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Abstract. It is well known that simple randomized load balancing schemes can
balance load effectively while incurring only a small overhead, making such schemes
appealing for practical systems. In this paper we provide new analyses for several
such dynamic randomized load balancing schemes.

Our work extends a previous analysis of thesupermarket model, a model that
abstracts a simple, efficient load balancing scheme in the setting where jobs arrive
at a large system of parallel processors. In this model, customers arrive at a sys-
tem ofn servers as a Poisson stream of rateλn, λ < 1, with service requirements
exponentially distributed with mean 1. Each customer choosesd servers indepen-
dently and uniformly at random from then servers, and is served according to the
First In First Out (FIFO) protocol at the choice with the fewest customers. For the
supermarket model, it has been shown that usingd = 2 choices yields an expo-
nential improvement in the expected time a customer spends in the system over
d = 1 choice (simple random selection) in equilibrium. Here we examine several
variations, including constant service times andthreshold models, where a customer
makes up tod successive choices until finding one below a set threshold.

Our approach involves studying limiting, deterministic models representing the
behavior of these systems as the number of serversn goes to infinity. Results of our
work include useful general theorems for showing that these deterministic systems
are stable or converge exponentially to fixed points. We also demonstrate that allow-
ing customers two choices instead of just one leads to exponential improvements in
the expected time a customer spends in the system in several of the related models
we study, reinforcing the concept that just two choices yields significant power in
load balancing.

∗ This work was supported in part by the ONR and in part by NSF Grant CCR-9505448. Most of this
work was done while the author was a student at U.C. Berkeley.
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1. Introduction

Distributed computing systems continue to rise in prevalence; networks of work-
stations and clusters of personal computers hold the promise of increased power and
price/performance ratios. It has long been known that in distributed systems, redis-
tributing the workload through load balancing can lead to significant performance im-
provements, in terms of both the mean and standard deviation of the time jobs spend in
the system (for example, see [7] and [35]). Moreover, simple randomized schemes with
low overhead have proven effective in simulations; however, analyzing such schemes
is often difficult. In this paper we provide new analyses for several dynamic random-
ized load balancing models. Unlike previous similar analyses, we do not assume that in
equilibrium each server is stochastically independent from other servers.

One example of the type of problem we consider, previously studied in [26], is
the following natural dynamic model: customers arrive as a Poisson stream of rateλn,
whereλ < 1, at a collection ofn servers. The service times for the customers are
independent and exponentially distributed with mean 1. Each customer chooses some
constant numberd of servers independently and uniformly at random from then servers,
and waits for service at the one currently containing the fewest customers (ties being
broken arbitrarily), according to the First In First Out (FIFO) protocol. We call this model
thesupermarket model, or thesupermarket system(see Figure 1). We are interested in
the behavior of this system in equilibrium. Note that as the average arrival rate per queue
(λ < 1) is less than the service rate, we expect the system to bestable, in the sense that
the expected number of customers per queue remains finite in equilibrium.

Standard queuing theory does not directly apply to the supermarket model, because
the server loads are dependent: the arrival rate at any server depends on the loads at the
other servers. This dependency complicates the analysis dramatically.

Many variations on the supermarket model exist. For example, in athresholdsystem
an incoming customer successively chooses queues at random until either finding one
with a load below a fixed threshold or usingd choices. A threshold scheme may be

Fig. 1. The supermarket model. Incoming customer A chooses two random servers, and queues at the shorter
one. Customer B has recently been served and leaves the system.



On the Analysis of Randomized Load Balancing Schemes 363

more efficient than giving each customerd choices in practice, since each choice will
generally require some communication, and threshold schemes reduce the amount of
necessary communication. As another example, service times might not be exponentially
distributed, but constant, or given by another distribution. In this paper we introduce new
analyses for these and other variations. Our approach, following that of [26], has two
main components:

• We define an idealized process, given by a family of differential equations, which
corresponds to a system with an infinite number of servers. We then analyze this
process, which is cleaner and easier because its behavior is completely determin-
istic.
• We relate the idealized system to the finite system, bounding the error between

them.

Our analysis of the limiting system (as the number of servers grows to infinity)
focuses on finding thefixed point(or equilibrium point) to which the system tends. If
the system converges to its fixed point, then we can use it to determine such quantities
as the expected time a customer spends in the system. For most of the idealized systems
we consider, we showexponential convergenceto the fixed point, which demonstrates
that the system approaches the fixed point very quickly. Indeed, besides determining the
behavior of several interesting systems, a major contribution of this work is a simple,
general theorem that gives appropriate conditions for convergence; we expect this theo-
rem will prove useful in other settings as well. We also demonstrate through simulations
that the method provides accurate numerical estimates of performance, even when the
actual number of servers is relatively small.

For ease of presentation, we have made several assumptions to simplify the models
we consider. For example, we assume that the time for a customer to obtain information
about server loads and move to a server is zero, and that the servers are homogeneous.
Many of our techniques, however, generalize to more complex systems, such as systems
where transferring a customer incurs a delay (see [28]). Moreover, even the simple sys-
tems we study demonstrate remarkably interesting behavior. In particular, we emphasize
throughout that there is often a qualitative difference between systems where customers
choose a single destination randomly and systems where customers have two or more
choices available, leading to exponential improvement in measures such as the expected
time in the system. Hence our work extends a great deal of previous work demonstrating
the power of two choices in load balancing to several new settings, providing further
evidence of the significance of this idea in the design of distributed systems.

1.1. Previous Work

Distributed load balancing strategies where individual customer decisions are based on
information about a limited number of other processors have been studied analytically
by Eager et al. [7]–[9] and through trace-driven simulations by Zhou [35]. In fact, Eager
et al. also use Markovian models for their analysis [7]–[9]; however, the authors derive
their results assuming that the state of each queue is stochastically independent of the
state of any other queue. This approach is exact in the asymptotic limit as the number of
queues grows to infinity. Our work avoids these assumptions and introduces several new
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directions in the analysis of these systems. Zhou’s work examines the effectiveness of
the load balancing strategies proposed by Eager et al. as well as others in practice using
a trace-driven simulation. Both Eager et al. and Zhou suggest that simple randomized
load balancing schemes, based on choosing from a small subset of processors, perform
extremely well.

In another well-studied model, incoming customers join the shortest queue; see,
for example, the work by Adan et al. [1]–[3] for results and further references. The
shortest queue model appears more applicable tocentralizedsystems, whereas the limited
coordination enforced by our model corresponds nicely to models ofdistributedsystems.

Randomized load balancing schemes have also been analyzed in the static case,
where there are a fixed number of customers to be permanently distributed, as in a static
hash table. For example, Karp et al. showed that using two hash functions instead of one
could provide an exponential improvement in the maximum load of a hash bucket [13];
this idea was further developed and analyzed by Azar et al. [5]. Our work demonstrates
that making two choices leads to a similar exponential improvement in the dynamic
setting as well.

The justification of the relationship between the finite and limiting systems relies
on Kurtz’s work ondensity dependent jump Markov processes[10], [19]–[22]. Because
Kurtz’s work is rather technical, we only briefly describe it here, focusing instead on
examining a variety of models and attempting to gain insight into the load balancing
problem. More details regarding the application of Kurtz’s work to these models can be
found in [27]. This approach has been used similarly in several other works (for example,
see [4], [11], [14], [15], [26], [31], [33], and [34]).

The rest of the paper proceeds as follows: in Section 2 we briefly review the work
of [26] by examining the limiting system for the supermarket model. This allows us
to introduce the necessary terminology and keeps this paper essentially self-contained.
To demonstrate the applicability of our methods to more realistic systems, we consider
alternative service distributions in Section 3, focusing on the example of constant service
times. In Sections 4 and 5 we explore some variations on the supermarket model that
may also prove useful in practice, including threshold models. Section 4 includes general
theorems for proving the stability or exponential convergence of the limiting systems.
We specialize these theorems to handle threshold systems in Section 5. We conclude
with some final comments and open questions. The main points of Kurtz’s work are
summarized in the Appendix for the interested reader.

2. The Supermarket Model

In this section we review results for the supermarket model from [26]; independently,
similar results were shown in [33]. This review allows us to introduce the necessary
terminology and methodology that we use to study other systems.

2.1. The Limiting System

Recall the definition of the supermarket model: customers arrive as a Poisson stream of
rateλn, whereλ < 1, at a collection ofn FIFO servers. Each customer chooses some
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constantd ≥ 2 servers independently and uniformly at random with replacement1 and
queues at the server currently containing the fewest customers. The service time for a
customer is exponentially distributed with mean 1.

We definemi (t) to be the number of queues withat least icustomers at timet , and
si (t) = mi (t)/n to be fraction of queues withat least icustomers. We drop the reference
to t in the notation where the meaning is clear. In anempty system, which corresponds
to one with no customers,s0 = 1 andsi = 0 for i ≥ 1. We can represent the state of
the system at any given time by an infinite-dimensional vectorEs = (s0, s1, s2, . . .). It is
clear that, for each value ofn, the supermarket model can be considered as a Markov
chain on the above state space.

We now introduce a deterministiclimiting systemrelated to the finite supermarket
system, given by the following set of differential equations:{ dsi

dt
= λ(sd

i−1− sd
i )− (si − si+1) for i ≥ 1 ;

s0 = 1.
(1)

To explain the reasoning behind the system (1), we determine the expected change
in the number of servers with at leasti customers over a small period of time of length
dt. The probability a customer arrives during this period isλn dt, and the probability an
arriving customer joins a queue of sizei − 1 is sd

i−1 − sd
i . (This is the probability that

all d servers chosen by the new customer are of size at leasti − 1, but not all are of size
at leasti .) Thus the expected change inmi due to arrivals is exactlyλn(sd

i−1 − sd
i )dt.

Similarly, as there aremi −mi+1 servers withi customers, the probability a customer
leaves a server of sizei in this period is(mi −mi+1)dt = n(si − si+1)dt. Hence, if the
system behaved according to these expectations, we would have

dsi

dt
= 1

n
· dmi

dt
= λ(sd

i−1− sd
i )− (si − si+1).

It should be intuitively clear that asn → ∞ the behavior of the supermarket system
approaches that of this deterministic system; this is justified by Kurtz’s theorem, as
explained in the Appendix. For now, we simply take this set of differential equations to
be the appropriate limiting process.

2.2. The Fixed Point

Given a reasonable condition on the initial pointEs(0), the infinite process described by
the system (1) converges to afixed pointEπ such that ifEs(t) = Eπ , thenEs(t ′) = Eπ for all
t ′ ≥ t . For the supermarket model a necessary and sufficient condition forEs to be a fixed
point is that, for alli , (dsi /dt)|Eπ = 0.

Lemma 1 [26, Lemma 1]. The system(1) with d ≥ 2 has a unique fixed point with∑∞
i=1πi <∞ given byπi = λ(di−1)/(d−1).

Definition 2. A sequence(xi )
∞
i=0 is said todecrease doubly exponentiallyif and only

if there exist positive constantsN, α < 1, β > 1, andγ such that, fori ≥ N, xi ≤ γαβ i
.

1 We note that our results also hold with minor variations if thed queues are chosen without replacement.



366 M. Mitzenmacher

It is worth contrasting the result of Lemma 1 with the case whered = 1 (i.e., all
servers are M/M/1 queues), for which the fixed point is given byπi = λi . For d = 2,
the fixed point is given byπi = λ2i−1. The key feature of the supermarket system is that
for d ≥ 2 the tailsπi decrease doubly exponentially, while ford = 1 the tails decrease
only geometrically (or singly exponentially).

2.3. Convergence to the Fixed Point

The deterministic differential equations (1), along with an initial point, define atrajectory
of the system in the infinite-dimensional space. In [26] it was shown that every trajectory
of the limiting model of the supermarket system converges to the fixed pointEπ = (πi )

of Lemma 1 in an appropriate metric. We review the main points here. In what follows
we assume thatd ≥ 2 unless otherwise specified.

To show convergence, we find a suitablepotential function(also called aLyapunov
functionin the dynamical systems literature)8(t). The potential function must be related
to the distance between the current point on the trajectory and the fixed point; by showing
the potential function decreases quickly over time, we may show the trajectory heads
toward the fixed point. A natural potential function to consider isD(t) =∑∞i=1 |si (t)−
πi |, which measures theL1-distance (or Manhattan distance) between the two points.
The potential function used in [26] is actually a weighted variant of this, namely8(t) =∑∞

i=1wi |si (t)− πi | for suitably chosen weightswi .
The supermarket system not only converges to its fixed point, but it does soexpo-

nentially.

Definition 3. The potential function8 is said toconverge exponentially to0, or simply
to converge exponentially, if8(0) < ∞ and8(t) ≤ c0e−δt for some constantδ > 0
and a constantc0 which may depend on the state att = 0.

Exponential convergence implies not only that the limiting system approaches the fixed
point, but that it does so rapidly, making it a suitable reference point for system perfor-
mance in practice.

Theorem 4[26, Theorem 6]. Let8(t) =∑∞i=1wi |si (t)−πi |, where, for i ≥ 1,wi ≥
1 are appropriately chosen constants. If 8(0) <∞, then8 converges exponentially to
0. In particular, if there exists a j such that sj (0) = 0, then8 converges exponentially
to 0.

The condition of Theorem 4 that there exists aj such thatsj (0) = 0 is a natural one.
It can be interpreted as saying initially there is an upper bound on the maximum queue
size.

Corollary 5 [26, Corollary 7]. Under the conditions of Theorem4, the L1-distance
from the fixed point D(t) =∑∞i=1 |si (t)− πi | converges exponentially to0.

Corollary 5 shows that theL1-distance to the fixed point converges exponentially
quickly to 0. Given this convergence, we may now ask what the expected time in the
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Fig. 2. The graph compares the expected time in the system from simulations of 8 and 100 queues with the
limiting system prediction when two choices are made and thelogarithmof the expected time in equilibrium
when one choice is made under various arrival rates (λ).

system looks like. It is interesting to compare the case whered ≥ 2 with the case of
d = 1 (for which the expected time is well known).

Theorem 6[26, Theorem 8]. The expected time a customer spends in the limiting
model of an initially empty supermarket system for d≥ 2converges as t→∞ to Td(λ) ≡∑∞

i=1 λ
(di−d)/(d−1). If T1(λ) ≡ 1/(1− λ), then forλ ∈ [0,1], Td(λ) ≤ cd(ln T1(λ)) for

some constant cd dependent only on d. Furthermore, limλ→1− Td(λ)/ln T1(λ) = 1/logd.

Choosing fromd > 1 queues hence yields an exponential improvement in the expected
time a customer spends in the limiting system, and asλ → 1− the choice ofd affects
the time only by a small constant factor (dependent ond). These results are remarkably
similar to those for the static load balancing problem studied in [5].

Simulations verify that this behavior is apparent even in small systems; for example,
see Figure 2. More details are given in [26] and [27].

3. Constant Service Times

The assumptions underlying the supermarket model, namely that the arrival process
is Poisson and that the service times are exponentially distributed, do not accurately
describe many (and probably most) real systems, although they are useful because they
lead to a simple Markovian system. In this section we demonstrate how to modify our
approach to handle more general service and arrival times. We focus on the example
where the service time is a fixed constant. The approach we use is based onErlang’s
method of stages, which we describe briefly here. For a more detailed explanation see
Sections 4.2 and 4.3 of [17]. We approximate the constant service time with agamma
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distribution: a single service will consist ofr stages of service, where the time for each
stage is exponentially distributed with mean 1/r . As r becomes large, the expected
service time remains 1 while the variance falls like 1/r , so that the service time behaves
like a constant random variable in the limit asr →∞.

The state of a queue will now be the total number of stages remaining that the
queue has to process, rather than the number of customers; that is, the state of a queue is
[r (# of waiting customers)+# of remaining stages of the customer being served].Since
r determines the size of the state space, numerical calculations will be easier if we choose
r to be a reasonably small finite number. Our simulations suggest that forr ≈ 20 the
approximations for constant service times are quite accurate.

There is some ambiguity in the meaning of a customer choosing the shortest queue.
If the number of customers in two queues are the same, can an incoming customer
distinguish which queue has fewer stages of service remaining? We first consider the
case where we haveawareincoming customers, who can tell how many stages are left
for each of theird choices and choose accordingly. Letsj be the fraction of queues with
at leastj stages left to process (where we takesj = 1 wheneverj ≤ 0). Thensj increases
whenever an arrival comes to a queue with at leastj − r and fewer thanj stages left
to complete. Similarly,sj decreases whenever a queue withj stages completes a stage,
which happens at rater . The corresponding system of differential equations is thus

dsj

dt
= λ(sd

j−r − sd
j )− r (sj − sj+1).

(Whenr = 1, this corresponds exactly to the standard supermarket model.)
We can identify a unique fixed pointEπ for this system (usingdsj /dt = 0 at the

fixed point). We must haveπ1 = λ (intuitively because the arrival rate and exit rate of
customers must be equal), andπi = 1 for i ≤ 0. From these initial conditions one can
find successive values ofπj from the recurrence

πj+1 = πj −
λ(πd

j−r − πd
j )

r
. (2)

Unfortunately, we have not found a convenient closed form forπj .
We say that the system hasunawarecustomers if customers learn only the queue

size of their choices, and not the number of stages. If more than one server chosen
by an incoming customer has the shortest queue, then the customer chooses randomly
from those servers. The differential equations are slightly more complicated than in the
aware case. Again, letsj be the fraction of queues with at leastj stages left to process.
For notational convenience, letSi = s(i−1)r+1 be the fraction of queues with at leasti
customers (whereS0 = 1 always), and letϕ( j ) = d j/r e be the number of customers in
a queue withj stages left to process. The corresponding differential equations are

dsj

dt
= λ(Sd

ϕ( j )−1− Sd
ϕ( j ))

sj−r − Sϕ( j )

Sϕ( j )−1− Sϕ( j )

+ λ(Sd
ϕ( j ) − Sd

ϕ( j )+1)
Sϕ( j ) − sj

Sϕ( j ) − Sϕ( j )+1
− r (sj − sj+1).
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Note that the fixed point cannot be determined by a simple recurrence, as the deriva-
tive of sj depends onSϕ( j ), Sϕ( j )−1, andSϕ( j )+1. One can find the fixed point to a suitable
degree of accuracy by standard numerical methods, however.

3.1. Constant versus Exponential Service Times

The question of whether constant service times reduce the expected delay in comparison
with exponential service times often arises when one tries to use standard queuing
theory results to find performance bounds on networks. (See, for example, [12], [24],
[25], [29], and [32].) Generally, results comparing various service times are achieved
using stochastic comparison techniques. Here, we instead compare the fixed points of
the corresponding limiting systems.

We show that at the fixed points, the fraction of servers with at leastk customers
is greater when service times are exponential than when service times have a gamma
distribution (withr ≥ 2) with the same mean. Since gamma distributed random variables
become constant in the limiting case, we can conclude that constant service times are
better than exponential service times in supermarket systems in terms of measures such
as the expected time in the system. (We note that to compare constant service times
with exponential service times formally with this approach requires technical arguments
regarding changing the order in which the limits asn → ∞ andr → ∞ are taken;
for example, see Chapter 14 of [31]. We have not completed such a formal justification.
However, the theorem below is the key step in the argument, and moreover it is interesting
in its own right.)

We consider the case of aware customers where service times have a gamma distri-
bution corresponding tor stages. Recall that the fixed point was given by the recurrence
(2) asπj+1 = πj−λ(πd

j−r−πd
j )/r , withπ1 = λ andπi = 1 for i ≤ 0. The fixed point for

the standard supermarket model, as found in Lemma 1, satisfiesπi+1 = λπd
i . Sinceπ1 is

λ in both the standard supermarket model and the model with gamma distributed service
times, to show that the tails are larger in the standard supermarket model, it suffices to
show thatπϕ( j )+1 ≤ λπd

ϕ( j ) in the aware customer model. Inductively it is easy to show
the following stronger fact:

Theorem 7. In the system with aware customers, for j ≥ 1,

πj = λ

r

j−1∑
i= j−r

πd
i .

Proof. The equality can easily be verified for 1≤ j ≤ r . For j > r , the following
induction yields the theorem:

πj = πj−1− λ
r
(πd

j−r−1− πd
j−1)

= πj−2− λ
r
(πd

j−r−1+ πd
j−r−2− πd

j−1− πd
j−2)

...
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= πj−r − λ
r

(
j−r−1∑

i= j−2r

πd
i −

j−1∑
k= j−r

πd
k

)

= λ

r

j−1∑
k= j−r

πd
k .

Here the last step follows from the inductive hypothesis, and all other steps follow from
the recurrence equation (2) for the fixed point.

An entirely similar proof holds even in the case ofunawarecustomers [27, Theo-
rem 4.7].

3.2. Simulations and Other Service Times

We show with simulations that small values for the number of stagesr yield good
approximations for constant service times. Table 3.2 compares the value of the expected
time a customer spends in a limiting system with unaware customers andd = 2 choices
per customer obtained using various values ofr against the results from simulations with
constant service times for 100 queues. The simulation results are the average of ten runs,
each for 100,000 time units, with the first 10,000 time units excluded to account for the
fact that the system begins empty. In all cases exceptλ = 0.99 increasingr yields a better
match between the simulation and the prediction from the fixed point; this discrepancy
arises because the predictions forλ = 0.99 are not sufficiently accurate for systems of
only 100 queues.

In principle, this approach could be used to develop deterministic differential equa-
tions that approximate the behavior of any service time distribution. This follows from the
fact that the distribution function of any positive random variable can be approximated
arbitrarily closely by a mixture of countably many gamma distributions [16, Lemma 3.9].
In practice, for the solution of this problem to be computable in a reasonable amount
of time, both the number of distributions in the mixture and the number of stages for
each distribution must be small in order to keep the total number of states reasonably
small. Although these limitations appear severe, many service distributions can still be
handled easily. For example, as we have seen, in the case of constant service times one
only needs to use a single gamma distribution with a reasonable number of stagesr to
get a very good approximation. This increases the state space, and hence approximately
the time to determine the behavior of the linear equations, by a factor ofr over the case

Table 1. Simulations versus estimates for constant service
times: 100 queues.

λ Simulation r = 10 r = 20 r = 30

0.50 1.1352 1.1478 1.1412 1.1390
0.70 1.3070 1.3355 1.3200 1.3148
0.80 1.4654 1.5090 1.4847 1.4766
0.90 1.7788 1.8492 1.8065 1.7923
0.95 2.1427 2.2355 2.1714 2.1500
0.99 3.2678 3.2461 3.1243 3.0644
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where service times are exponential. Distributions where the service time takes on one
of a small finite number of values can be handled similarly.

4. Other Dynamic Models

In this section we develop limiting systems for some variations on the supermarket model
and show that many of these systems also converge exponentially to their fixed points.
As all of the systems we examine have a unique fixed point where the average number
of customers per queue is finite, we simply refer tothefixed point for these systems.

4.1. Customer Types and Errors

One way to extend the supermarket model is to consider what happens when different
customers can have different numbers of choices. We observe that giving even a small
fraction of customers an extra choice can have a dramatic effect on load distribution,
especially in a heavily loaded system. This fact has important practical ramifications; for
example, since obtaining load information typically requires sending messages through
the system, one may wish to reduce the average number of messages per customer by
only giving a fraction of the customers additional choices.

We examine the specific case where there are two types of customers. One type
chooses only one queue; each customer is of this type with probability 1− p. The more
privileged customer chooses two queues; each customer is of this type with probability
p. The corresponding limiting system is governed by the following set of differential
equations:

dsi

dt
= λp(s2

i−1− s2
i )+ λ(1− p)(si−1− si )− (si − si+1). (3)

The fixed point is given byπ0 = λ, πi = λπi−1(1− p+ pπi−1). Note that this matches
the supermarket model ford = 1 andd = 2 in the cases wherep = 0 and p = 1,
respectively. There does not appear to be a convenient closed form for the fixed point
for other values ofp.

As shown in Figure 3, which demonstrates the results for the limiting system, the
effect of increasing the fraction of customers with two choices has a nonlinear effect on
the expected time that is dramatic at high loads; atλ = 0.99, most of the gain occurs
when only 20% of the customers have two choices. Our simulation results verify that
the behavior of finite systems accurately matches the behavior predicted by our limiting
model.

This model has an interesting alternative interpretation. A customer who only has one
choice is equivalent to a customer who has two choices, but erroneously goes to the wrong
queue half of the time. Hence, the above system is equivalent to a two-choice system
where customers make errors and go to the wrong queue with probability(1− p)/2.
A model of this sort may therefore also be useful in the case where the information
available to the customers from the chosen servers is unreliable or approximate. This
analysis suggests that as long as this approximate load information reflects server loads
with some reasonable accuracy between updates, choosing from two servers should still
perform quite well. (See also [28] for similar ideas in other scenarios.)
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Fig. 3. Expected time in the system versus probability(p) that a customer chooses two locations (λ = 0.99).

4.2. Closed Models

In theclosedsupermarket model, at each time step exactly one nonempty queue, chosen
uniformly at random, completes service, and the customer is immediately recycled back
into the system by again choosing the shortest ofd random queues. Let the number
of customers that cycle through the system beαn. Note that the average number of
customers per queue isα; this corresponds to the invariant

∑∞
i=1 si = α.

The limiting system is again very similar to that of the original supermarket model.
An important difference is that, at each step, the probability that a customer leaves a server
with i customers is(si − si+1)/s1, since a random queue with at least one customer loses
a customer. The corresponding differential equations are thus

dsi

dt
= sd

i−1− sd
i −

si − si+1

s1
. (4)

To find the fixed point, assumeπ1 = β. Then, inductively, we can solve to find
πi = β(di−1)/(d−1); the correct value ofβ can be found by using the constraint

∑∞
i=1πi =∑∞

i=1 β
(di−1)/(d−1) = α.

4.3. Bounded Buffers

In practice, we may have a system where the queue size has a maximum limit, sayb. For
example, if customers are processes with associated data, then the queue size may be
limited by the amount of memory in a server’s buffer. In this case we assume that arriving
customers that find queues filled are turned away. That is, for the supermarket model,
if an arriving customer choosesd queues that all haveb customers already waiting, the
customer leaves the system unserved immediately.

The state can be represented by a finite-dimensional vector(s0, s1, . . . , sb). The
long-term probability that a customer is turned away can be determined from the point,
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as it isπd
b . The limiting system is given by the following equations:

dsi

dt
= λ(sd

i−1− sd
i )− (si − si+1) i < b ;

dsb

dt
= λ(sd

b−1− sd
b )− sb.

Note that at the fixed point for this problem,π1 6= λ. The total arrival rate of
customers into the queues at the fixed point isλ(1−πd

b ), as some customers do not enter
the system. Since at the fixed point the total rate at which customers arrive must equal
the rate at which they leave, we haveπ1 = λ(1− πd

b ). Using the differential equations,
we can develop a recurrence for the values of the fixed pointπi . This recurrence yields
a polynomial equation forπb, which can be shown to have a unique root between 0 and
1. Solving forπb then allows us to compute the fixed point numerically.

4.4. Convergence and Stability of Limiting Systems

In this section we provide a general theorem (similar to Theorem 4) that can be used to
show that several systems we have considered converge exponentially to their fixed point.
In some cases, however, proving convergence is difficult. Instead of proving convergence,
it is often easier to prove the weaker property ofstabilityof the fixed point. We say that
a fixed point is stable if theL1-distance to the fixed point is nonincreasing along every
trajectory (this is actually stronger than the standard definition). We also give a general
theorem with conditions for stability. We believe these results are interesting in their own
right and will be useful in the future for studying other systems. (For another approach
to proving convergence for these problems, see [33].)

We consider general systems governed by the equationsdsi /dt = fi (Es) for i ≥ 1,
with fixed point Eπ = (πi ). Let εi (t) = si (t)− πi , with the understanding that fori < 1
or i larger than the dimension of the state space we fixεi = 0. We drop the explicit
dependence ont when the meaning is clear. For convenience, we consider only systems
wheresi (t) ∈ [0,1] for all t , and henceεi (t) ∈ [−πi ,1− πi ] for all t . This restriction
simplifies the statements of our theorems and can be easily removed; however, all the
systems described in this section meet this condition.

We examine theL1-distanceD(t) = ∑
i≥1 |εi (t)|. In the case where our state

space is countably infinite dimensional, the upper limit of the summation is infinity, and
otherwise it is the dimension of the state space. For technical reasons, we letd D/dt
denote the right-hand derivative (this is explained in the last paragraph of the proof). We
shall prove thatd D/dt ≤ 0 everywhere; this implies thatD(t) is nonincreasing over
time, and hence the fixed point is stable.

For many of the systems we have examined, the functionsfi have a convenient form:
they can be written as sums of polynomial functions of the individualsj , with no product
termssj sk for j 6= k. This allows us to group together terms ind D/dt containing onlyεi ,
and consider them separately. By telescoping the terms of the derivative appropriately,
we can show the system is stable by showing that the sum of the terms containingεi are
at most 0.
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Theorem 8. Suppose we are given a system dεi /dt =∑j gi, j (εj ), where the functions
gi, j satisfy the following conditions:

1. gi,i (x) = −
∑

j 6=i gj,i (x) for x ∈ [−πi ,1− πi ];
2. for all i 6= j , sgn(gj,i (x)) = sgn(x) for x ∈ [−πi ,1− πi ].

Then for D(t) =∑∞i=1 |εi (t)| we have d D/dt ≤ 0, and hence the fixed point is stable.

Proof. For eachi , we group the terms inεi of d D/dt, and show that the sum of all
terms involvingεi is at most 0. Note that, technically,d D/dt is not well-defined when
someεi = 0; we shall clarify this problem subsequently and temporarily we assume that
all εi are nonzero.

The terms containingεi in d D/dt sum to

h(εi ) = gi,i (εi ) sgn(εi )+
∑
j 6=i

gj,i (εi ) sgn(εj ).

By condition 2 of the statement of the theorem,h(εi ) is maximized when sgn(εj ) =
sgn(εi ) for all j 6= i . Henceh(εi ) ≤ sgn(εi )

∑
j gj,i (εi ) = 0, where the last equality

follows from condition 1 of the theorem. Henced D/dt ≤ 0, and this suffices to show
that the fixed point is stable.

We now consider the technical problem of definingd D/dt whenεi (t) = 0 for some
i . Since we are interested in the forward progress of the system, it is sufficient to consider
the upper right-hand derivatives ofεi . (See, for instance, p. 16 of [23].) That is, we may
define

d|εi |
dt

∣∣∣∣
t=t0

≡ lim
t→t+0

|εi (t)|
t − t0

,

and similarly ford D/dt. Note that this choice has the following property: ifεi (t) = 0,
then(d|εi |/dt)|t=t0 ≥ 0, as it intuitively should be. The above proof applies unchanged
with this definition ofd D/dt, with the understanding that with regard to the sgn function
the caseεi > 0 includes the case whereεi = 0 anddεi /dt ≥ 0, and similarly the case
εi < 0 includes the case whereεi = 0 anddεi /dt < 0.

It is simple to check that the conditions of Theorem 8 hold for several of the systems
we have studied. Hence we immediately have the following corollary:

Corollary 9. The limiting systems for the following systems have stable fixed points:
gamma distributed service times with aware customers(Section3),customer types(Sec-
tion 4.1),and bounded buffers(Section4.3).

Proof. We consider only the system with customer types described in Section 4.1 and
whose behavior is given by (3), as the argument is entirely similar for the other models
stated.
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With the substitutionεi = si − πi , (3) becomes

dεi

dt
= −2λpπi εi − λpε2

i − λ(1− p)εi − εi + 2λπi−1εi−1+ λε2
i−1

+ λ(1− p)εi+1+ εi+1. (5)

(Note that all terms without someεj factor sum to 0 by definition of the fixed point.)
Condition1ofTheorem8clearlyholds from(5).Condition2 isalsoeasily checked—

note that sgn(εi−1) = sgn(λε2
i−1+ 2λπi−1εi−1) over the appropriate interval. Hence the

conditions of Theorem 8 hold, proving the corollary.

A simple generalization of Theorem 8 allows us to prove convergence, using a
weighted form of the potential function as in Theorem 4.

Theorem 10. Suppose we are given a system dεi /dt =∑ gi, j (εj ), and suppose also
that there exists an increasing sequence of real numberswi (withw0 = 0) and a positive
constantδ such that thewi and the functions gi, j satisfy the following conditions:

1. sgn(x)
∑

j wj gj,i (x) ≤ −δwi |x| for x ∈ [−πi ,1− πi ];
2. for all i 6= j , sgn(gj,i (x)) = sgn(x) for x ∈ [−πi ,1− πi ].

Then for8(t) = ∑∞
i=1wi |εi (t)|, we have that d8/dt ≤ −δ8, and hence from any

initial point where
∑

i wi |εi | <∞ the process converges exponentially to the fixed point
in the L1-distance.

Proof. We group the terms inεi from d8/dt as in Theorem 8. By the assumptions of
the theorem, the sum of all the terms involvingεi is at most−δwi |εi |. We may conclude
thatd8/dt ≤ −δ8(t) and hence8(t) converges exponentially to 0. Also, note that we
may assume without loss of generality thatw1 = 1, since we may scale thewi . Hence
we may take8(t) to be larger than theL1-distance to the fixed pointD(t), and thus the
process converges exponentially to the fixed point in terms ofL1-distance.

Proving convergence thus reduces to showing that a suitable sequence of weights
wi satisfying Condition 1 of Theorem 10 exists, which is quite often straightforward. In
fact, Theorem 10 applies directly to several of the models we have mentioned. For these
models we assume, as in Theorem 4, that in our initial state there exists an upper bound
on the initial queue size, to guarantee that the system begins in a well-defined state.

Corollary 11. The limiting systems for the following systems converge exponentially
to their fixed points: gamma distributed service times with aware customers(Section3),
customer types(Section4.1),and bounded buffers(Section4.3).

Proof. Again we consider only the system with customer types given by (3), as the
argument for other models is similar. That Condition 2 of Theorem 10 holds was shown
in Corollary 9. Hence we need only show that aδ and a sequencewi that satisfies
Condition 1 of Theorem 10 exist. We setw0 = 0 andw1 = 1 and show how to define
the otherwi and theδ accordingly.
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Using (5), Condition 1 of Theorem 10 becomes the following:

sgn(εi )
[
wi+1(2λpπi εi + λpε2

i )− wi (2λπi εi + λε2
i + λ(1− p)εi + εi )

+ wi−1(λ(1− p)εi + εi )
] ≤ −δwi |εi |.

As |εi | = sgn(εi )εi , and the condition trivially holds ifεi = 0, we may divide through
by |εi | to restate the condition as

(wi − wi−1)(1+ λ(1− p))+ (2λpπi + λpεi )(wi − wi+1) ≥ δwi ;

or, using the fact that|εi | ≤ 1,

wi+1 ≤ wi + wi (1+ λ(1− p)− δ)− wi−1(1+ λ(1− p))

λp(2πi + 1)
.

It is simple to check inductively that one can choose an increasing sequence ofwi

(starting withw0 = 0, w1 = 1) and aδ such that thewi satisfy the above restriction. For
example, we break the terms up into two subsequences. The first subsequence consists
of all wi such thatπi satisfiesλp(2πi + 1) ≥ (1+ λ)/2. For thesei we can choose

wi+1 = wi + wi (1− δ)− wi−1

3
.

Because this subsequence has only finitely many terms, we can choose a suitably smallδ

so that this sequence is increasing. For sufficiently largei , we must haveλp(2πi + 1) <
(1+ λ)/2< 1, and for thesei we may set

wi+1 = wi + 2wi (1+ λ(1− p)− δ)− 2(1+ λ(1− p))wi−1

1+ λ .

This simple recurrence for thewi is easily solved and clearly increasing for suitably
smallδ. Hence, by taking aδ small enough, both sequences ofwi will be increasing.

Technically, we should choose a sequence ofwi so that the corresponding8(0) =∑∞
i=1wi |εi (0)| is finite. We can easily modify the tail of thewi sequence above so that

it is dominated by a geometrically increasing sequence, where the ratio of successive
terms is less than 1/λ. If we assume that in the initial statesj (0) = 0 for somej , then
εj is eventually dominated by geometric series where the ratio of successive terms is at
mostλ. Hence we may find a suitable sequence ofwi such that

∑∞
i=1wi |εi (0)| is finite.

From this it is clear that the conditions of Theorem 10 hold, proving the corollary.

For the closed model and the model with unaware customers, Theorems 8 and 10
do not immediately apply. However, the technique of examining the terms in eachεi

separately can still prove effective; for example, it can be used to prove that the fixed
point for the closed model given by (4) is stable.
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Fig. 4. Weak and strong threshold models. A customer rechooses if and only if it means starting behind the
dashed line. In the weak model, the customer jumps to a second server, and may go to a longer line (2). In the
strong model, the customer goes to the shorter of the two lines (1).

5. Threshold Models

In practice, it may often be more efficient not to give all customers several choices,
as each choice may have a corresponding cost (for example, a cost corresponding to
communication). A threshold system reduces the number of choices by only allowing a
customer a second random choice if the load at its first choice exceeds a fixed threshold.
The customer begins by choosing a single queue uniformly at random: if the queue
length at this first choice excluding the incoming customer is at mostT , the customer
queues there; otherwise, the customer chooses a second queue uniformly at random
with replacement. Two variations are now possible. In theweak threshold modelthe
customer waits at the second queue, regardless of whether it is longer or shorter than
the first. In thestrong threshold modelthe customer queues at the shorter of the two
choices. (See Figure 4.) One could also expand both models so that a customer has
several successive choices, with a different threshold set for each choice, up to any fixed
number of choices; here we model only the case where a customer has at most two
choices. Although threshold systems have been shown to perform well in practice [7],
[18], [35], our results distinguishing these two models are new.

5.1. Limiting Systems

We consider the limiting system for the weak threshold model. The rate at which a
queue changes size depends on whether it has more or fewer thanT customers. We first
calculatedsi /dt in the casei ≤ T + 1. Let pi = si − si+1 be the fraction of queues with
exactlyi customers. An arriving customer becomes thei th customer in a queue if one of
two events happen: either the first choice hasi −1 customers, or the first choice hasT+1
or more customers and the second choice hasi −1 customers. Hence over a time interval
dt the expected number of jumps from queues of sizei − 1 to i is λn(pi−1+ sT+1 pi−1).
Similarly, the expected number of jumps from queues of sizei to i − 1 isnpi dt. Hence
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we find

dsi

dt
= λ(pi−1+ sT+1 pi−1)− pi , i ≤ T + 1, or

dsi

dt
= λ(si−1− si )(1+ sT+1)− (si − si+1) , i ≤ T + 1.

(6)

The case wherei > T + 1 can be calculated similarly, yielding

dsi

dt
= λ(si−1− si )sT+1− (si − si+1) , i > T + 1. (7)

We now determine the fixed point. As usual,π0 = 1 and, because at the fixed point
the rate at which customers arrive must equal the rate at which they leave,π1 = λ. In
this case we also need to find the value ofπT+1 to be able to calculate further values of
πi . Using the fact thatdsi /dt = 0 at the fixed point yields that, for 2≤ i ≤ T + 1,

πi = πi−1− λ(πi−2− πi−1)(1+ πT+1). (8)

Recursively plugging in, we find

πT+1 = 1− (1− λ)[((1+ πT+1)λ)
T+1− 1]

(1+ πT+1)λ− 1
.

Given the thresholdT , πT+1 can be computed effectively by finding the unique root
between 0 and 1 of the above equation. (The root is unique as the left-hand side is
increasing inπT+1, while the right-hand side is decreasing inπT+1.) Note that in this
system theπi do notdecrease doubly exponentially, although they can decrease very
quickly if πT+1 is sufficiently small.

The strong threshold model is given by the following differential equations:

dsi

dt
= λ(si−1− si )(1+ sT+1)− (si − si+1) , i ≤ T + 1 ; (9)

dsi

dt
= λ(s2

i−1− s2
i )− (si − si+1) , i > T + 1. (10)

As (6) and (9) are the same, the recurrence (8) also holds for the fixed point of the
strong threshold system, soπT+1 for the strong threshold system is calculated similarly.

For small thresholds, the behavior of this system is very similar to that of the
supermarket system, as has been noted empirically previously in [7] and [35]. In fact,
the strong threshold model is double exponentially decreasing.

Lemma 12. The fixed point for the strong threshold model decreases doubly exponen-
tially.

Proof. To show that the fixed point decreases doubly exponentially, we note that it is
sufficient to show thatπT+ j+1 = λπ2

T+ j for all j ≥ 1, from which the lemma follows
by a simple induction. Moreover, to prove thatπT+ j+1 = λπ2

T+ j for all j ≥ 1, it is
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sufficient to show thatπT+2 = λπ2
T+1. That this is sufficient follows from (10) and the

fact thatdsi /dt = 0 at the fixed point, from which we obtain

λπ2
i−1− πi = λπ2

i − πi+1

for i ≥ T + 2.
Hence, to prove the lemma, we now need only show thatπT+2 = λπ2

T+1. From (9)
we have

πT+2 = πT+1− λ(πT − πT+1)(1+ πT+1),

which can be written in the form

πT+2− λπ2
T+1 = (1+ λ)πT+1− λ(1+ πT+1)πT . (11)

We show that the right-hand side of (11) is 0.
The recurrence (8) yields that

λ(πi−2− πi−1)(1+ πT+1) = πi−1− πi .

Summing the left- and right-hand sides of the above equation for all values ofi in the
range 2≤ i ≤ T + 1 yields

λ(1− πT )(1+ πT+1) = λ− πT+1,

or, more conveniently,

λ(1+ πT+1)πT = (1+ λ)πT+1.

Hence the right-hand side of (11) is 0 and the lemma is proved.

5.2. Convergence and Stability

For the strong threshold model, we can show that the infinite system converges expo-
nentially to the fixed point, as we have done for the supermarket model. Unfortunately,
for the weak threshold model, we have only been able to prove stability. We present both
proofs here, beginning with the stability of the weak model.

It is convenient to write the derivativesdεi /dt obtained from (6) and (7) in the
following form:

dεi

dt
= λ(εi−1−εi )(1+πT+1)−(εi−εi+1)+λεT+1(si−1−si ), i ≤ T+1; (12)

dεi

dt
= λ(εi−1− εi )πT+1− (εi − εi+1)+ λεT+1(si−1− si ) , i > T + 1. (13)

Notice that we have made all the terms appear linear inεi by leaving terms of the form
λεT+1(si−1− si ) unexpanded.
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Theorem 13. The fixed point of the weak threshold model is stable.

Proof. We assume theεi are nonzero; the caseεi = 0 can be handled as in Theorem 8.
We examine the potential function given by theL1-distanceD(t) = ∑∞i=1 |εi (t)|, and
show thatd D/dt ≤ 0. As in Theorem 8 we collect all terms with a factor ofεi . For
i 6= T + 1, it is simple to verify that all terms are linear inεi , and that the coefficient of
sum of all such terms is at most 0. For example, fori < T + 1, the sum of the terms in
εi is

(−λ(1+ πT+1)− 1)εi sgn(εi )+ λ(1+ πT+1)εi sgn(εi+1)+ εi sgn(εi−1),

which is at most 0. The casei > T + 1 is similarly straightforward.
The only difficulty arises in theεT+1 term. Note the different form of the first

expression on the right-hand side of (12) and (13): one has a factor ofπT+1, and one has
a factor of 1+ πT+1. Hence, in gathering the terms inεT+1, we have the following sum:

(−λ(1+ πT+1)− 1)εT+1 sgn(εT+1)+ λπT+1εT+1 sgn(εT+2)

+ εT+1 sgn(εT )+ εT+1

∞∑
j=1

λ(sj−1− sj ) sgn(εj ).

We suppose thatεT ,εT+1, andεT+2 are all strictly positive; all other cases are similar.
Then the above summation reduces to

−λεT+1+ εT+1

∞∑
j=1

λ(sj−1− sj ) sgn(εj ).

The largest value the second expression can take is when sgn(εj ) = 1 for all j , in which
case it isλεT+1. Hence, regardless of the signs of the remainingεi , we find that the
coefficient of the sum of the terms inεT+1 is also at most 0.

For the weak threshold model, proving convergence to the fixed point appears possi-
ble using the technique of [33], although their methods do not appear to provide bounds
on the rate of covergence. (Note that stability does not imply convergence, nor does
convergence imply our strong notion of stability, namely that theL1-distance is non-
increasing.)

We can, however, show that the strong threshold model does converge exponentially.
As in Theorem 13, it will help us to rewrite the derivativesdεi /dt for the infinite system
of the strong threshold model obtained from (9) and (10) in the following form:

dεi

dt
= λ(εi−1−εi )(1+πT+1)−(εi−εi+1)+λεT+1(si−1−si ), i ≤ T+1; (14)

dεi

dt
= λ(ε2

i−1+ 2πi−1εi−1− ε2
i − 2πi εi )− (εi − εi+1) , i > T + 1. (15)

Theorem 14. The strong threshold model converges exponentially to its fixed point
from any initial state where there exists a k such that sk(0) = 0.
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Proof. We shall find an increasing sequencewi and δ > 0 such that, for8(t) =∑
i wi |εi (t)|, we haved8/dt = −δ8. As in Theorem 10, the proof will depend on

finding a sequencewi such that the terms ofd8/dt in εi sum to at most−δwi |εi |. In
fact, any sequence satisfying

wi+1 ≤ wi + wi (1− δ)− wi−1

λ(1+ πT+1)
, i < T + 1, (16)

wi+1 ≤ wi + wi (1− δ)− wi−1

λ(1+ 2πi )
, i ≥ T + 1, (17)

will suffice, and it is easy to verify that such sequences exist, as in Theorem 10. That
this condition suffices can be easily checked by grouping all theεi terms from (14)
and (15) for allεi exceptεT+1. The difficulty for theεT+1 terms lies in the extraneous
λεT+1(si−1− si ) terms in (14).

We now bound the sum of the terms inεT+1. We consider here only the case where
all εi are positive; other cases are similar. The sum of all the terms inεT+1 is

(−λ(1+ πT+1)− 1)wT+1εT+1 sgn(εT+1)+ λ(2πT+1+ εT+1)wT+2εT+1 sgn(εT+2)

+ wTεT+1 sgn(εT )+ εT+1

T+1∑
j=1

wjλ(sj−1− sj ) sgn(εj ).

If all εi are positive this reduces to

(−λ(1+ πT+1)− 1)wT+1εT+1+ λ(2πT+1+ εT+1)wT+2εT+1

+ wTεT+1+ εT+1

T+1∑
j=1

wjλ(sj−1− sj ).

As thewi are increasing, the termεT+1
∑T+1

j=1 wjλ(sj−1− sj ) can be bounded above by

εT+1

T+1∑
j=1

wT+1λ(sj−1− sj ) = εT+1wT+1λ(1− πT+1− εT+1).

Hence the sum of the terms inεT+1 is bounded above by

(−λ(2πT+1+ εT+1)− 1)wT+1εT+1+ λ(2πT+1+ εT+1)wT+2εT+1+ wTεT+1,

and it is easily checked that (17) is sufficient to guarantee that this sum is at most
−δwT+1εT+1.

Finally, we note that we may choose thewi so that they are eventually dominated
by a geometric series, as in Theorem 10. Since the tail of the fixed point for the strong
threshold model decreases doubly exponentially by Lemma 12, we have

8(0) =
∞∑

i=1

wi |εi | =
k−1∑
i=1

wi |εi | +
∞∑

i=k

wiπi

is finite.
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Table 2. Simulations versus estimates for the weak threshold model: 100 queues.

λ Threshold Simulation Prediction Relative error (%)

0.50 0 1.3360 1.3333 0.2025
1 1.4457 1.4444 0.0900

0.70 0 1.9635 1.9608 0.1377
1 1.8144 1.8074 0.3873
2 2.0150 2.0109 0.2039

0.80 0 2.7868 2.7778 0.3240
1 2.2493 2.2346 0.6578
2 2.3518 2.3387 0.5601

0.90 1 3.5322 3.4931 1.1194
2 3.1497 3.1067 1.3841
3 3.2903 3.2580 0.9914

0.95 2 4.5767 4.4464 2.9305
3 4.2434 4.1274 2.8105
4 4.3929 4.3061 2.0158

0.99 4 8.1969 7.4323 10.2875
5 7.5253 6.8674 9.5800
6 7.6375 6.9369 10.0996

5.3. Simulations of Threshold Schemes

We first demonstrate the accuracy of the differential equations in describing system
behavior. We consider the weak threshold scheme of Section 5 (where customers who
make a second choice always queue at their second choice) with 100 queues at various
arrival rates in Table 2. As before, simulations were done for 100,000 units of time
with the first 10,000 thrown out for calculation purposes. For arrival rates up to 95% of
the service rate, the predictions are within approximately 2% of the simulation results;
with smaller arrival rates, the prediction is even more accurate. These results again
demonstrate the accuracy of this approach.

We also compare the strong threshold scheme and the weak threshold scheme with
the standard supermarket model where each customer always has two choices. Since
the performance of the weak threshold scheme depends on the threshold chosen, we
graph the best choice and second best choice for specific arrival ratesλ. (Note the strong
threshold scheme with the threshold set to 0 is equivalent to the supermarket model.) As
one might expect, threshold schemes do not perform as well as the supermarket model
(see Figure 5). It is worth noting, however, that even the weak threshold scheme performs
almost as well for reasonable arrival rates (sayλ ≤ 0.9), despite the proven difference
in the behavior of the tails (exponential versus doubly exponential dropoff). In many
applications threshold schemes may be suitable, or even preferable, because they reduce
the overall amount of communication that is necessary. Even though the threshold must
be chosen appropriately to match the load, small thresholds are adequate over a large
range of arrival rates.

6. Concluding Remarks

We have demonstrated techniques for studying large decentralized systems that use
simple, effective load balancing strategies, based on analyzing the corresponding infinite



On the Analysis of Randomized Load Balancing Schemes 383

Fig. 5. Comparison of the threshold models with two choices.

system. We have applied our methods to the supermarket model and several variations,
including the case of fixed service times and threshold systems. Besides allowing an
analysis of these systems, our work demonstrates that there are important behavioral
differences between systems where customers have one choice and systems where they
have more than one choice. In particular, we have shown that using two choices can lead
to an exponential improvement in the expected time in the system over using one choice;
using more choices leads to much less substantial improvements.

Extrapolating from our results, we believe that the paradigm of using load informa-
tion from a small random sample of possible destinations will prove effective in many
load balancing scenarios. Indeed, the effectiveness of this general approach has been
noted recently in practical load balancing scenarios [30] as well as for load profiling in
real-time systems [6].

Although our methodology has been successful for several models, there remain
several open questions. We conjecture that the closed model and the weak threshold
model converge exponentially, although a proof appears to require different techniques
than given here. The problem of analyzing the behavior of these simple randomized
strategies on small systems and systems with fixed network topologies also appears to lie
outside the range of our techniques. Finally, it would be interesting to test the performance
of these methods in the context of more complex service and arrival distributions, such
as heavy-tailed distributions.

Appendix. From Infinite to Finite: Kurtz’s Theorem

In this section we briefly describe the formal theory that connects the limiting system
with systems of finite size, based on the work of Kurtz. As even stating an appropriate
theorem requires a great deal of background and notation, we here provide only an infor-
mal argument; further explication with regard to load balancing problems is available in
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[27] or [33]; more general works covering the appropriate theory include [10] and [31].
The supermarket model is an example of adensity dependent family of jump Markov
processes. Informally, such a family is a one parameter family of Markov processes,
where the parametern corresponds to the total population size (or, in some cases, area
or volume). The states can be normalized and interpreted as measuring population den-
sities, so that the transition rates depend only on these densities. As we have seen in
Section 2.1, for the supermarket model the transition rates between states depend only
upon the densitiessi . Hence the supermarket model fits our informal definition of a den-
sity dependent family. The limiting system corresponding to a density dependent family
is the limiting model as the population size grows arbitrarily large.

Kurtz’s work provides a basis for relating the limiting system for a density dependent
family to the corresponding finite systems. Essentially, Kurtz’s theorem provides a law
of large numbers and Chernoff-like bounds for density dependent families. The primary
differences between the limiting system and the finite system are:

• The limiting system is deterministic; the finite system is random.
• The limiting system is continuous; the finite system has jump sizes that are discrete

values.

Imagine starting both systems from the same point for a small period of time. Since
the jump rates for both processes are initially the same, they will have nearly the same
behavior. Now suppose that if two points are close in the infinite-dimensional space,
then their transition rates are also close; this is called theLipschitz condition, and it
is a precondition for Kurtz’s theorem. Then even after the two processes separate, if
they remain close, they will still have nearly the same behavior. Continuing this process
inductively over time, we can bound how far the processes separate over any interval
[0, T ].

The following theorem, which we state without proof, is derived from an application
of Kurtz’s results to the finite supermarket model to obtain bounds on the expected time
a customer spends in the system.

Theorem 15. For any fixed T, the expected time a customer spends in an initially
empty supermarket system of size n over the interval[0, T ] is bounded above by

∞∑
i=1

λ(d
i−d)/(d−1) + o(1),

where the o(1) is understood as n→∞ and may depend on T.

Theo(1) term in Theorem 15 is the correction for the finite system, while the main term
is the expected time in the limiting system from Theorem 6.

Of course, similar theorems bounding the deviation of the infinite and finite processes
hold for the other systems we have studied as well. Essentially, whenever the limiting
system converges to a fixed point, the equilibrium distribution of the corresponding finite
system is concentrated around the fixed point. Hence the fixed point may be used to give
good approximations for such quantities as the average time a customer spends in the
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system. The discrepancy between the finite and limiting system is generallyo(1). In
practice, as we have seen, for load balancing problems the discrepancy is small even
when the number of queuesn is relatively small.
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