli
ative Models and Power Law DistributionsAlthough the multipli
ative model is used to generate lognormal or approximately dis-tributions, only a small 
hange from the lognormal generative pro
ess yields a generativepro
ess with a power law distribution. To provide a 
on
rete example, we 
onsider theinteresting history of work on in
ome distributions.Re
all that Pareto introdu
ed the Pareto distribution in order to explain in
ome dis-tribution at the tail end of the nineteenth 
entury. Champernowne [18℄, in a work slightlypredating Simon (and a
knowledged by Simon, who suggested his work generalized andextended Champernowne), o�ered an explanation for this behavior. Suppose that webreak in
ome into dis
rete ranges in the following manner. We assume there is someminimum in
ome m. For the �rst range, we take in
omes between m and 
m, for some
 > 1; for the se
ond range, we take in
omes between 
m and 
2m. We therefore saythat a person is in 
lass j for j � 1 if their in
ome is between m
j�1 and m
j. Champer-nowne assumes that over ea
h time step, the probability of an individual moving from
lass i to 
lass j, whi
h we denote by pij, depends only on the value of j � i. He then
onsiders the equilibrium distribution of people among 
lasses. Under this assumption,Pareto distributions 
an be obtained.Let us examine a spe
i�
 
ase, where 
 = 2, pij = 2=3 if j = i � 1, and pij = 1=3if j = i + 1. Of 
ourse the 
ase i = 1 is a spe
ial 
ase; in this 
ase p11 = 2=3. In thisexample, outside of 
lass 1, the expe
ted 
hange in in
ome over any step is 0. It is alsoeasy to 
he
k that in this 
ase the equilibrium probability of being in 
lass k is just 1=2k,and hen
e the probability of being in 
lass greater than or equal to k is 1=2k�1. Hen
ethe probability that a person's in
ome X is larger than 2k�1m in equilibrium is given byPr[X � 2k�1m℄ = 1=2k�1;or Pr[X � x℄ = m=xfor x = 2k�1m. This is a power law distribution.Note, however, the spe
i�
 model above looks remarkably like a multipli
ative model.Moving from one 
lass to another 
an be thought of as either doubling or halving yourin
ome over one time step. That is, if Xt is your in
ome after t time steps, thenXt = FtXt�1;where Ft is 1=2 with probability 2=3 and 2 with probability 1=3. Again, E[Xt℄ = E[Xt�1℄.Our previous dis
ussion therefore suggests that Xt should 
onverge to a lognormal dis-tribution for large t.What is the di�eren
e between the Champernowne model and the multipli
ativemodel? In the multipli
ative model, in
ome 
an be
ome arbitrarily 
lose to zero throughsu

essive de
reases; in the Champernowne model, there is a minimum in
ome 
orre-sponding to the lowest 
lass below whi
h one 
annot fall. This small 
hange allows one11



model to produ
e a power law distribution while the other produ
es a lognormal. As longas there is a bounded minimum that a
ts as a lower re
e
tive barrier to the multipli
ativemodel, it will yield a power law instead of a lognormal distribution. The theory of thisphenomenon is more fully developed in [29, 39℄.6 Monkeys Typing RandomlyWe return now to Mandelbrot's optimization argument for the power law behavior ofword frequen
y in written language. A potentially serious obje
tion to Mandelbrot'sargument was developed by the psy
hologist Miller [62℄, who demonstrated that thepower law behavior of word frequen
y arises even without an underlying optimizationproblem. This result, explained below, should perhaps serve as warning: just be
auseone �nds a 
ompelling me
hanism to explain a power law does not mean that there arenot other, perhaps simpler explanations.Miller suggests the following experiment. A monkey types randomly on a keyboardwith n 
hara
ters and a spa
e bar. A spa
e is hit with probability q; all other 
hara
tersare hit with equal probability (1� q)=n. A spa
e is used to separate words. We 
onsiderthe frequen
y distribution of words.It is 
lear that as the monkey types ea
h word with 
 (non-spa
e) 
hara
ters o

urswith probability q
 = �1� qn �
 q;and there are n
 words of length 
. (We allow the empty word of length 0 for 
onvenien
e.)The words of longer length are less likely and hen
e o

ur lower in the rank order ofword frequen
y. In parti
ular, the word with frequen
y ranks 1 + (nj � 1)=(n � 1) to(nj+1 � 1)=(n � 1) have j letters. Hen
e, the word with frequen
y rank rj = nj o

urswith probability qj = q �1� qn �logn rj = q (rj)logn(1�q)�1 ;and the power law behavior is apparent. Hen
e the power law asso
iated with word fre-quen
y requires neither preferential atta
hment nor optimization; monkeys typing ran-domly would produ
e it.Bell, Cleary, and Witten observe empiri
ally that when the probabilities of ea
h letterare not equal, a smoother mat
h to the power law develops [10℄. I am 
urrently unawareof a proof similar to the one above demonstrating that power law behavior o

urs whenthe probabilities for ea
h of the letters are arbitrary. Indeed, to 
onfuse the issue, onepaper on the subje
t 
laims that if the letter frequen
ies are not equal, a lognormaldistribution o

urs [70℄ (see also [51℄, where this 
laim is repeated). It is worth examiningthis argument more 
arefully, sin
e it demonstrates the 
onfusion that 
an arise in tryingto distinguish models that generate power law and lognormal distributions.12



Perline notes that in the experiment with monkeys typing randomly, if we 
onsiderwords only of some �xed length m, for m suÆ
iently large their frequen
y-rank distribu-tion will approximate a lognormal distribution, following the paradigm of multipli
ativepro
esses. To see this, let the probabilities for our n 
hara
ters be p1; p2; : : : ; pn. Considerthe generation a random m-letter word. Let Xi take on the value pj if the ith letter is j.Then Ym = X1X2 : : :Xm is a random variable whose value 
orresponds to the probabilitythat a word 
hosen uniformly at random from all m-letter words appears as the monkeystype. We have that lnYm = Pmk=1 lnXi; sin
e the Xi are independent and identi
allydistributed, logYm 
onverges to a normal distribution by the Central Limit Theorem,and hen
e Ym 
onverges to a lognormal distribution. Noti
e that this holds true even ifall letter frequen
ies are equal, although in this 
ase the resulting distribution is trivial.Perline then argues that if we 
onsider all words of length up to m, we still obtainasymptoti
 
onvergen
e to a lognormal distribution. This follows from a generalizationof the Central Limit Theorem due to Ans
ombe. Intuitively, this is be
ause most wordshave length 
lose to m, so the words with small length are just noise in the distribution.This result does require that the probability some two letters have di�erent probabilitiesof being hit.From this, it might be tempting to 
on
lude that the distribution if the word lengthis unrestri
ted is also lognormal when letters do not all have the same probabilities.However, this does not follow. The problem is that for ea
h value ofm we obtain a slightlydi�erent lognormal distribution. Hen
e it is not ne
essarily true that in the limit as min
reases we are getting 
loser and 
loser to some �nal lognormal distributions. Rather,we have a sequen
e of lognormal distributions that is 
onverging to some distribution.To justify that the result need not be lognormal, I present an amusing example of myown devising.Consider an alphabet with two letters: \a" o

urs with probability q, \b" o

urs withprobability q2, and a spa
e o

urs with probability 1�q�q2. The value q must be 
hosenso that 1� q � q2 > 0. In this 
ase, every valid word the monkey 
an type o

urs withprobability qj(1� q � q2) for some integer j. Let us say a word has pseudo-rank j if ito

urs with probability qj(1 � q � q2). There is 1 word with pseudo-rank 0 (the emptyword), 1 with pseudo-rank 1 (\a"), 2 with pseudo-rank 2 (\aa" and \b"), and so on.A simple indu
tion yields that the number of words with pseudo-rank k is in fa
t the(k + 1)st Fibona

i number Fk+1 (where here we start with F0 = 0 and F1 = 1). Thisfollows obviously from the fa
t that to obtain the words with pseudo-rank k we appendan \a" to a word with pseudo-rank k � 1, or a \b" to a word with pseudo-rank k � 2.Re
all that Fk � �k=p5 for large k, where � = (1+p5)=2. Also Pki=1 Fk = Fk+2� 1.Now the argument is entirely similar to the 
ase where all items have the same probability.If we ask for the frequen
y of the rj = Fjth most frequent item, it has pseudo-rank j�2,and hen
e its frequen
y isqj�2(1� q � q2) � qlog�p5rj�2(1� q � q2) = rlog� qj qlog�p5�2(1� q � q2);13



and again we have power law behavior.There is nothing spe
ial about having two 
hara
ters for this example; one 
ouldeasily expand it to in
lude more 
omplex generalized Fibona

i sequen
es. A suitablegeneralization is in fa
t appears feasible for any probabilities p1; p2; : : : ; pn asso
iated withthe n 
hara
ters, although a formal proof is beyond the s
ope of this survey.6 Roughly,let p1 be the largest of the pi, and let pj = p
j1 for j � 1. Then the number of wordswith frequen
y greater than or equal to pk1 grows approximately proportionally to (1=
)k,where 
 is the unique real root between 0 and 1 of Pnj=1 x
j = 1. This is all we need forthe monkeys to produ
e a power law distribution, following the arguments above.7 Double Pareto DistributionsInterestingly, there is another variation on the multipli
ative generative model also yieldspower law behavior. Re
all that in the multipli
ative model, if we begin with valueX0 andevery step yields an independent and identi
ally distributed multiplier from a lognormaldistribution F , then any resulting distribution Xt after t steps is lognormal. Suppose,however, that instead of examining Xt for a spe
i�
 value of t, we examine the randomvariable XT where T itself is a random variable. As an example, when 
onsideringin
ome distribution, in seeing the data we may not know how long ea
h person has lived.If di�erent age groups are intermixed, the number of multipli
ative steps ea
h personmay be thought to have undergone may be thought of as a random variable.This e�e
t was noti
ed as early as 1982 by Montroll and S
hlesinger [65, 66℄. Theyshow that a mixture of lognormal distributions based on a geometri
 distribution wouldhave essentially a lognormal body but a power law distribution in the tail. Hubermanand Adami
 suggest a pleasantly simple variation of the above result; in the 
ase wherethe time T is an exponential random variable, and we may think of the number ofmultipli
ative steps as being 
ontinuous, the resulting distribution of XT has a powerlaw distribution [33, 34℄. Huberman and Adami
 go on to suggest that this result 
anexplain the power law distribution observed for the number of pages per site. As theWeb is growing exponentially, the age of a site 
an roughly be thought of as distributedlike an exponential random variable. If the growth of the number of pages on a Web sitefollows a multipli
ative pro
ess, the above result suggests a power law distribution.In more re
ent independent work, Reed provides the 
orre
t full distribution for theabove model, whi
h yields what he 
alls a double Pareto distribution [72℄. Spe
i�
ally,the resulting distribution has one Pareto tail distribution for small values (below somepoint) and another Pareto tail distribution for large values (above the same point).76I am 
urrently 
onstru
ting a formal treatment of this argument, whi
h appears to require somenon-trivial analyti
 number theory. This work will hopefully appear in the near future.7For 
ompleteness we note that Huberman and Adami
 
on
entrate only on the tail of the densityfun
tion, and 
orre
tly determine the power law behavior. However, they miss the two-sided nature ofthe distribution. Reed gives the 
omplete 
orre
t form, as we do below.14



For example, 
onsider for simpli
ity the 
ase where if we stop a pro
ess at time t theresult is a lognormal random variable with mean 0 and varian
e t. Then if we stop thepro
ess at an exponentially distributed time with mean 1=�, the density fun
tion of theresult is f(x) = Z 1t=0 �e��t 1p2�txe�(lnx)2=2tdt:Using the substitution t = u2 givesf(x) = 2�p2�x Z 1u=0 e��u2�(lnx)2=2u2du:An integral table gives us the identityZ 1z=0 e�az2�b=z2 = 12r�a e�2pab;whi
h allows us to solve for the resulting form. Note that in the exponent p2ab ofthe identity we have b = (lnx)2=2. Be
ause of this, there are two di�erent behaviors,depending on whether x � 1 or x � 1. For x � 1, f(x) = �q�=2�x�1�p2�, so the resultis a power law distribution. For x � 1, f(x) = �q�=2� x�1+p2�.The double Pareto distribution falls ni
ely between the lognormal distribution andthe Pareto distribution. Like the Pareto distribution, it is a power law distribution. Butwhile the log-log plot of the density of the Pareto distribution is a single straight line, forthe double Pareto distribution the log-log plot of the density 
onsists of two straight linesegments that meet at a transition point. This is similar to the lognormal distribution,whi
h has a transition point around its median e� due to the quadrati
 term, as shownin equation (1). Hen
e an appropriate double Pareto distribution 
an 
losely mat
h thebody of a lognormal distribution and the tail of a Pareto distribution. For example,Figure 1 shows the 
omplementary 
umulative distribution fun
tion for a lognormal anda double Pareto distribution. (These graphs have only been minimally tuned to give areasonable mat
h.) The plots mat
h quite well with a standard s
ale for probabilities,as shown on the left. On the log-log s
ale, however, one 
an see the di�eren
e in the tailbehavior. The double Pareto distribution follows a power law; the lognormal distributionhas a 
lear 
urvature.Reed also suggests a generalization of the above 
alled a double Pareto-lognormaldistribution with similar properties [73℄. The double Pareto-lognormal distribution hasmore parameters, but might allow 
loser mat
hes with empiri
al distributions.It seems reasonable that in many pro
esses the time an obje
t has lived should be
onsidered a random variable as well, and hen
e this model may prove more a

urate formany situations. For example, that the double Pareto tail phenomenon 
ould explain whyin
ome distributions and �le size distributions appear better modeled by a distributionwith a lognormal body and a Pareto tail [2, 8, 9, 65, 66℄. Reed presents empiri
al eviden
e15
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Figure 1: Shapes of lognormal and double Pareto distributions.in favor of using the double Pareto and double-Pareto lognormal distributions for in
omesand other appli
ations [72, 73℄.To give an idea of why it might be natural for the time parameter to be (roughly)exponentially distributed, I brie
y des
ribe a model that I introdu
ed in [63℄. This model
ombines ideas from the theory of re
ursive trees, preferential atta
hment, and the doublePareto framework. Consider a graph pro
ess that works as follows: at ea
h step, withprobability 
, a new node is introdu
ed that be
omes the root of a new tree. Ea
hnew node has an asso
iated size 
hosen independently and uniformly at random from adistribution D1. With probability 1�
, an existing node is 
hosen uniformly at random,and it generates a 
hild. The size of a 
hild is equal to the size of its parent, multipliedby some multipli
ative fa
tor 
hosen by a distribution D2. It is easy to show that thedistribution of the depths of the nodes generated in this manner 
onverges to a geometri
distribution. Along ea
h bran
h of the tree, the size of the nodes follows a multipli
ativepro
ess. If D1 and D2 are lognormal distributions, then the size of a randomly 
hosennode is a geometri
 mixture of lognormally distributed random variables, whi
h 
loselymat
hes the exponential mixture required for a double Pareto distribution. In fa
t, thetail behaviors are the same. I use this model to explain �le size distributions in [63℄; [74℄analyzes other similar models.This line of thought also ties ba
k into the dis
ussion of monkeys typing randomly.In the 
ase of unrestri
ted word lengths and unequal letter probabilities, the word lengthis geometri
ally distributed, and the probability of a word of any (large) �xed length isapproximately lognormal, with the appropriate mean and varian
e being proportional tothe length of the word. Hen
e the underlying distribution of word lengths is a geometri
mixture of approximately lognormal random variables as in the framework above, andhen
e the resulting power law is unsurprising.
16



8 Con
lusionsPower law distributions and lognormal distributions are quite natural models and 
anbe generated from simple and intuitive generative pro
esses. Be
ause of this, they haveappeared in many areas of s
ien
e. This example should remind us of the importan
e ofseeking out and re
ognizing work in other dis
iplines, even if it lies outside our normalpurview. Sin
e 
omputer s
ientists invented sear
h engines, we really have little ex
use.On a personal note, I was astounded at how the Web and sear
h engines have transformedthe possibilities for mining previous resear
h; many of the de
ades-old arti
les (in
ludingthe 1925 arti
le by Yule!) 
ited here are in fa
t available on the Web.It is not 
lear that the above dis
ussion settles one way or another whether lognormalor power law distributions are better models for things like �le size distributions. Giventhe 
lose relationship between the two models, it is not 
lear that a de�nitive answeris possible; it may be that in seemingly similar situations slightly di�erent assumptionsprevail. The fa
t that power law distributions arise for multipli
ative models on
e theobservation time is random or a lower boundary is put into e�e
t, however, may suggestthat power laws are more robust models. Indeed, following the work of Reed [72, 73℄, were
ommend the double Pareto distribution and its variants as worthy of further 
onsid-eration in the future.From a more pragmati
 point of view, it might be reasonable to use whi
hever distri-bution makes it easier to obtain results. This runs the risk of being ina

urate; perhapsin some 
ases the fa
t that power law distributions 
an have in�nite mean and varian
eare salient features, and therefore substituting a lognormal distribution loses this impor-tant 
hara
teristi
. Also, if one is attempting to predi
t future behavior based on 
urrentdata, misrepresenting the tail of the distribution 
ould have severe 
onsequen
es. Forexample, large �les above a 
ertain size might be rare 
urrently, and hen
e both lognor-mal and power law distibutions based on 
urrent data might 
apture these rare eventsadequately. As 
omputer systems with more memory proliferate, and even larger �lesbe
ome more frequent, the predi
tion from two models may vary more substantially. There
ent work [51℄ argues that for at least some network appli
ations the di�eren
e in tailsis not important. We believe that formalizing this idea is an important open question.Spe
i�
ally, it would be useful to know in a more formal sense in what situations thesmall di�eren
es between power laws and lognormal distributions manifest themselves invastly di�erent qualitative behavior, and in what 
ases a power law distribution 
an besuitably approximated by a lognormal distributions.9 A
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