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Binary Intersymbol Interference Channels: Gallager
Codes, Density Evolution, and Code
Performance Bounds

Aleksandar Kagic, Member, IEEEXiao Ma, and Michael Mitzenmachgviember, IEEE

Abstract—We study the limits of performance of Gallager codes the water-filling theorem [1], [2]. In many applications, the
(low-density parity-check (LDPC) codes) over binary linear inter- - physics of the channel do not allow continuous input alphabets.
symbol interference (I1SI) channels with additive white Gaussian A prime example of a two-level (binary) ISI channel is the

noise (AWGN). Using the graph representations of the channel, turati fi di h b th
the code, and the sum—product message-passing detector/decodesaturation magnetic recording channel, because the magne-

we prove two error concentration theorems. Our proofs expand tization domains can have only two stable phases [3]. Other
on previous work by handling complications introduced by the examples include digital communication channels where the
channel memory. We circumvent these problems by considering input alphabet is confined to a finite set [4].

not just linear Gallager codes but also their cosets and by distin- The computation of the capacity of discrete-time 1SI chan-

guishing between different types of message flow neighborhoods . .. . . .
depending on the actual transmitted symbols. We compute the nels with a finite number of allowed signaling levels is an open

noise tolerance threshold using a suitably developed density Problem. In the past, the strategy has been to obtain numeric
evolution algorithm and verify, by simulation, that the thresholds  [5] and analytic [6], [7] bounds on the capacity. Very often au-
represent accurate predictions of the performance of the iterative thors have concentrated on obtaining bounds on the achievable
sum-product algorithm for finite (but large) block lengths. We i¢5mation rate when the inputs are independent and uniformly

also demonstrate that for high rates, the thresholds are very close distributed €i.u.d.)—th led tric inf fi t
to the theoretical limit of performance for Gallager codes over istributed (i.u.d.)—the so-called symmetric information rate

ISI channels. If C denotes the capacity of a binary ISI channel [5]-[7]. Recently, a Monte Carlo method for numerically evalu-
and if C; ;.4. denotes the maximal achievable mutual information ating the symmetric information rate using the forward recur-
rate when the channel inputs are independent and identically sjon of the Bahl-Cocke-Jelinek—Raviv (BCJR) algorithm [8]
distributed (i.i.d.) binary random variables (Ciia. < C), We (515 known as the Baum—Welch algorithm, the sum—product

prove that the maximum information rate achievable by the . .
sum-—product decoder of a Gallager (coset) code is upper-bounded algorithm, or the forward-backward algorithm) has been pro-

by Ci.i.a.. The last topic investigated is the performance limit of Posed by Arnold and Loeliger [9], and independently by Pfister,
the decoder if the trellis portion of the sum—product algorithm is  Soriaga, and Siegel [10]. The same procedure can be used to
executed only once; this demonstrates the potential for trading numerically evaluate the i.i.d. capacity, which is defined as the
off the computational requirements and the performance of the - 14yima] achievable information rate when the inputs are inde-
decoder. pendent and identically distributed. This marks the first (arbi-
Index Terms—Bahl-Cocke-Jelinek-Raviv (BCJR)-once bound, trarily close in the probability- sense) approximation to the

channel capacity, density evolution, Gallager codes, independent . . . . o
and identically distributed (i.i.d.) capacity, intersymbol interfer- exact result invalving the channel capacity of a discrete-time

ence (ISI) channel, low-density parity-check (LDPC) codes, sum— ISI channel with binary inputs. Also, recently, tight Iower [11]
product algorithm, turbo equalization. and upper [12], [13] bounds have been computed using Monte

Carlo methods for Markov channel inputs. The remaining issue
is to devise codes that will achieve the capacity (or at least the
i.i.d. capacity).
F continuous channel inputs are allowed, the capacity of The ability to achieve (near) channel capacity has recently
discrete-time intersymbol interference (ISI) channels witheen numerically demonstrated for various memoryless [14],
additive white Gaussian noise (AWGN) can be computed usifith] channels using Gallager codes, also known as low-density
parity-check (LDPC) codes [16]. The theory of Gallager codes
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sity evolution” for a tool to analyze the asymptotic performance 3 pe o x

of Gallager and turbo codes over these channels [26]. The use- q q
fulness of the tool was demonstrated by using it to optimize — ~° 0 92 7 4 %J q tzn.x%j =
codes whose performance is proven to get very close to the ca-
pacity, culminating in a remarkable 0.0045-dB distance from the
capacity of the memoryless AWGN channel reported by Chumg. 1. Factor graph representation of the ISI channel.
et al. [27].

In this paper, we focus on developing the density evolutionf-” For example, the pdf of a continuous random vector
method for channels with binary inputs and ISI memory. THevaluated at the pointwill be denoted byfz(z).
computed thresholds are used for lower-bounding the capacity,
as well as for upper-bounding the average code performance. !l THE CHANNEL, GALLAGER CODES AND DECODING
The main topics of this paper are: 1) concentration theorems Channel Model, Graph Representation and Capacity

for Gallager codes and the sum—product message-passing d

. ] . . Assume that we have a binary discrete-time ISI channel of
coder over binary ISI channels; 2) a density evolution methed. .
. . . Ihite length I, characterized by the channel response polyno-
for computing the thresholds of “zero-error” performance ov

o fhial L(D) = ho + hiD + --- + hy DT, whereh; € R. The
these channels; 3) theorems establishing that the asymptﬂ%ut x(t tz) the discrete-time channel at timee Z is a real-

p.erfor.mance of Gallager codes using Fh? sum—product alQ?étion of a random variabl&’; drawn from a binary alphabet
rithm is upper-bounded by the symmetric information rate ang _ {—1, 1}. The output of the channe}, is a realization
the i.i.d. cgpagity; anq 4) the computation of the BCJIR-0NGR 4 random variabl@; drawn from the alphabe¥ = R. The
bound, which is the limit of “zero-error” performance of the.annel's probabilistic law is captured by the equation
sum—product algorithms if the trellis portion of the algorithm I

is executed o.nly once. . . Y, = Z hiX,_i + N, 1)
The paper is organized as follows. In Section Il, we describe =

the channel model, introduce the various capacity and infQ{yqre N, is a zero-mean AWGN sequence with variance
mation rate definitions, and briefly describe the sum—produgtn21 — 2 \whose realizations are, € R.

. . . t
decoder [28]. In Section I, we introduce the necessary notationThe channel in (1) is conveniently represented by a trellis
for handling the analysis of Gallager codes for channels WiSQQ]' or, equivalently, by a graph where for each varialile
memory and prove two key concentration theorems. Section f\ere is a singlérellis node[18], [19]. Define the state at time
is devoted to describing the density evolution algorithm fqras the vector that collects the input variabls ;.1 through
channels with ISI memory. In Section V, computed thresholdg, je @ = x! 141- The realizationy , of the random vector
[y 1eony t £ t— . e

are shown for regular Gallager codes. Section V also prese@ts can take one a2/ values. With this notation, we can factor
a theorem regarding the limit of achievable code rates usingé function

binary linear codes. In this section, we also develop the notign / i " "
of the BCJR-once bound, which has a practical implicatio%;r(—1 =zilYY =y, Q= Qo) fryie, (31@0 = Qo)
namely, it is the limit of performance of the sum—product "
algorithm if the trellis portion of the algorithm is executed only = H F (x“ Y. 4, o> Qt) @
once. This provides a concrete example of how we can trade off ) =1
the computational load (by doing the expensive BCJR step ofiere each factor is
once) with the decoding performance. Section VI concludeg (xt, Yes 4, 1 gt)
the paper.

Basic Notation: Matrices are denoted by boldface upper = fole,,gM (ytlxt, gt_1> Pr(Qt =4,/Q, , = Qt_1> :
case letters (e.gH). Column vectors are denoted by underlined 3

characters, e.gg. Random variables (yectors) are.typ_lcallyl-his factorization is represented by the factor graph in Fig. 1.
denoted by upper case characters, while their realizations B5-h node of the graph (denoted by the letter “T") represents
denoted by lower case characters (e.g., a random vBEthas 5 tac0r (3), while each edge connected to the node represents
a realizationw). The superscript’ denotes matrix and VeCtor 5 \ariahle on which the factor depends. Edges terminated by a
transposition. If a column vector is = [s1, s2, .-+, sn] ", small filled circle @) are half edges. Half edges may be con-
then a subvector collecting entries s, ..., s; is denoted sjgered terminals to which other graphs may be connected. For
by s? = [si, sit1, ..., 5;]7. The notatiorPr(event, ) denotes  getajls on factor-graph representations, see [19], [28].

the probability ofevent; given thatevent, occurred. The .

.1 n
probability mass functions of discrete random variables will C=lim — sup I(X;Y7) (4)

NN pr(X p=ay)

Y1 Y2 Y Yn

be denoted with the symbolPt,” e.g., the probability mass _ _ _
function of a discrete random vectdé evaluated atz will WhereI(X}; Y'T) is the mutual information between the
be denoted byPr(X = z), i.e., it is the probability thafy ~channelinputand the output evaluated for a specific probability

takes j[he valuer. The pr‘?babi"tY density function (pdf) of 1Some authors refer th(X 7; Y ) as theaveragemutual information
a continuous random variable will be denoted by the symbg@imi), see, e.g., [1], [6], [7].
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mass functionPr(X 7 = z7) of the channel input, where
z € X™. Another quantity related to the mutual information is
the maximum i.i.d. mutual information rate (the i.i.d. capacity),
defined as

1
Ciia. = lim — sup I(XT; YY)
TN P X p=a =] Pr(X=w)
®)
where the supremum is taken over all probability mass functions x, X, X, x,
of i.i.d. random variablex;, 1 < t < n. Clearly,C;; 4. < C. (=1-2s)) (=1-2s,) (=1-2s) (=1-2s,)
We shall also use the symmetric information rate
L Fig. 2. Bipartite graph representation of a regular Gallager coset code
; Lmax; Bmax) = (2, 3).
Tina = Jim | SI(X{:Y]) ® me
n—oo [ n Pr(;’f:g’f):2*”

L _ _ _ i The degree of a node is the number of edges connected to it.
which is the information rate obtained when the input sequengg, | degree polynomials

is Bernoulli-1/2, i.e., when the inputs are i.u.d.

Linax Rumax
Conjecture 1: For the binary ISI channel modeled by (1), Az) = Z Aol and pla) = Z izt
Ciid. = Ziu.a. holds. im1 =1

Neither the capacitg nor the i.i.d. capacity; ; . are known are defined [23], wheré.,,,x and R, are the maximal vari-
in closed form. Only if the channel coefficients dre= 0 for able- and check-node degrees, respectively. fepresents the
i > 1 (i.e., if the channel does not have memory) do we hadetal number of edges in the graph, then the valueepresents
C = Ciia., in which case the capacity is known and can bée fraction of the:. edges that are connected to variable nodes
evaluated via numerical integration [1], [6]. For channels withf degreei. Similarly, p; represents the fraction of the edges
ISI memory,C; ;4. can be very accurately numerically evaluthat are connected to check nodes of degré&dearly

ated (with probabilityl) using the Arnold-Loeliger method [9]. Lo R
These numerical evaluations also confirm (though they do not Z \ = Z pi = 1.
prove) thatC; ; 4. = Z;...a. for binary ISI channels. e ~
B. Gallager Coset Codes The design code ratds
A Gallager code (also known as an LDPC code) is a linear _k fol p(x)dz
block code whose parity-check matrix is sparse [16]. Here, we r=n T m
o Al

will extend this definition to include any coset of a linear block

code with a sparse parity-check matrix. An information blocR regular Gallager coset code is a code for whith,,,, = 1

is denoted by & x 1 vectorm € {0, 1}*. If a sparsgn — andpr,,.. = 1. ThegraphinFig. 2represents aregular Gallager
k) x n binary parity-check matrix is denoted ), thenG(H) coset code for WhicliLax, Rmax) = (2, 3).

denotes the: x k generator matrix corresponding # (with ~ We define the ensemblé,(\(z), p(z)) of Gallager coset
the propertyH - G(H) = 0). A Gallager coset code is specifiedcodes as the set of all block codes that satisfy (7) and (8),
by a parity-check matrisHf and ann x 1 coset-defining vector Whose codewordg are of dimensionn x 1, whose graph

r. The codeword is an x 1 vector corresponding to the parity-check mat#k has variable and
" check degree polynomiala(x) and p(z), respectively, and
s=[s1, 82, ..., 5] =[GH) -m]&r (") whose binary coset vectercan take any of™ values.
wheres, € {0, 1}, and® denotes binary vector addition. The Before transmission over the channel (1), the variables
codewords satisfies {0, 1} are converted to variables € {1, 1} as
H-§:Q:[Cl7627..../Cn_k]T:H'f. (8) xt:1_2st' (9)
The code idinear if and only if ¢ = 0; otherwise, the code is a Since there is a one-to-one correspondence between the vectors
coset codef a linear Gallager code. x ands, the term codeword will be used interchangeably to de-

It is convenient to represent a Gallager coset code by a bipagribe either of the two vectors.
tite graph [17], [19], [28]. The graph has two types of nodes: ) .
variable nodes (one variable node for each entry in the vegtorC: SUum—Product Decoding by Message Passing
andn — k check nodes (one check node for each entry in theln the literature, several methods exist for soft detection of
vectorc). There is an edge connecting tith check node and symbols transmitted over ISI channels [8], [30]-[34]. There also
the jth variable node if the entr# (i, j) in theith row andjth  exist several message-passing algorithms that decode codes on
column of H is nonzero. Thus, each check node representgraphs [16], [17], [23], [25]. Here, we will adopt the algorithm

arity-check equation; = @ .. ., .o S5, Where the symbol
P dy bi d ddt' . EBA{ H (i, J#OI J f h of yG I 2The true code rate of a code defined by a graph will always be greater than
@ enotes ) 'nary_a |t|_0n._ nexample oragraphoraa agﬁrequal to the design code rate. In practice, they are often extremely close, so
coset code is depicted in Fig. 2. we do not distinguish between them throughout the paper.
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Check-to-Variable Messagesthe next step is to compute
the messages going from the check nodes back to the variable
nodes. Let the variable node be of degige.e., it is connected
to R variable nodes, and let it represent a parity-check equation
for which¢; € {0, 1}. In round/, let v%“) (wherel < m <
R) denote the messages arriving from the variable nodes to the
check nodes. The rule for computing the messééJél) is

tanh i = (-1~ ﬁ tanh vl(““—l) (11)
2 Pt 2
Fig. 3. Joint code/channel graph. and is depicted in Fig. 6. Here s
referred to in the coding literature as the “sum—product” algo- tanh(a) = (e® — e~ ) /(e% 4+ e~ %).

rithm [18], [28], but is also known as belief propagation [35], ) ) _ )
[36]. When applied specifically to ISI channels, the algorithm Variable-to-Trellis MessagesThe last step required to com-
also takes the name “turbo equalization” [37]. For convenienPéte @ round of the message-passing sum—product agorithm is

+1 .
in the later sections, we describe here the “windowed” versiéf compute the message$™" passed from the variable ni)des
of the algorithm. to the trellis nodes. The rule for computing the messﬂﬁé )

First, we join the channel factor graph (Fig. 1) with the codé
graph (Fig. 2) to get the joint channel/code graph depicted in
Fig. 3. The exact schedule of the message-passing algorithm eg‘”’l) = Z uj(.“l) (12)
seems to have only very little effect on the convergence value but j=1
may affect the convergence speed. However, to do the analysis in, . . -
Section Ill, we must adopt a message-passing schedule becaalﬂld 's depicted in Fig. 7.
' e Full Message-Passing AlgorithnT.he algorithm is ex-

the schedule affects the structure of thessage-flow neighbor- ecuted iteratively, where the stopping criterion can be chosen
hooddefined in Section lll. Here, we describe the schedulin Y. ppIng

choice presented in [38] often referred totabo equalization 'ﬁeitn:trgbei; ofc(:iltf;erirs:t ivi;ayigigtc?fr:g ;/tveera?tfosr?smf?)rﬂe]zii?-
[37] due to the resemblance to turbo decoding [22]. p PPIng P Y

Trellis-to-Variable MessagesAssume that the received vec-zmax = 1rounds. In'short, the algorithm has the following form

tor is y”. In the /th round of the algorithm, we compute the = * Initialization

trellis output messagesge), where the messageg) (these are g frﬁrc?\f fiannile?u(t(gui_ﬁbyg, g
available from the previous round of the message-passing de—3) set all_ch(a_clzl—:co-v:rfiabia n;essagé?%) — o
coding algorithm on the code subgraph of the joint channel/code4) setl — 0 -
graph) are considered as the extrinsic information (in the initial -

rounde!”) = 0). The output message is computed by running ° Repeat whilel < liyax . .

the “windowed” version of the BCJR algorithm. The windowed 1) fo(r[)l < t < n compute all trellis-to-variable messages
BCJR algorithm for computing the messagé’ startsi¥ trellis o, [Fig. 4 and the Appendix]; (a1
stages to the left and to the right of tta trellis node. The for-  2) compute all variable-to-check messaghs " [Fig. 5

ward-going and backward-going message vectors are started as and (10)]; ] 1) e
aly), =p g?t = 2-T1, wherel is an all-ones vector of size 3) cor;p()ﬂ()e]all check-to-variable messags " [Fig. 6
T — Mt ) ) an ;

2 X 1 The com'putatllon of the mesgagg follqws the B_C‘]R 4) for1 <t < n compute all variable-to-trellis messages
algorithm described in [8]; schematically depicted in Fig. 4. In (+1) s )

; ) ) . e, [Fig. 7 and (12)];
the Appendix, this algorithm is reproduced for completeness. 5) i

) 0 ) increment by 1.
Variable-to-Check Message®nce the messages, ' are . Decode

computed, we compute the messages going from the variablel for 1 < ¢ < n decided. — s (bmax=1) + (€max)
nodes to the check nodes. A detailed explanation of this com- ) orr] < ¢ < n decl exf__ sign(0 +e ™),
putation can be found in [25], [27]. Here, we just state the result. ~ WN€r€ We useign(0) = 1.
Let thetth variable node be of degrdg i.e., it is connected to
L check nodes. In thé&h round, Ietoge) be the message arriving
from the trellis node and Iatffl) (wherel < m < L) denote In this section, we will prove that for i.u.d. information se-

the messages arriving from the check nodes (in the initial roursitjences, for almost all graphs and almost all cosets, the de-

I1l. CONCENTRATION AND THE “Z ERO-ERROR’ THRESHOLD

ugg) = 0). The rule for computing the messag(é“) is coder behaves very closely to the expected behavior. When we
I say here that an information sequence is i.u.d., we mean that
(D) — O]ge) n Z MO (10) the (_:hannel input is a sequence of_independent and uniformly
" ‘ —~ distributed random variables. We will then conclude that there
m exists at least one graph and one coset for which the decoding

and is depicted in Fig. 5. probability of error can be made arbitrarily small on an i.u.d.
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Yew ... Vet Y Vil e Verw

Fig. 4. Message-passing through the trellis—the “windowed” BCJR algorithm.

(e+1) O(e‘)_l_ Zu(e) The section is organized as follows. In Section IlI-A, the basic
= notation is introduced. Section IlI-B gives the concentration re-
e sult, while Section 1I-C defines the “zero-error” threshold and
concludes that there exists a Gallager coset code that achieves
an arbitrarily small probability of error if the noise variance is
below the threshold.

A. Message-Flow Neighborhoods, Trees, and Error
Probabilities

For clarity of presentation, we consider only regular Gallager
Fig. 5. Computation of messages from variable nodes to check nodes.  codes, where every variable node has degiee= L.,
and every check node has degrBe = R,.x. In the joint
code/channel graph (Fig. 3), consider an edgfeat connects a
variable nodé/, to a check nodé.. In [25], Richardson and
Urbanke define a directed neighborhood of degttdistance
d) of the edge:. Here, we cannot define a neighborhood based
on the distance because the joint code/channel graph (Fig. 3)
is not a bipartite graph. Instead, we defineressage-flow
neighborhoodof depth /¢ (which equals the directed neigh-
borhood if the graph is bipartite). Let™ be the message
(€+1) passed from the variable nodé to the check nodé&’, in
round /. The message-flow neighborhood of degtlof the
edgee is a subgraph that consists of the two nodesand
V., the edgee, and all nodes and edges that contribute to the
Fig. 6. Computation of messages from check nodes to variable nodes. computation of the messagé(-l-l)_ In Fig. 8(a), a depth-
message-flow neighborhood is depicted for the following pa-
ué+h rametergI, W, L, R) = (1, 1, 2, 3). The row of bits (binary
m symbols) 0101" given above the trellis section in Fig. 8(a)
represent the binary symbols of the codewsitbrresponding
to the trellis nodes that influence the message flow. Since
the channel has ISI memory of length there are exactly
2W 4+ I + 1 (=4) binary symbols that influence the message
flow. Fig. 8(b) is an equivalent short representation of the
depthd neighborhood depicted in Fig. 8(a). A message-flow
(e +1) _ Z (e+1) neighborhood of depthcan now be obtained by branching out
p= J the neighborhood of depth This is depicted in Fig. 9.
Since the channel has memory, the transmitted binary sym-
Fig. 7. Computation of messages from variable nodes to trellis nodes. bols do, in fact, influence the statistics of the messages in the
message-flow neighborhood. We, therefore, must distinguish
information sequence if the noise variance does not exceetleaween neighborhoods of differetypes where the type de-
threshold. The proofs follow closely the ideas presented in [24fends on the transmitted bits. The neighborhood t/jsede-
[25] for memoryless channels and rely heavily on results pritred by the binary symbols that influence the message at the
sented there. The main difference is that the channel under cend (top) of the message-flow neighborhood. We simply index
sideration here has an input-dependent memory. Therefore, thve types by the binary symbols in the neighborhood (with an
first must prove a concentration statement for every possildppropriate, say lexicographic, ordering). For example, the mes-
input sequence, and then show that the average decoder pedage-flow neighborhood of depttin Fig. 9 is of type
mance is closely concentrated around the decoder performance
when the input sequence is i.u.d. § =[o101, ..., 1111, ..., 0000, 1110, ..., 1001]T.

= (-1)“ Htanh

tanh
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2W+I+1
<«—symbols Equivalent
representations

@) (b)
Fig. 8. Equivalent representations of a message flow neighborhood of Heptkhis figure,(I, W, L, R) = (1, 1, 2, 3).

In Fig. 8(a), the binary symboly can be read as the symbol
directly below the nodé’, i.e., sy = 0. The corresponding
bipolar value of the symbol igy = 1 — 2sy = 1. Definewée)
as the probability that the tree of tyfeand deptH delivers an

incorrect message, i.e.,
" = Pr (vg"“) -z < 0| tree typeQ) . (14)

The probability in (14) is taken over all possible outcomes of
the channel outputs whéis the tree type, i.e., when the binary
symbols that definé are transmitted.

We define the probabilit’r(f|s) as the probability that a
message-flow neighborhood (of a random edge) is of ype
when the transmitted-long sequence is and the code graph
is chosen uniformly at random from all possible graphs with
degree polynomialg(z) andp(z), i.e.,

Pr(f]s)
=Pr(neighborhood type 6 | transmitted sequenees). (15)

Fig. 9. Diagram of a message-flow neighborhood of depth The ~Note that the probability defined in (15) does not depend on the

neighborhood type i8T = [0101, ..., 1111,...,0000, 1110, ..., 1001].  cosetr; also note that there always exists a veetsuch that for
any chosen parity-check mattH the vectors is a codeword of

There are as many possible types of message flow neighbit¥e coset code specified By andr.

hoods of depttf as there are possible fillings of binary digits in  Next, define therror concentration probabilityvhens is the

Fig. 9. One can verify that for a regular Gallager code there df@nsmitted sequence as

exactly2™¥ (*) possible types of message-flow neighborhoods of oN ()
depthf, where pO(s) = Y my) Pr(6ls). (16)

(R-1)'QWL+L-1)"-1 i=1

N =2W+TIT+1)- . (13
6= ) (R—1)2WL+L-1)-1 (13) Define thei.u.d. error concentration probability!®) , as the
We index these neighborhoods as error concentration probability when al¥(¥) neighborhood
) typesd;, 1 < i < 2NV, are equally probable
6, €{0, 13N wherel <i<2V®, M)
l D eo—N

Atree-like neighborhood, or simplyteeeof depth? is a mes- P = > Wéi)Q N, 17)

sage-flow neighborhood of depthin which all nodes appear i=1

only once. In other words, a tree of degtlis a message-flow In the next subsection, we prove that for most graphs, iff
neighborhood that contains no loops. Just like message-flthe transmitted codeword, then the probability of a variable-to-
neighborhoods, the trees of degtoan be of any of the¥()  check message being erroneous aftesunds of the message-
typesf; € {0, 1}V, wherel < i < 2N, passing decoding algorithm is highly concentrated around the
Definesy as the binary symbol corresponding to the messagaluep(¥) (s). Also, we prove that if the transmitted sequence is
nodeV, at the top of the message-flow neighborhood of t§pe i.u.d., then the probability of a variable-to-check message being
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erroneous aftef rounds of the message-passing decoding algand

rithm is highly concentrated around the va}uj_@_d_. To do that, 2N

we need the following result from [23]. Defirig; as the prob- E [Z(Z)(Q] >n(1—Pp) Y Wéi) Pr(8;|s)
ability that a neighborhood of depths not a tree when a code i=1

graph is chosen uniformly at random from all possible graphs 2V o 2V
with degree polynomials(z) andp(z). In [23], itis shown that >ne Y T Pr(fils) — nePg > Pr(fls)
. y i=1 i=1
P = Pr(neighborhood not a trge< — (18)
! ( . i > nep®(s) - ne L. (23)
wherey is a constant independent of n

i . 2
B. Concentration Theorems Combining (22) and (23), i > =, we get
Theorem 1:Let s be the transmitted codeword. Let Pr

Z®(s) be the random variable that denotes the number of

erroneous variable-to-check messages afteounds of the
message-passing decoding algorithm when the code graph is i D
chosen uniformly at random from the ensemble of graphs with Theorem ,2: Let S be a random sequence of ('z,l)J'd' binary
degree polynomials(z) and p(x). Let n. be the number of '@ndom variables (symbolsjy, Sy, ..., S,. Let Z27(S) be

variable-to-check edges in the graph. For an arbitrarily smgﬁe random variable that denotes the number of erroneous vari-
constant: > 0, there exists a positive numbgr such that if aple-to-check messages afterounds of the message-passing
n> 2 then decoding algorithm when the code graph is chosen uniformly at

o random from the ensemble of graphs with degree polynomials
Pr <‘ Z0(s) _ PO > 5> < e=Bn (19) A(z) andp(z), and when the transmitted sequencg isetn.
e - be the number of variable-to-check edges in the graph. For an
Proof: The proof follows closely the proof of the concenarbitrarily small constant > 0, there exists a positive number
tration theorem for memoryless channels presented in [25]. Fifgt such that ifn. > 2?7 then

E [Z9(s)]

Te

_ p(l) ()

9]

note that 20
pe(| 22 -y 2 o) pr(|5 ] o) <o e
Ne T e
< Z(l)(s) E [Z(‘>(s)] 6) Proof: Using Theorem 1, we have the following:
<Pr = _ > =
N Ne Ne 2 (©
pr (|50 a0 2 o)
E[ZO(s)] € Me

—pP(s)

+Pr(

z%s;)

(&

> 2) . (20) 2"
= Z 27" Pr (
j=1

— Pia.
The random variableZ(¥)(s) depends on the deterministic Te ‘
sequences and its probability space is the union of the en- 2" Z0(s ) .
semble of graphs with degree polynomials:), p(z), and the <Y 27"Pr ( = (s ;)| > —)
ensemble of channel noise realizations (which uniquely define j=1 e 2
the channel outputs singgs known). Following [23], [25], we 2"
form a Doob edge-and-noise-revealing martingale and apply + 22‘" Pr (‘p(") () —pi(_?_d_‘ > E)
Azuma’s inequality [40] to get j=1 2
on
Pr( 206) _E[Z90)]] 5) coten @ <22 A ([p0s) -, | > D)
Te Te j=1

whereg depends only oi\(z), p(x), and’. = 277" /4 4 Py (‘P“) (S) - pi(.eg.d-’ 2 g) : (26)
Next, we show that the second term on the right-hand side of . . . .
(20) equalsd by using inequality (18). Again, this is adopteoNeXt' recognize thatif is ani.u.d. random sequence, all neigh-

. _ 9—N(t
from [25], but adapted to a channel with ISI memory. We havg()m()()(j_t>/r)eS are equally probable, l%r(g”ﬁ) -
Using this, we prove that[p(S)] = ;' ,.

N (£)
(0 _P- (0 gl on
B[20(s)] <ne(1-Py) > ! Prils) +ne B[] = 32 0s,)
9N (£) 7=1
() b 2" 2N ()
<n, my Pr(8;|s) +ne —
; 9; (9:ls) n _ ZZ—n Z Wé{-) PT(Q7‘,|§j)
@) 4 j=1 i=1
<nep'™(s) + me " (22) 9N (2) on

4 -n
3Actually, in [23] this fact is shown for a bipartite graph, but the extension to Z 7T§ ) Z 27" PT(Qi |§j)
joint code/channel graphs of Fig. 3 is straightforward. =1 i=1
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27 , codes. LetZ(Y) be a random variable representing the number
= Z Wéq) Pr(8,5) of erroneous variable-to-check messages in rodnaf the

i=1 message-passing decoding algorithm on the joint channel/code

2N ® graph of the cod€'(H, r). Then

=3 w020 gl

i . 0
=t Pr < Q - pl(? > 5) < 4o, (31)
Now form a Doob symbol-revealing martingale sequenfg fte
My, ..., M, Proof: If H andr are chosen independently and uniformly
at random, then the resulting codeword in (7) consists of i.u.d.
M, =E [p(l)(ﬁ) | S1, Sa, ..., St} binary symbols, and Theorem 2 applies directly. O
My =E [P({)(ﬁ)} =l C. “Zero-Error” Threshold
M, =E [p (S) | S] =pO(S). The term “zero-error” threshold is a slight abuse because the
decoding error can never be made equal to zero, but the concen-
If we can show that tration probability can be equal to zero in the limitlass o,
and hence the probability of decoding error can be made arbi-
|Myy1 — M| < % (27) trarily small. As in [25], the “zero-error” noise standard devia-

tion thresholds* is defined as
whereé is a constant dependent oiiz), p(z), and¢ (but not

dependent om) then if we apply Azuma’s inequality [40], we o = supo (32)
will have where the supremum in (32) is taken over all noise standard
Pr( pO(S) = p© | > f) <207 (g deviationso for which
Zlim pi(_?_d_ =0. (33)

Then, by combining (28) and (26), fof = mln(4, g57), We

will get (35) So, all tgat needs lta(l) bee)shown Ids %)7) h Corollary 2.2: Let m be an information block chosen uni-
Consider two random variables and p™(S). The ¢y at random from2* — 27 binary sequences of length

random vectorsS and S have the foIIowmg properties: There exists a code(H., r) in the ensemblé,, (A(z), p(z)) of

1) the flrstt symbols of$ and S are deterministic and equalGaIIager coset codes, such that for any o*, the brobabmty

5 = 8 = s1;2) The(t + 1)th symbol of$ is the random of error can be made arbitrarily low, i.e. D is the number
variable S;, while the (¢ + 1)th symbol of S is fixed (Non- of erroneous variable-to-check messages in roénaf the
random)S,+1 = si11; 3) the remaining symbols ;,, and message-passing decoding algorithm on the joint channel/code
St+2 are i.u.d. binary random vectors stat|st|cally independegiaph of the cod€'(H, r), then

of each other. Fixing thét + 1)th symbol, St+1 = St41 ©

can affect at most a constant number (call this number Pr (Z > 2 | C(H, T)> < ge—P'e"n (34)

of message-flow neighborhoods of depthThe constants e -

depends om\(z), p(z), and/, but it does not depend on.
Therefore, for any given neighborhood typg we have

Proof: Define an indicator random variable

5 & K ) 1, if’Zn( _Pl(?d‘zg
pr(2,8) - Pr (,13)] < = (29) 7(29) = (35)
Tle 0, otherwise.
Using the notation\'(1) = 33_(;”)|m:1, we can verify that From Corollary 2.1, forH, r, andm2 chosen uniformly at
B random we hav&[Z(Z("))] < 4e=#=". Since the expected
=[N (1) + 1]n. value is lower thare "™ we conclude that there must exist
at least one grapH and one coset-defining vectersuch that
Defining 6 = X(l)ﬂy and using (29), we get for m chosen uniformly at random we have
i e EB[Z(2“) | C(H, 1)] < 4e™7"
PS8 - (8| < 3 |Pr(88) - pr (0.08)] | -
P i.e., there exists a grapl and a coset-defining vectersuch
that form chosen uniformly at random
<N & _ ﬁ (30) - y
Ne n 70 © ' 2
, Pr(——plud >€|C(H,£)> <4e=Pm (36)
Inequality (27) follows from (30). O e
Corollary 2.1: Letm be any information block consisting of The assumptioa < ¢* guarantees
k = rn binary digits. LetC'(H, r) be a code chosen uniformly ) ©
at random from the ensemblg (A(z), p(z)) of Gallager coset }Eglopi.u.d. =0.
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Sincelinu_,oopglu)_d_ = 0, it follows that for everye > 0, there We also drop the function argumeisince it is common for all
exists an integef(e) such that for every > /(¢) we have convolved pdfs. Then (39) may be conveniently expressed as
p") | < e Then, fort > £(c), we have

=18 e (). (41)
@)
Pr <Z > 2| C(H, g)) Equation (41) denotes the evolution of the average density (pdf)
Te through a variable node, Fig. 5.
<Pr ﬁ _p(z)d >c|CH, ). @7 To express th_e densit_y evolution through a_check node
Ne Lud ’ (Fig. 6), we require a variable change, resulting in a cumber-

some change of measure. A convolution can then be defined in

The desired result (34) follows by combining (36) and (37). the new domain and an expression can be found for the density
evolution through check nodes [25]. Here we do not pursue this

IV. DENSITY EVOLUTION AND THRESHOLD COMPUTATION rather complicated procedure because a numerical method for
density evolution through check nodes can easily be obtained

o ) through a table lookup, for details see [27]. Here we simply
Defmef‘(flgl)(gg) as the pdf of the messagf ™" obtained genote this density evolution as

at the top of a deptli-tree of typef), see Fig. 8. With this no-

A. Density Evolution

tation, we may express the i.u.d. error concentration probability Flanay i
as $H =3 gt (A7) (42)
=1
2N i—1( gL+ i i
0 _ Z 9= N(0) L (0) where&!~"(f;," /) is symbolic notation for the average mes-
Piud P L sage density obtained by evolving the dengffy ) (¢) through
N (0) o a check node of degree We further express (42) by the fol-
-3 2—N(/)/ 10 (eln,) - w, - de lowing notation:
i=1 J—oo T (041) (¢+1)
o R = le (1) (43)
_ —N(£) p(e+1) .
) [Z 2 Ve, (€l2) xﬁi] d¢ Similar to (41), the average density (pdf) of messadé%l)
=t Fig. 7) is obtained using the convolution operator
g 9 p
- [ e (38) Lo
oo 1) i 41 o5 g1
o = Z m(@fé )(f)) —/\(fér ))-
=1 0 - k=1
Here, f‘(f b (&) is theaveragepdf (averaged over all tree types) (44)

of the correct message from a variable node to a check nodéote that in this equation the degree distribution is averaged

in round/ of the message-passing algorithm on a tree. We catith respectto the nodes, rather than the edges. This explains the

obtain the pdfféfﬂ)(f) in several different ways. Here, we pertermA; /(i fol A(z) dz), which is the fraction of variable nodes

form the averaging in every round and enter a new round wiifith degreei. The notationX( g“)) is symbolic shorthand.

an average pdf from the previous round, i.e.,e/velvef‘(f)(é) The step that is needed to close the loop of a single density

into ,f€f+1)(£). This method was used in [14] for discrete mesevolution round is the evolution of the average den$§,§/+1)

sages and in [25] for continuous messages, where it was term&d the average densit g“), i.e., the evolution of message

density evolution densities through the trellis portion of the joint code/channel
Denote byfg')(f) theaverageadlensity (pdf) of a messagéf) graph. We denote this step as

in the /th round of the message-passing algorithm (averaged £41) (e41)

over all tree types), see Fig. 5. L&t (¢) denote theaverage s =¢ (fE ; fN) (45)

pdf of a message,,(f,) in the /th round of the message—passin%vh £

algorithm on a tree. Then the average density (pféff)Ll)(f) is orec:

given by

is symbolic notation fotrellis evolutionand fx de-

notes the pdf of the channel noise (in this case a zero-mean

Gaussian with variance?). Even though no closed-form so-

Lo il lution for (45) is known, it can be calculated numerically using
(1) ey — (O , () Monte Carlo techniques.

O =lo©e ; 5 <k1 fo (E)ﬂ (39) The density evolution is now given by

, * Initialization ,

where® stands for the convolution operation, a@,_" de- 1) fn(é) = \/176—57;

. 2mwo?
notes the convolution of — 1 pdfs. As shorthand, we use the 2) setf(,o)(g) — §(¢) (wheres is the Dirac function).

following notation: e For £ = 0t0 fpax — 1

e [im ) 17 =ple (K9)]:
(109 :LZ A <(Xl)fz(f)(£)>- (40) ; on _ ;[( g(>)‘. )
i=1 1

2
e 1
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3) O =& (19, fn); V. ACHIEVABLE RATES OF GALLAGER CODES
4) f‘(/“rl) - fg) ® A z(f)) A. Achievable Rates of Binary Linear Codes Over ISI
Channels

» Compute

1) p_(l> _ J'O <f+1>(€) de. In Section II, we pointed out th&t, , 4. is the limit (asn —
u.d. —oo IV oo) of the average mutual information betwedn! andY 7

B. Threshold Computation whenX 7 is an i.i.d. sequence with
With the density evolution algorithm described in the pre- Pr(X; = —1) = Pr(X; = +1) = 1

vious subsection, the zero-error threshetdcan be evaluated 2

(up to the numerical accuracy of the computation machine) 8ice the input process, the channel, and, hence, the output

the maximal value of the noise varianeéor whichpi(_?_d_ <€, process and the joint input—output process are all stationary and

wheree is the numerical accuracy tolerance. ergodic, one can adopt the standard random coding technique

With a finite-precision machine, we must quantize thf] to prove a coding theorem to assure that all ratesZ; , 4.

messages, resulting in a discrete probability mass functiereachievablgfor the definition ofachievablesee [2, p. 194]).

For a sufficiently large number of quantization levels, th&/e use the expression “standard random coding technique” to

discrete probability mass functions are good approximationsaéscribe a method to generate the codebook, where codewords

continuous density functions (pdfﬁg), f,(f), fg), andf‘(f}). In are chosen independently at random and the coded symbols are

the for-loop of the density evolution algorithm in Section IV-Agoverned by the optimal input distribution. For a generic fi-

steps 2) and 4) are straightforward convolutions (easily imite-state channel, see [1, Sec. 5.9] or [42] for a detailed descrip-

plemented numerically using the fast Fourier transform [41}jon of the problem and the the proof of the coding theorem. For

Step 1) of the for-loop can easily be implemented using a talilee channel in (1) with binary inputs, we present a somewhat

lookup as explained in [27], or using a rather cumbersonséronger result involvindinear codest

change of measure explained in [25.]' Actgally, only step 3) of Theorem 3:Every rater < Z; .4 is achievable; further-

the for-loop needs further explanation. Since no closed-form . . .

o . . ) . more, the rate can be achieved by linear block codes or their
solution is known for evolving densities through trellis sections,
. . oset codes.

we employ aMonte Carloapproach to obtain a histogram thaf f: i th h | . ud
losely approximateﬁ(l) This has first been suggested in [26 Proo.. From [3], if the channel input is an i.u.d.

¢ . 7O - : Bernoulli-1/2) sequence, we have

for trellises of constituent convolutional codes of turbo codes.

In [26], Richardson and Urbanke run the BCJR algorithmon 7. . — |im lI(X’l’;Y’l’) = lim lI(X'l’:Y'ﬂq )

a long trellis section when the input is the all-zero sequence. v v voooy T TR0

Here, since the channel has memory, the transmitted sequeibere the second equality follows from the fact that the channel

must be a randomly chosen i.u.d. binary sequence. The lengt{1) can be driven into any known stage, with at most/

n of the sequence must be very long so that we can ignore thputs (wherel is the ISI length). For any > 0, there exists a

trellis boundary effects. positive integetV such that% < eand
To implement step 3) of the for-loop in the density evolu- 1 N oON
tion algorithm in Section IV-A, forl < ¢ < n we generate the r< LY g) < Tiwa

symbolsr, € {~1, 1} |_ndependently an_d uniformly at random here the starting state is a known vector of binary values,
They are then transmitted over the noisy ISI channel to get t 0

e =0 r . :
S e sayg = [+1, +1, ..., +1]7. Now we consider the following
channel output realization’". We generate the extrinsic infor transmission scheme. We transmit a binary vediowhere be-

ion o0 : .
matione;” for 1 < ¢ < n as follows. Foralll <t < n,first fore every block ofV symbols we transmit the known sequence
create independent realizatiodﬁ) according to the pdf (actu- q, ie.

ally, histogram)fg), and then se_ﬂtﬁl) = ég)-xt. Forl1 <t <mn,

we compute tha priori probability that the message symbg) 4
equalsl as X,
® exp [ey)] 4,

P = (46)

[
I
B

1+ exp [eﬁ‘)} .

Using these prior probabilities and using as the channel q
outputs, we run the BCJR algorithm [8] to compute the trellis )_(
outputs ogi). We then equatqu) to the histogram of the o
values og) -z4, Where K < t < n— K, and K is chosen
large gnough to avoid the trellig boundary eﬁects. In [26_]3 this q,= KZIBEQIRI{ and X, = XZJ_V;SQVH)J,Hr
technique is accelerated by forcing the consistency condition on

the histogram. In ISI channels, however, consistency genera|\|>‘}l-|ere we use a different (and apparently simpler) proof methodology. How-
er, the proof only applies to finite-state channels for which we can guarantee

does not hOId’_SO W(_a must use a larger trellis section in tﬁﬁt we can achieve any state with a finite number of channel inputs (e.g., ISI
Monte Carlo simulation. channels with finite IS memory); not for a general finite-state channel.

Clearly, from (46), for anyl < ¢ < n, we have
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The symbols of the vectak are transmitted over the channethe real code rate @% The received sequence also has the
in (1) to obtain a vectol” at the channel output. Similar to thesame block length. However, from [2, proof of Theorem 8.7.1,
vector X in (46), we partition the vectdr’ as p. 198], the decoding error probability can be made arbitrarily
small even if we only use the typical-set decoding with respect

Y to X, andY’,, which is not the full received sequence.
Y, To prove the second part of this theorem, we should note
7, that the error probability bound only depends on the statistical
y=ly properties of the random codebook. We can generate a code-
- _.2 book by drawing codewords uniformly at random as in [1, The-
: orem 6.2.1, p. 206]. ]
In For binary ISI channels, define the capacity,. as the
LY, supremum of rates achievable by binary linear codes under
where for any anyl < ¢ < n, we have any decoding algorithm. A consequence of Theorem 3 is
¥ = ngggf\\:ﬂ;ﬂ and YV, = ng;;éj)\rJrI)%»IJrl' Tina. < Coie < C “7)
Clearly, we have a memoryless vector-channel as follows: Formulating the exact relationship betwegn 4., Cii.d., Cbic,
Input: X, whose realization is a binary vector anqc is still an open problem since to the best ofour_knO\_NIedge
neither the literature nor the theorems presented in this paper
z, € {+1, -1}V, answer this question. For example, it is our belief that the strict

inequality Cy,. < C must hold because binary linear codes
cannot achieve spectral shaping required to match the spectral
fiulls of the code to the spectral nulls of the channel (see [43]
for matched spectral null codes), but we cannot back up this
fgo(ﬂt@t) - fLILvQO(Qt@t’ 20) statement with a proof. Further, we know (at least for some ISl
channels) tha€y,. > C;;q.. An example can be constructed
since the known sequenge is transmitted before every vectorby concatenating an outer regular raje2 Gallager code whose
X ,. This channel transition probability law is well defined [1]variable node degree i = L., = 3 and check node degree
[42], hencel (X ,; Y ,|q ) is also well defined. Note that theis R = R,,.. = 6, with an inner matched spectral null biphase
pdf f, (-|-) is not dependent ofy which makes it possible to code [43] of rate /2. For this special construction, the resulting

Output: Y, whose realization is real vectgr € RN,
The probability law of the vector channel is defined by th
following conditional pdf:

factor the joint pdf as code is a linear (coset) code of ratg4. If we use this code for
transmission over the dicode channeH{ D channel), though
v, .y, x (ﬂp Yy Y | £) not explicitly shown here, we can compute that the zero-error
n threshold of message-passing decoding is aléhye. (where
= H f_t|§i,90 (gt |z, 20) for this channel it can be numerically shown using the algorithm
t=1 in [9], [10] thatZ; 4. = Cji.d.)-
_ - While the exact relationship betweé€h,., C;;q4., andC is
- ,1:[1 f—o (Ut | mt) still an open problem, we can prove a relationship between the

. o zero-error threshold of the message-passing decoder of Gallager
showing that the vector channel is indeed memoryless. Furth@des, and the valués,, 4 andC

quantize the output vectdf , to get a quantized vectdf , = N

Quant (Y ,). Due to [1, Ch. 7], we can always find a quantizer Proposition 1: Let » be the rate of a_GaIIager_ code_and_ let
to get a discrete channel such that the corresponding averéige® the threshold computed by density evolution using i.u.d.
mutual information%l(gt; 21@0) is greater than the given inputs. Thenr < Ii.l'l.d. < Giid. Whe.re.Ii.u.d_ andC;; 4. are
rater. Sincee is arbitrarily small, we can choose integerand  €valuated at the noise standard deviatios o™

iid.-

k such that Proof: According to the concentration theorem, the
average probability of error (averaged over all random choices
kN ko1 - X X X
T < =< =1 (gt; Xt|q0) of the graph, the coset vector and the information-bearing
n(N+I) “n N - vector m) can be made arbitrarily small § < o*. That
< il (Xt‘ yt|q0> < Tind means that there exists at least one graph that achieves an
N =1ty =—tI1 Lu.d.-

arbitrarily small average probability of decoding error (aver-

Similar to [2, proof of Theorem 8.7.1, p. 198], we can provaged over all random choices of the coset veet@and the
that k/n is achievable for the obtained discrete memorylegsformation-bearing vectar). Pick the parity-check matrikl
channel. The reader should note that the random code w@responding to this graph as our code matrix. We design the
generated hag2”)* codewords, which are statistically inde<following transmission scheme. The messagesire chosen
pendent. The coded symbols are i.u.d., each with probabiliipiformly at random and the coset vectersre chosen also
2=N. Every codeword consists af vector symbols from uniformly at random. The resulting transmitted sequence is
{+1, -1}V, say(X,;, X,, ..., X ). The transmitted block i.i.d. with probability of each symbd).5, that is, the sequence

is (20, X4, 4y Xy ooty 4y X ,,) with lengthn(N + I). So, is i.u.d. If the transmitted sequence is i.u.d., we cannot find a
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code with rate higher tha®; , 4. such that the decoding error TABLE |
is arbitrarily small. But since the decoding error (averaged over THRESHOLDS FORREGULAR GALLAGER CODES (L = 3); CHANNEL

MD)= L - LD
all messages and all cosets) for the sum—product decoder D)=

of Gallager codes can be made arbitrarily smalldot o*, we code || check-node | code rate | threshold | threshold SNR* [dlB]
conclude that the code ratamust be smaller than the value for ((L3’ f)) degf;e R |r (Tog 2‘(’) — SNR =622%110gm =
g * s . . -6.
i w.q. €valuated atr < o*. Therefore, 3.9 1 3350 1196 TE5d
(3,5) 5 0.400 0.945 0.492
r < sup Ziya.(0) = Liva.(0*) < CiialoF). O (3,6) 6 0.500 0.822 1.703
o<o* (3.8 8 0.625 0.697 3.136
(3,10) 10 0.700 0.631 4.000
(3,15) 15 0.800 0.547 5.241
B. Thresholds for Regular Gallager Codes as Lower Bounds|| (3,30) 30 0.900 0.459 6.764
onC, . (3,60) 60 0.950 0.404 7.873
iid. (3,150) 150 0.980 0.355 8.996

The two proofs presented in the preceding subsection
establish that the curve rate) versus thresholdo*) for a
Gallager code over a binary ISI channel is upper-bounder

C.. . and the density evolution threshold
by the curveZ;,q. versuso, and upper-bounded by the P . - Iy : x ' ' >(}150)
curve C; ;4. Versuse. Thus, we have a practical method for ool o Cia. d60)
: ; . . N —— density evolution thresholds ek
numerically lower-boundingC;; 4.. Furthermore, by virtue . Shamai-Laroia conjecture 3,30)

of specifying the degree polynomialgx) andp(z), we also . 08/— , ; f = (3,15) code|
characterize a code that can achieve this lower bound. Th3 o7} o /#(3,10) regular cade
is a bounding method that is different from the closed-form @ ‘ ' ular cot
bounds [6], [7] or Monte Carlo bounds [5] proposed in the};‘j
past, where no bound-achieving characterization of the cocg ‘
is possible (except through random coding techniques whics 0.4r:- R S
are impractical for implementations). Further, we compare th § 0.3l ‘
thresholds obtained by density evolution to the value 4. 8
computed by the Arnold-Loeliger method [9], showing that
the thresholds are very close @ ;4 in the high-code-rate R s Coe Tt e
regions(0.7 < r < 1.0). This is exactly the region of practical o—x (3’_? reg‘i'gr Ga"zgeméde 4 —
importance in storage devices where high-rate codes for bina SNR [dB]
ISI channels are a necessity [3]. The codes studied in this paper
do not provide tight bounds in the low-rate region, but theig. 10. The i.i.d. capacit;; 4. and thresholds for regular Gallager codes
threshold bounds can be tightened by optimizing the degréiégh message node degrée= 3.
polynomialsA(z) andp(x), see [44].

In this paper, we present thresholds only for regular Gallaggya|yating a one-dimensional integral, and also it seems to be
codes in the family (L, R), whereL = 3 and R s ?HOW?d a relatively accurate estimate 6f ; 4. as verified in [9]. For
to vary in order to get a variable code rate= “%=. This his reason, we compare the thresholds computed by density
family of codes provides a curveversus threshold that is very o\ o1ution to bothC; ; 4 and to the Shamai—Laroia conjecture.
close toC;; 4. for high code rates, but not for low code rates. Fig. 11 indicates the position of the threshold SNBr two
To get tighter bounds in the low information rate regim&eqyjar Gallager codes (ti8, 6) code of rate = 0.5 and the
we would have to revert to irregular Gallager _codes [14_1 8, 30) code of rater = 0.9)’ along with the SNR values for
[15], [44]. Table | tabulates the coldes f‘nd their respectiy§e Shamai-Laroia conjecture at these rates and the best known
thresholds for the ISI channk( D) = -z — -z D with additive  \a1ye forC; ;4 computed by the Arnold—Loeliger method [9].
Gaussian noise (this channel was chosen for easy comparigQfain, note that for this channel, numerical evaluations show
to some previously published bounds [5}-{7]). The densi, . . — 7. ) Also shown in Fig. 11 are the SNR values for
evolution bounds:( versus SNR) are plotted in Fig. 10. For \yhich simulated Gallager codes of lengths {104, 10°, 106}
comparison, the i.i.d. capacity numerically evaluated using tBgnjeved bit-error rates db—>. First, observe that the thresh-
Arnold-Loeliger method [9] is also plotted in Fig. 10. (Note thag|gs accurately predict the limit of code performance as the
for this channel, we can numerically verify th@{;.a. = Ziu.a.  plock lengthn becomes very large. Next, observe that for the
at any signal-to-noise ratio (SNR) of interest.) . code(3, 30) of rater = 0.9, the threshold is tight (tighter than

In [7], Shamai and Laroia introduce a curve for which thejhe Shamai-Laroia conjecture), establishing that regular Gal-
conjecture that it may be a lower bound On; 4. (dash-dotted |ager codes are relatively good codes for high rates. For the code
line in Fig. 10). Although the curve is only a conjecture, it i§37 6) of rater = 0.5, the threshold is far away from the SNR
a very useful quick way to estimaf@ ;.a. because it involves 5)yes corresponding ; ; 4 and the Shamai—Laroia conjec-

ture, respectively, suggesting that good Gallager codes in the

S5Thresholds for irregular Gallager codes can also be obtained via dené[%y"]'rate regime should be sought among irregular codes [14],
evolution. 44].

| /% (3,8) regular co@e |

(3,6) regular Gallager code
#/(3,5) regular Gallager code |

(3,4) regulér Gallager code
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Bit error rates and SNRs for (3,6) codes (rate r=0.5) Bit error rates and computed SNRs for (3,30) codes (rate r=0.9)
: ; ; i n=10* :
10‘3...” L H ok - 10'3_
w w
= =
<
o« T N S I S
g n=10° s g
& 10 ‘» =10 G 107 -
ITHR SHSHHS N - o5 I
|: ........... t
o . B REEEETE T T PR cfe e m [ . ceefernieeenea Lo
SNRfor SNmo,,he USSP SISO I SUSURSUROON SO0 N oot L SNR for the
Cita. Shamai-Laroia . SNR" | | | SNRforC,,:  SNR' _/Shamai-Laroia
\/ { conjecture : }/ : \/ T \/ : ‘conjecture \/
10° ; ; ; 107 ; ; ; ; ; ; i
0.6 2 14 16 18 2 22 64 65 66 67 68 69 7 71 72
SNR [dB] SNR [dB]

Fig. 11. Comparison of bit-error rate simulation results for finite-block-length Gallager codes of ratés5 andr = 0.9to C; ; 4. and to the density evolution
thresholds and to the Shamai—Laroia conjectured bound.

C. The BCJR-Once Bound So, O, is a sufficient statistic for determining; from Y 7
Due to the high computational complexity of the BCJFgwnhout knowledge ofthe code). Therefore (see, e.g., [2, p. 37]),

algorihm, several authors suggest applying the BCJR step oh thv YY) = 1(Xe; O). O
once [33], [45] and subsequently iterating the message- passmg:roperty 2:

decoding algorithm only within the code subgraph of the

joint channel/code graph (see Fig. 3). Clearly, this strategy Caear-once < Zinda. < Ciia.-

is suboptimal to fully iterating between the channel and the  proof: Let H(X 7Y ") denote the conditional entropy of

code subgraphs of the joint channel/code graph, but dogs: giveny *, and letH (X,) denote the entropy of,. From

provide substantial computational savings, which is of parUcng{e independence bound [2, p. 28] it follows that
importance for on-chip implementations. The question that

remains is how much does one lose in terms of achievable HXTY") < ZH(XJY?)
information rate when this strategy is applied. We develop T o
next what we call theBCJR-oncebound Cicjr-once Which
answers this question.

Let X T be a realization of a random channel input sequence

t=1
If X7 is avector of i.i.d. random variables, we have

X7, Letg’; be arealization of the channel output sequérige n (X7 Z H(X:) - H(XT|YY)

LetO; = Oio) be the random variable representing the message [

passed from théth trellis node to the variable node in the first >— Z[H(Xt) — H(X[YT)]

round of the sum—product algorithm (i.e., it is the output of the "=

BCJR algorithm applied once in the first iteration of decoding). .

Denote the vector of realizations, ..., o, by o, which is ~n Z [( Xy YY) (49)

a realization of a random vectdl ;. We assume that the input
sequence is i.u.d., and define the BCJR-once boundas ~ Evaluated whenX is a Bernoullid/2 random (i.u.d.) se-
guence, the right-hand side of (49)U&cir-once, IN the limit

CBCIR-once = 'nhm ; Z (Xy; O) n — oo, and the left-hand side i§ 4. O

Pr(X7=X7)=2-n Further, we have the following result for the BCJR-once
(48) boundCpcjr-once if We “disregard the channel memory.”

Two straightforward properties can be established for theProposition 2: Let the channel inpuk’; and the BCJR-once
BCJR-once bound. output©, form amemorylesshannel. For such a channel, any
rater < Cpair-once 1S achievable.

Proof. The proof follows the proof of Theorem 8.7.1 in
[2, pp. 198-206]. O

Property 1:

n—oo n

n
§ : n
CBCJR -once — lim — Xl

In view of the definition (48) and Proposition 2, it is tempting
to refer toCpcyr-once @S the BCIR-onceapacity(or rate) in-
stead of the term we chose—the BCJR-ohoend However,

Pr(X, =1Y ) = ﬂ?) it is easy to show that the valUe€gcr-once IS NOt a capacity
1-Pr(Xy=1Y"T = g’f)' (nor a rate) of a meaningful physical channel. This is because

Pr(Xp=z7)=2""
Proof: The BCJR algorithm computes

Oy = 1In
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the physical channetX;, = O, is not memoryless as assumeaf the sum-product algorithm is executed only in the first

in Proposition 2, and we have decoding round.
CBCIR-once < lim 1 sup. (X0, Proposition 3: Let r be the rate of_ a Gallager code and
noee Pr(x 7= I let ofcir-once P€ the BCJIR-once noise tolerance threshold
(& H r(X=a) (computed by density evolution using i.u.d. inputs). Then

t=1

< CRaJIR-once, WhereCpcojr-once 1S the BCIR-once bound
evaluated at the noise standard deviation OB TR-once-

Proof: The thresholtjg-once IS COMputed using the
sity evolution method described in Section IV-A, where the
is evolution step is executed only in the first round. Thus, the

The BCJR-once boun€pcg-onee for the channel in (1) thresholtr g -once IS COMputed as the threshold of a Gallager

can be computed by i) running the BCJR algorithm on a vng’ded.?.f ratler (;)fn ? nr:emorlylests c:thqnnel,thwhor]se ch?nneltla_w
long trellis section, ii) collecting the outputs, iii) quantlzmg( onditional pdf of channel output given the channel input) is

them, iv) forming a histogram for the symbol-to-symbol trand'VeN by

sition probabilities, and v) computing the mutual information  fo,|x, (0| Xe = 1) = lim fomy . (0 Xe =1).
of a memoryless channel whose transition probabilities eq
those computed by the histogram. Another way is to devis
method similar to the Arnold—Loeliger method for computin

On the other hand, we believe it is appropriate to refer fo
Cacir-once @S abound because in Section V-D we show®
that the rate achievable by message-passing decoding of
randomly constructed Gallager (coset) codes is upper-boun téﬂ

by CBCJR'oncc .

Lf—?greom listhe output of the windowed BCJR algorithm when
éh e window size i3V, and clearly, due to the channel symmetry

Tiwa. (see [9]). First, we note that for i.u.d. input symbols, Jox, (0| Xt = =1) = fo,x, (=0 X = 1).
%H(g?) = 1. Thus, the problem of computindscir-once AS evident from the density averaging in the trellis portion of
reduces to the problem of computing the density evolution, the fU”Ctibeg‘/Vuxi (04| Xt = 1) is the
S n average conditional pdf c@,[,‘"v],taken over all conditional pdfs
s ; HX YY) of ©!""1 conditioned onX !*1V", under the constraink, = 1,
n l.e.,
= nlglgo % ZE['H(Pr(Xt =1Y7T))] (50) fOEW]|Xi (C)EW”Xt — 1)
. . . . — 9—@W+D)
whereH(p) is the binary entropy function defined &§p) =
—plogyp — (1 — p)logy(1 — p). For a given channel output Z fo[”']|xi+“i (01|Xt Wl = 931 }}, 1)
realizationy ", the BCJR algorithm computéd(X; = 1]y 7). allz' =W a=1 oo
So, we can estimate (50) by generatingralong i.u.d. input For this channel when the noise standard deviation, ithe
sequence, transmitting it over the channel and running the BCdRannel information rate i€y (o) = I(O[ v, X,), where
algorithm on the observed channel outpytto getPr(X,; = Pr(X, = 1) = 1/2. Similar to the proof of Proposition
1y7) for everyl < ¢ < n. The estimate 1, we use a Gallager code where the coset vector is chosen
A 1 uniformly at random in each block transmission. For this
CaciRr-once = 1 — - Z H (Pr (Xt = IIQT)) Gallager code of rate, the transmitted symbols are i.u.d. From
t=1 the concentration theorem, we have that if< ofc r-0nce:
converges with probability to Cgcir-once @SN — 0. then the probability of decoding error is arbitrarily small. Since

The BCJIR-once boundpcir-once (cOMputed in the manner the probability of error can be made arbitrarily smallmust
described above for = 10°) is depicted as the dashed curveatisfyr < Ty (00 1r- Now, letiW — oo, and we get
in Fig. 12 (the same figure also shows three other curves; « i, Tw (
1) the curve forC; ;4 as computed by the Arnold-Loeliger — W—oo

method, 2) the thresholds presented in Section V-B, and 3) thexgain, we choose the family of regular Gallager codes with a
BCJR-once thresholds for regular Gallager codes which aggnstant variable node degrée= 3 and a varying check node
presented next in Section V-D). degreeR. The channel ii(D) = 5 — D with AWGN.
The BCJR-once thresholds are g|ven in ﬂble I, and the corre-

D. BCJR-Once Thresholds for Gallager Codes sponding plot is given in Fig. 12. Fig. 12 shows the BCJR-once

Just as we performed density evolution for the fulbbound derived in Section V-C. It can be seen that the regular
sum—product algorithm over the joint channel/code grapBallager codes have the capability to achieve the BCJR-once
we do the same for thBCJR-onceversion of the decoding bound at high information rates if the BCJR-once version of
algorithm. The only difference here is in the shape of ththe message-passing decoding algorithm is applied. For com-
depth£ message flow neighborhood, while the general meth@érison, Fig. 12 also shows the curve for; 4. as computed
remains the same. Denote by g-.nc the noise toler- by the Arnold-Loeliger method [9]. (It can be numerically ver-
ance threshold for the BCJR-once sum-—product algorithifred for this channel thaf; ,,.a. = Cii.a..) The figure shows
for a Gallager-code/ISI-channel combination. The threshaldat the BCJR-once bound is very closeglg 4. at low SNRs,
0B TR-once C&N DE cOMputed by density evolution on a tree-likeut is about 1 dB away fror@; ; 4. at higher information rates.
message-flow neighborhood assuming that the trellis portidime difference between the full sum—product threshold curve

oncc) "

* _ *
UBCJR-oncc) - CBCJR'OHCE(UBCJR-onco>‘ O
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TABLE I
BCJR-ONCE THRESHOLDS FORREGULAR GALLAGER CODES(L = 3); CHANNEL h(D) = % - \%D
code check-node | code rate | threshold SNREc R —once 19B] distance
(L7 R) degree R r= % UECJRAOnce 20 lOglO (1/01§CJR—0nce) to o* [dB]
(3,9) 3 0.000 2.001 -6.024 0.177
(3,4) 4 0.250 1.110 -0.906 0.468
(3,5) 5 0.400 0.850 1.412 0.920
(3.,6) 6 0.500 0.729 2.746 1.043
(3,8) 8 0.625 0.614 4.237 1.101
(3,10) 10 0.700 0.556 5.099 1.099
(3,15) 15 0.800 0.486 6.268 1.027
(3,30) 30 0.900 0.414 7.661 0.987
(3,60) 60 0.950 0.369 8.660 0.787
(3,150) 150 0.980 0.328 9.683 0.687
; The BCJR-once bound and BCJR-once thresholds matrix over the dicode channéh(D) — % _ \%D) and
f ‘ ‘ - showed that they get very close to the limit of i.i.d. capacity in
09— 30) the high code rate region. For low code rates, regular Gallager
— Tiid 4 .. .
0.8f | - -- C;CJR—once L 49(3,15) A codes do not perform close to the i.i.d. capacity. A good low-rate
| | —— full sum-productthreshold | : /7" i code should, therefore, be sought in the space of irregular Gal-
0.7 -e - BCJR-once threshold % 2(310) : : :
: , _ : . “0(3.8) lager codes. We showed via Monte Carlo simulations that codes

with increasing code lengths approach closely the threshold
computed by density evolution.

We also explored the limits of performance of Gallager codes
if a slightly more practical sum—product algorithm is utilized.
Since the computational bottleneck in the sum—product algo-

; o rithm for ISI channels is the trellis portion of the algorithm, it
approx.1d8 loss by performing | is computationally advantageous to run the trellis portion of the
BCJR only ance at rates > 0.25 algorithm only once at the beginning of the first decoding iter-

-8 -6 -4 -2 0 2 4 6 8 ation, i.e., the “BCJR-once” version of the algorithm. This al-
SNR [dB] gorithm suffers from a performance loss compared to the full
Fio 12, The BCIR bourd 4 the BCIR threshold sum—product algorithm. We computed the maximal achievable
fo'?'regmar Gz"ager codlos with jcgigr‘;‘ga‘?gd toecapacit(jiii? and fl - rate of the BCJR-once sum-—product algorithm and showed that
sum-product thresholds (computed in Section V-B). for the dicode channdh(D) = % - %D), the asymptotic
performance loss at high rates is about 1 dB, while for low rates,
the loss is minimal. Approximately, the same difference (at most
fl.R'dB) was observed for the thresholds computed for the full
sum—product algorithm and the BCJR-once version.
We conclude the paper by pointing out some remaining chal-
nges in coding for binary I1SI channels. Whilg; 4. can now
J numerically evaluated [9], [10], the computation of the ca-
;5(yicity remains a challenge. A method for lower-boundihigy
extending the memory of the source is presented in [9], sug-
gesting that at high rate§,andC; ; 4. are close to each other (at
VI. CONCLUSION low rates,C andC; ; q. differ substantially). In channels of prac-
tical interest, i.e., channels with signal-dependent noise [11],

In this paper, we have developed a density evolution methgde to the signal-dependent nature of the néisand C; ; q.
for determining the asymptotic performance of Gallager cod@say not be close to each other even in the high-rate region.
over binary ISI channels in the limit — oo, wheren is the There is a need for a practical tool for computing the lower
block length. We proved two concentration theorems: 1) forgund onC by optimizing the trellis transition probabilities of
particular transmitted sequence and 2) for a random transmittgflextended-memory source [9]. Another challenging problem
sequence of i.u.d. symbols. The noise tolerance threshold w&so move the performance thresholds of practical codes be-
defined as the supremum of noise standard deviations for whighhdC; ; 4 . A viable strategy may be to somehow combine the
the probability of decoding error tends to zero as the numberiséneficial spectral-shaping characteristics of matched spectral
rounds of the decoding algorithm tends to infinity. We also egull codes [43] with Gallager’s low-density parity-check con-
tablished that the code rat@ersus the noise tolerance thresholdtraints, but it is not clear how to achieve this and still have a
traces a curve that is upper-bounded by the i.i.d. capacity of kéatively simple encoder/decoder. Even for linear binary codes
nary ISI channels. We have computed the thresholds for regufias., non-spectral-shaping codes) the optimization of irregular
Gallager codes with three ones per column of the parity-cheGllager codes to achie¥® ; 4_is also a challenging problem.

0.5f
0.4f
0.3f

Capacity [bits/channel-use]

0.2f
0.1¢

and the BCJR-once threshold curve also seems to be closely
proximated by the difference betwe€h; 4. andCgcir-once-
We thus conclude that, say at rate- 0.9, we can expect to see
a loss of 1 dB if we execute the BCJR algorithm only once ?et
the very beginning of the sum—product decoding algorithm (%
opposed to executing the trellis sum—product algorithm in ev
iteration of the decoder).
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APPENDIX

We briefly describe the windowed BCJR algorithm mainl
for completeness of the text. Our description uses a compact
matrix notation. For a conventional description, we refer the
reader to [8]. The notation in this appendix refers to Fig. 4.
We start with the messageg) available from the code portion

1651

the states that are reached if the channel inpat iBhen, the
);nessage to the code portion of the graph is computed as

> b
0 _ 4. T
O, —lnzbgl).

-1

of the graph and;; available from the channel output, whererpg \indowed BCJR algorithm described in this appendix is

1 <t < n, andn is the codeword length. First, set

©
po _ P [et ] text.
b (0)
1+ exp [et }
P, =1-Pf. (51)

Then, for everyt, form a diagonal matrisD!" of size2! x 27,
wherel is the I1SI length of the channel. Enumerate the states
the finite-state machine with numbelrgshrough2?. Set theith
diagonal element ng) as

if 4th state is reached when the
channel input at timeis —1

4
P

0, . .
Dg )(17 Z) = ([)
Pl,t?
channel input at timeéis 1.

not the most economical method (in terms of memory). Our
aim was to give a compact description for completeness of the

In practice, to achieve a numerically stable method, the

multiplications in (52) and (53) need to be normalized such that
the vector obtained by successive multiplication from the left all
have the property that the sum of their elements equal[&).

For other implementations of the windowed BCJR algorithm,
%?e [46]-[48].
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Next, for everyt, form a matrixT’; of size2! x 2!, with the
entry in the intersection of thigh row andjth column given by

0, if no trellis branch 1]

i) = connects stateisand j
Tt(é'/‘])_ (yi_gh J])Z - [2]
exp [—T} , otherwise al

where([i, j] is the noiseless channel output when the finite-
state machine corresponding to the ISI channel transitions fronj,,
state: to statej. Now, for eachi form the two vectors of size

2l x 1 5]
0 _ 2—I 2—I 2—[ T
Ly, ¢ = (27, e ] (6]
_ _ _7rT
B, =22
For everyt, compute 7]
Qg)[)t = (Dgg—)thT—l) (Dgl—)2TtT—2) 6]
(D2 Ty ) ), (52)
l l T T l T T [
ﬁé)t = (Dg-qletH) (Dg-ngH-z)
T
(D Thw) B, (53 [
For eacht, compute the vectd_ry) as [11]
Qy) = /[_35)[)15 © (TtT ’ Q((]li)t) (54) [12]

where® denotes the Hadamard (i.e., element-wise) product of
two vectors. Denote by~ Q,SE) the sum of the elements of [13]
b §Z> that correspond to the states that are reached if the channel
input is —1, i.e., the elemendi,gi)(i) is included in the sum if [14]
statei is reached when the channel inputis. Similarly, denote

by >, Qﬁl) the sum of the elements Qél) that correspond to
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