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Power Laws for Monkeys Typing Randomly:
The Case of Unequal Probabilities

Brian Conrad and Michael Mitzenmacher, Member, IEEE

Abstract—An early result in the history of power laws, due to
Miller, concerned the following experiment. A monkey types ran-
domly on a keyboard with letters ( 1) and a space bar,
where a space separates words. A space is hit with probability ;
all other letters are hit with equal probability (1 ) . Miller
proved that in this experiment, the rank-frequency distribution of
words follows a power law.

The case where letters are hit with unequal probability has been
the subject of recent confusion, with some suggesting that in this
case the rank-frequency distribution follows a lognormal distri-
bution. We prove that the rank-frequency distribution follows a
power law for assignments of probabilities that have rational log-
ratios for any pair of keys, and we present an argument of Mont-
gomery that settles the remaining cases, also yielding a power law.
The key to both arguments is the use of complex analysis.

The method of proof produces simple explicit formulas for the
coefficient in the power law in cases with rational log-ratios for the
assigned probabilities of keys. Our formula in these cases suggests
an exact asymptotic formula in the cases with an irrational log-
ratio, and this formula is exactly what was proved by Montgomery.

Index Terms—Analytic information theory, analytic number
theory, monkeys typing randomly, power laws, rank-frequency
distribution.

I. INTRODUCTION

ONE of the earliest developments in the theory of power
laws was the demonstration that the rank-frequency distri-

bution of natural languages, which empirically follows a power
law, could be explained by an entropy-optimization formula-
tion developed by Mandelbrot [1]. (We provide this argument
for completeness below.) This optimization framework under-
lies more recent work by other authors who show how it can be
used to explain other power law behaviors, such as the degree
distribution of the Internet graph [2], [3].

Soon after Mandelbrot’s argument appeared, however, an-
other argument by the psychologist Miller demonstrated that
the power law behavior of rank-frequency distribution could
be explained without the underlying optimization argument [4].
Miller describes the following experiment. A monkey types ran-
domly on a keyboard with letters and a space bar. A space
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is hit with probability with ; all other letters
are hit with equal probability . A space is used to
separate words. Miller demonstrates that in this experiment,
the rank-frequency distribution follow a power law. (Again, we
present more detail below.) Miller’s result serves as a warning:
just because one finds a compelling mechanism to explain a
power law does not mean that there are not other, perhaps sim-
pler, explanations.

Miller only gave the proof for the case where all letters other
than the space are equally likely to be hit. Interestingly, the case
where letters are struck with unequal probability has recently
become a point of confusion. Perline recently argued that if the
letter frequencies are not equal, a lognormal distribution occurs
[5]. (This claim is repeated in [6].) Troll and bein Graben cor-
rectly argue that Perline’s result simply shows that the distribu-
tions of the words of length up to , for each fixed , are ap-
proximately lognormal [7]. They argue that, in general, the true
distribution (without truncating words up to some fixed length)
is a power law, although they only give an argument for the case
of two letters.

In this paper, we begin by reviewing the fascinating history
of this fundamental problem. Then, we use methods from com-
plex analysis to prove that Miller’s random monkey experiment
yields power laws for rank-frequency distribution with proba-
bility assignments to keys satisfying a rationality assumption
on log-ratios of pairs of probabilities. We use analytic methods
to establish a simple explicit power law in cases with rational
log-ratios for pairs of probabilities; more specifically, we use
generalized Dirichlet series and an elementary identity estab-
lished by means of Fourier series. Passing to a limit on these
formulas predicts an analogous result in the remaining “irra-
tional” cases, and this prediction agrees with an unpublished
theorem proved contemporaneously by Montgomery; in Sec-
tion VI, we provide Montgomery’s argument, that uses methods
that are standard in analytic number theory.

The use of analytic techniques to study problems of this type
is not in itself novel (see [8]–[10], for example), and it is also a
well-known phenomenon that rationality issues can lead to cases
that behave in a manner somewhat different from generic cases.
The novelty of this paper is, therefore, not in the consideration
of analytic techniques but rather in the application of these tech-
niques to an interesting nontrivial problem that has not before
been studied in detail from the analytic point of view.

A. Notation and Terminology

Throughout this paper, the phrase log-ratio for a pair of pos-
itive real numbers refers to the ratio of their logarithms (to a
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common base, the choice of which cancels out), not the loga-
rithm of ratios (to some base, the choice of which does make a
difference). All logarithms without an indicated base are under-
stood to be taken to the base . We write to
denote the greatest-integer function, and , , , and to de-
note the ring of integers and the fields of rational numbers, real
numbers, and complex numbers, respectively.

Finally, to permit the use of the letter as an indexing variable,
we choose to write rather than the customary to denote
a fixed choice of solution to in . This choice de-
termines our sense of direction for path integrals in the complex
plane.

II. REVIEW OF DEFINITIONS AND HISTORY

Our treatment here is based on a recent survey by Mitzen-
macher [11], to which we refer the reader for more informa-
tion.1 In what follows, we let be the (asymptotic) fraction of
the time the th most frequently used word appears. In many of
our models, several words can have the same probability of oc-
currence, so there may be ties. In our context, we will say that

follows a power law in if there exist positive constants ,
, such that for sufficiently large .
We sketch Mandelbrot’s argument that leads to a power law

in the rank-frequency distribution of words [1]. Consider some
language consisting of words. The cost of transmitting the
th most frequent word of the language is denoted by . For

example, if we think of English text, the cost of a word might
be thought of as the number of letters plus the additional cost of
a space. We therefore naturally expect the most frequent words
to have the smallest number of letters. Let us take the cost of
a space to be . Then if the alphabet size is , there are

possible words of length (including ; we allow the
empty word for convenience). In particular, the words with
letters have frequency ranks from to

. It follows that .
Suppose that we wish to design the language to optimize the
average amount of information per unit transmission cost. Here,
we take the average amount of information to be the entropy.
We think of each word in our transmission as being selected
randomly, and the probability that a word in the transmission is
the th word of the language is . Then the average information
per word is the entropy

and the average cost per word is

If we were designing the language, how would we choose the
in order to minimize ? Taking derivatives, we find

1For instance, this survey describes another argument that leads to a power
law of word frequency based on preferential attachment, originally due to Simon
[12]. We do not present this argument here.

Hence, all the derivatives are (and is in fact minimized)
when . Since ,
we obtain a power law for the ; specifically

Mandelbrot argues that a variation of this model matches em-
pirical results for English quite well.

We now consider Miller’s experiment [4]. Again, in his setup,
a monkey types randomly on a keyboard with letters and
a space bar. We again assume , and a space is used to
separate words. A space is hit with probability (with

); all other letters are hit with equal probability . As
the monkey types, each word with (nonspace) letters occurs
with probability

and there are words of length . (Again, we allow the empty
word of length for convenience.) The words of longer length
are less likely and hence occur lower in the rank order of word
frequency. Thus, again the words with letters have frequency
ranks from to .
Hence, the word with rank-frequency occurs with probability

, where

Rewriting yields

and the power law behavior is apparent. (Note that this argument
(and the conclusion) fails if since the relevant finite
geometric series behave differently.)

The above analysis of Miller’s argument clearly makes use
of the simplification that all letters are struck with equal proba-
bility. As previously mentioned, the case of unequal letter prob-
abilities has met with some confusion; see, e.g., [5]–[7], [11].
The following example from [11] clarifies the power law be-
havior and lays the groundwork for our more general argument.

Consider an alphabet with two letters: “a” occurs with prob-
ability , “b” occurs with probability , and a space occurs
with probability . The value must be chosen so that

(i.e., , where ).
In this case, every valid word the monkey can type occurs with
probability for some integer . Let us say a word
has pseudorank if it occurs with probability .
There is one word with pseudorank (the empty word), one
with pseudorank (“a”), two with pseudorank (“aa” and “b”),
and so on. A simple induction yields that the number of words
with pseudorank is, in fact, the th Fibonacci number

(where and ). This follows easily from the
fact that to obtain the words with pseudorank we append an
“a” to a word with pseudorank , or a “b” to a word with
pseudorank .
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Recall that for large , where
. Also, . Now the argument

is entirely similar to the case where all items have the same
probability. When , the th most
frequent word has pseudorank . For sufficiently large, we
therefore have

The frequency , therefore, satisfies

(1)

for large . Again, we have power law behavior.
Note that the key here was that the number of words with

pseudorank at most grew roughly exponentially in , where
the base was the reciprocal of the unique positive solution to
the polynomial equation . This is the statement we
intend to generalize to more general sets of probabilities in what
follows.

III. A GENERAL PROBLEM

In general, we allow letters with arbitrary probabilities
(adding up to something less than , the rest being the proba-
bility of a space), and we assume . If there are distinct
probability values, it is convenient to label these in strictly in-
creasing order , and write . Note
that in this case we have and for . We let
be the number of letters that are struck with the probability .
The probability of a space is therefore , which we
require to be positive. Asking about the probability of the th
most frequent word (as a function of large ) can then be turned
into the question of how many words have probability of occur-
rence greater than or equal to (as a function of
large real ), as we shall see later.

More generally we have the following problem. Let
be distinct positive real numbers and let

be positive integers. Consider the multiset that
contains with multiplicity for all . Say has size

, with elements enumerated as . We
require . Note that the case (with
counting the number of letters) corresponds to the situation
considered by Miller (equal probabilities).

For each real , let be the number of distinct -tuples
of nonnegative integers such that .
Concretely, counts how many ways can be expressed as
a sum of elements of (keep in mind that is a multiset, and
our description of is consistent with the condition ). In
the motivating situation of the variant on Miller’s problem with
unequal probabilities, we can consider the problem of counting
the number of words (including the empty word) whose proba-
bility of occurrence is exactly . The quantity
is exactly the answer to this problem.

Algebraically, we have a formal expansion (for )

(2)

where and for all outside of a discrete set
of nonnegative real numbers. Of course, when the ’s are not
all integers then the right-hand side of (2) is not an ordinary
power series expansion around , so the series usually does not
make sense when . We wish to give asymptotic bounds,
in the spirit of (1), on (respectively, ) as

. In the application to word probabilities, these sums count
the number of words whose probability of occurrence (in the
sense of the discussion above) is greater than
(respectively, greater than or equal to ).

Consider the function on . It
would be more accurate to write , but whereas it will
be convenient to sometimes consider behavior when the ’s
are varying, we shall never change the ’s. The function
is a strictly increasing continuous function with and

, so there is a unique with
, and this is the unique solution to on

. The example at the end of Section II corresponds to
probabilities and , so and

. Thus, and in this case,
where .

In general, we wish to study the behavior of

and

as . We will show that for explicit constants
(depending on the ’s and ’s)

(3)

where if some is irrational (the generic case) and
otherwise with for the least common
multiple of the denominators of the ratios
when these ratios all lie in ; we will, in fact, establish an exact
asymptotic formula for that is more precise than (3)
when all ratios are rational (and so ), but this
precise statement is a bit involved. Granting the asymptotics in
(3), let us see how we obtain a power law for rank-frequencies
of words by using Miller’s argument.

Pick constants such that

(4)

for sufficiently large . The larger we take , the nearer we can
make and to and , respectively. For large , we wish
to estimate the probability of occurrence

assigned to the word with rank-frequency (this identity defines
the ’s, so ); note that is typically
irrational in practice. As , we have , so

. Thus, we may suppose is big enough so that (4) holds for
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. Recalling that counts the number of words whose
probability of occurrence is exactly , we get

so , and finally

Hence, for large , we have

(5)

so the power law behavior of with respect to is obtained:
we can rewrite (5) as

(6)

for large , with constant

By taking larger, we can make and as
close as we please to and , respectively. Thus,
as an important consequence, if at least one ratio is
irrational then since we get where

. Even though (as we noted above) we will
give an exact asymptotic formula for in the cases
with rational ratios, this formula involves the intervention of
greatest-integers, and the lack of control over the distribution
of the fractional parts of the ’s as provides the
obstruction to the existence of a power-like exact asymptotic
formula for in the rational-ratio cases. In our mathematical
analysis, it will be much simpler to focus on a study of the sums

and as functions of rather than the word
probabilities as a function of the rank-frequency parameter
, and it is for this reason that we have explained above how

to extract the power law (6) from asymptotics on and
.

A useful observation is that the and of

and

(as functions of ) are invariant under positive scaling of
the ’s. Indeed, if for all and some (with

for all ) then , so . We
likewise have that , so

The scaling invariance follows, and the sums over go the
same way. Thus, for an analysis of such ’s and ’s
we may scale the ’s by any common positive scaling factor.
While this may suggest we should exclusively consider se-
quences with , it is useful to avoid such a restriction.
For example, we will need to use asymptotic comparisons with

, and for this purpose the necessary identities are

(7)

the failure of to equal implies that
comparisons against obey a transformation law with
respect to that is more complicated than comparisons
against .

Here is our main result; see Section VI for a discussion of the
cases that violate the hypothesis of rational ratios.

Theorem III-A: Let be real numbers such
that . Let on with

such that for all and (this condition is
satisfied if ), and let be the least common multiple of
the denominators of the ratios . Let
be the unique positive zero of , and let (so
if the ’s are integers and ). Define

(8)

We have

(9)

That is,

as

It is not evident a priori that the limit in (9) exists, and the
corresponding limit using generally does not exist ( ’s
with present obstructions in even the simplest case of
geometric series; see the end of Example III-D). Since

for all , and as varies over for
the difference sweeps across the interval ,
Theorem III-A and the continuity of the function
immediately yield the following.

Corollary III-B: With notation and hypotheses as in The-
orem III-A

(10)

The positive gap between and
in Corollary III-B is artificial, being entirely due to the use of
division by the continuous function rather than by the
step function . In Section VI, we will see how our
limit formula (9) in the rational-ratios case predicts the correct
asymptotic behavior in the remaining cases; see Theorem VI-A.

Example III-C: When (Miller’s case), we have
and . Thus, , so .

Hence, . Writing (2) as

it is trivial to directly establish (9) in this case.

Example III-D: When , , ,
and , we have the Fibonacci-based example at the end
of Section II. Since , clearly, where
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satisfies . Calculation yields
and

Using (5), and recalling that , we find that for suffi-
ciently large

where .
This can be made to look more like (1) by rewriting it as

Compared to (1), this gives slightly weaker bounds in the
bounding constant factors, although the power law exponent
is the same. To see why it is not surprising that we obtain
weaker coefficient bounds, note that the direct analysis of
rank-frequencies in this example corresponds to considering
bounds as runs through the discrete set of values such
that the summation function jumps (i.e., the ’s
are the discretely spread values such that ). Thus,
whereas (4) with and very close to and , respectively,
concerns optimizing bounding constants across a continuum of
values of , in (1) we are only optimizing over a discrete
set of values . This smaller sampling locus allows for the
possibility of tighter bounding constants.

For example, in the situation analogous to that considered by
Miller, one sees this phenomenon: for , consider

where the sum is taken over integral . Clearly,
as runs through the discrete locus (of

integer values) where jumps. Hence, while varies
between and as grows through
all positive real values, as grows
through all positive real values. Note in particular that a gap
that appears over a continuum may disappear when sampling
over a discrete locus or when comparing with a well-chosen
step function (such as replacing ).

In Example III-D, we saw that by sampling only in a dis-
crete locus, we can get estimates that may be much tighter than
what holds over a continuum of -values. At the opposite ex-
treme, omitting a discrete set of sampling values has no impact
on asymptotic power law bounding constants, as we record in
the following easy lemma (that will provide a useful simplifica-
tion in the subsequent analysis).

Lemma III-E: Let be a discrete unbounded
sequence. To prove Theorem III-A, it suffices to prove

(11)

as grows without bound through values distinct from the ’s,
where is as in (8). Moreover, it is enough to consider the case
when the ’s are integers and .

Proof: Since is monotonically increasing and

and the function enjoys the same mono-
tonicity and one-sided continuity properties, the first assertion
follows. The sufficiency of considering the case of a primitive

-tuple of integers comes down to the easy verification that
the limit formula (11) is compatible with the transformation for-
mulas (7), the identity , and the identity

(12)

when for all (to prove (12), differentiate the identity
).

Thanks to this lemma, we shall now suppose (for the pur-
pose of proving Theorem III-A) that the ’s are integers without
a nontrivial common factor. The advantage of this case is that

is a polynomial and is equal to . The proof
of Theorem III-A will require some techniques from complex
analysis, and before giving the proof it will be convenient to
make some preliminary remarks. This will also give us an op-
portunity to introduce some notation to be used in the proof.
Making the change of variable (that converts the
positive real line into the whole real line) on (2), consider the
meromorphic function

(13)

for . The denominator is near (hence nonvanishing) for
since as .

Thus, standard convergence arguments with truncated sums en-
sure that the right-hand side of (13) is absolutely convergent and
equal to the middle term for . The poles of are con-
centrated in the vanishing locus of the denominator .
We are going to use the behavior of as to get
our desired asymptotics (the reader may wish to compare our ar-
gument with the “closing-the-box” discussion in [10, p. 252ff]).

Note that the poles of (i.e., the zeros of the denomi-
nator ) are concentrated in a vertical strip
of bounded width. Indeed, as , we see that

has exponential growth, but the term
for dominates the rest since , so

(and, hence, has exponential decay)
as . We also saw above that the denominator
term is near as . This leaves a closed vertical
strip of bounded width that contains all poles of . We will
make this explicit in (14).

Due to the rationality hypothesis in Theorem III-A, from
which we brought ourselves to the case of integral ’s,

is a polynomial. Thus, the equation is a
polynomial equation in and so its solutions are exactly

for , where runs over
the finitely many roots of . In particular, the
set of solutions to is discretely spread out in
(in the sense that there is a positive lower bound on distances
between solutions), and is a vertically periodic function

since for all . When at least
one ratio among the ’s is irrational, the periodicity is lost and
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the geometry of the location of these denominator zeros (that is
going to control our analysis) becomes more difficult to handle
directly. The irrational case will be discussed in Section VI.

IV. PREPARATIONS FOR THE PROOF OF THEOREM III-A

Since the ’s (and ’s) will not be changing, we write to
denote . Let denote the set of roots of
the polynomial , with the unique positive real
root. Later on, when we need to extract a dominant term, it will
be important to use the following lemma.

Lemma IV-A: The root is a simple root of and
for all .

This lemma ensures that when there exist roots to
with (i.e., , or and ),

such ’s lie strictly outside of the circle . Though
the simplicity of the root at is true without requiring

, the property for
makes essential use of the condition and
is false without it.

Proof: Since has derivative that is pos-
itive on , this derivative is nowhere vanishing on .
A double root of a polynomial must be a root of the derivative,
so has to be a simple root.

For any , the triangle inequality gives

so if then . Hence, if
then . It remains to show that with
forces . If then forces the inequality

to be an equality. For a set of nonzero complex numbers ,
the triangle inequality is an equality if and
only if there is no “angle cancellation,” so the ’s all lie
on the same ray emanating from the origin. The sum of these

’s must also lie on this ray, but this sum is , so the
ray must be . Hence, if and then
is a positive real number for all , so is a positive real number
for all . But implies that for
some integers , so

is a positive real number. Since the equation has
as its unique solution on , we get , as desired.

If satisfies , then Lemma IV-A yields
with equality if and only if .

Defining , we have with equality if
and only if . If is a root of with the
greatest distance from the origin (so if ), then

also holds. Thus, the vertical
strip

(14)

enjoys the property that the denominator function in
(13) is nonvanishing outside of and its zeros within consist

of finitely many vertically periodic sequences
, where ranges over the finitely many roots of the

polynomial (recall , so for all ). To
remove ambiguity about the choice of ’s satisfying

, we require . This normalization is not
significant.

In the next section, it will be convenient to make an exponen-
tial change of variable, as follows. Let be
the discrete set of integers such that . Define ,
so . Let . For , (13) yields the abso-
lutely convergent series expansion

(15)

where is a strictly increasing unbounded sequence in
; this type of sum is called a generalized Dirichlet series

(the usual Dirichlet series are those where ). Note that
if and only if . Since is analytic on the open

half-plane to the right of and the coefficients
are nonnegative real numbers, basic complex analysis

ensures that the generalized Dirichlet series expansion for in
(15) is absolutely convergent for . Using Lemma
III-E and the identity , we can reformulate
Theorem III-A as the assertion

as with avoiding the ’s (or avoiding a discrete
locus in containing the ’s, such as ); here,

denotes the fractional part of , so .
In our later calculation of residues, we shall need two elemen-

tary formulas that we record here for convenience of reference.
For a meromorphic function on with a pole of order
at , the residue of at is given by

(16)

In particular, if has a simple pole at then

Thus, if has a simple pole at (or is analytic there) and is
analytic near then this simple limit expression shows

(17)

For poles of order greater than , there is no simple formula
for in terms of and alone; one needs
to use more information about the series expansions of and

around . Fortunately for us, Lemma IV-A will ensure that
the dominant term in the analysis involves simple poles and the
unpleasant (16) will suffice for an estimate on the rest as an error
term.

Here is the main example of interest to us: for a fixed ,
consider the function

This is meromorphic in , and its only possible poles are where
and where . Since , we

see that has a simple pole at (with residue
independent of ). Since is analytic in and
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nowhere vanishing, it follows that has poles at the points in
( is not in this latter locus, since ).

V. PROOF OF THEOREM III-A

For and , (15) yields

(18)

Now comes the essential step where complex analysis provides
nontrivial information: as in [10, Par. 7.5.3] (that treats ordinary
Dirichlet series), we will compute partial sums of the general-
ized Dirichlet series (18) in the form of line integrals. More pre-
cisely, for we wish to study the line integral

(19)

an integral over a vertical segment of length centered at
with endpoints going off to . We will

briefly address the convergence of after some preliminary
remarks.

Such a line integral is just an ordinary calculus integral in
disguise: we consider the integrand as a -valued function on a
parameterized segment of points where
(so ), and the real and imaginary parts are integrated
separately. Because the integrand is analytic in the
half-plane and the vertically periodic is
bounded in for any , the integrand

dies off like as we move horizontally up and
down in . Thus, the absence of poles for

in and elementary estimates on inte-
grals of over short horizontal segments imply that the
convergence and value of is independent of the choice of

.
The key facts about are the following (that we shall

justify shortly):

• is convergent, and equals as long as is
not equal to any of the ’s;

• if we move the vertical line of integration to
the left of the vertical strip in (14), past all of the poles
of the integrand , we can compute in terms
of residues of at all of its poles.

These facts allow us to compute the sum of interest, ,
as a sum of residues of , provided avoids the ’s.
Estimating such sums as will be a tractable problem. In
a sense that will become clear later, the simple root of
contributes the dominant term to the asymptotic and the other
roots in (all lying outside of the circle , by Lem-
ma IV-A) contribute terms of smaller order as gets large.

In order to relate to the partial sums when
avoids the ’s, we make the following formal calculation

(that can be justified rigorously): insert the generalized Dirichlet

series expansion into (19) for
and move the infinite sum through the integral to get

A direct calculation shows that for any and any

Since is not equal to any of the ’s (so for all ),
we deduce that is convergent and in fact we obtain the
well-known Perron–Mellin formula

Our aim is, therefore, to prove that tends to
as with avoiding the ’s.

Our study of the vertical line integral will proceed
in the usual manner by identifying it with a limit of integrals
around rectangles, with the latter integrals computed in terms
of residues of . Recall that for a meromorphic
function on , we can use residues to compute the path
integral around a rectangular path
that is disjoint from the discrete pole set of and is given the
counterclockwise orientation

where runs over the finitely many poles of on the interior
of the rectangle with boundary . We apply this to

, taking to be the rectangle whose right side is
the vertical segment with and
whose left side is the vertical segment
where . We also choose the height to ensure that the
top and bottom edges avoid poles of the integrand, and the pe-
riodic nature of the pole set of provides an so that the
nonzero vertical gaps between poles of the integrand
are always , regardless of how far up and down we go.
Thus, we may choose the height as if threading a needle
through so that the top and bottom edges are always at least

away from all poles of the integrand.
Because our integrand has no poles far to the left, we can

move the left side of the rectangle as far to the left as we
please (i.e., take ) without affecting the value of the path
integral under consideration. Since is vertically periodic

with exponential decay far off to the
left, the contribution of the left edge to the path integral tends to

as the left edge is moved off to while keeping the top and
bottom edges at a fixed height. Since dies
off exponentially to the left and dies off (like ) in bounded
vertical strips as we go far up and far down, the vertical period-
icity of implies that that there are no convergence problems
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along the top and bottom edges as we make them become infin-
itely long off to the left, so

(with the right side an absolutely convergent path integral).
When estimating the decay of the integral of along
the top and bottom edges of the infinitely long “rectangle”

, as long as we choose to maintain these edges at
a fixed positive distance away from all poles of the
integrand we see that the contribution of these top and bottom
edge integrals vanishes in the limit as .

The upshot is that if we apply the residue theorem to the inte-
gral of around a box , the integral is the sum of
residues of the integrand at poles interior to the box, but when
we first send the left side off to (introducing no new poles
inside of the region of integration) and then send the top and
bottom off to (acquiring more pole terms from the
residue theorem), all that survives is the integral along the right
edge . This remaining line integral is exactly ,
so we conclude from the residue theorem that

(20)

where means . In (20), runs over
the finitely many solutions to in the horizontal re-
gion . To be precise about (20), we pair
off with and fixed , and we handle
the terms separately. The residue term at is

, a constant that is independent of , so
it may (and will) be ignored for our study of behavior as
(recall that is always nonzero, since ).

We shall analyze (20) by treating the contribution of
separately for each , first considering

the case of , the unique rightmost solution (modulo
) to . The terms for in (20) enjoy

the crucial property that the pole at each is a
simple pole, essentially due to Lemma IV-A (and the fact that
pole order is unaffected by the change of variables ).

For clarity, consider any such that has a simple pole at
the points (so may not be real). By (17) and
the definition of (as periodic ) we get

(21)

(since ), and the final limit is the reciprocal of

(recall that ). When , this is .
Adding up (21) over , for any such that
the contribution of the -term in (20) is

(22)

The sum in (22) only depends on through the point
on the unit circle, so we may apply the following.

Lemma V-A: For fixed and all
with , the series

is convergent with , and

(23)

for . In particular, is continuous in (on the
circle) away from , and it is bounded away from and
in absolute value.

For real , away from is strictly decreasing and
positive as we move around the circle in the -direction (i.e.,
counterclockwise), so has and on

equal to and , respectively.
When , we have

for with .
Proof: For , combining the th and the th terms

makes the formula for (and convergence of) clear. Thus,
we now consider on the unit circle with , and we shall de-
rive the proposed explicit formula, from which everything else
is obvious. For , we compute

where .
Thus, it suffices to prove that for and

Since

is continuous on with bounded derivative (hence,
is of bounded variation), it is pointwise equal to its formal

Fourier expansion
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where the Fourier transform on is given by the usual for-
mula

Thus, it suffices to prove that
for . This is a simple integral computation.

By Lemma V-A with , when

(a condition that causes to avoid the discrete set that con-
tains the ’s) we see that for , the ratio between (22) and

is positive and has limiting value equal to
as (recall that , so ).

For the other ’s at which there is a simple pole, Lemma V-A
provides an explicit upper bound of on the -contri-
bution when , where

Since we can make as small as we please by
taking sufficiently large (because ,
by Lemma IV-A), this contribution is . Additional divi-
sion by does not affect this estimate since is bounded
away from and as varies. Provided we show that the con-
tribution in (20) from the other ’s (where there is a higher
order pole) is also as gets large, the contribution to

from the -term dominates the rest. This would verify
the criterion in Lemma III-E, taking not in .

In order to estimate the contributions from ’s such that
has a zero of order at , consider the factor-
ization

in . Replacing with , we get

We want to insert this into the general residue recipe (16) for
, but we will avoid trying to be explicit with

the residue computation at since all that we
require is an upper bound of the form as .

Explicitly computing the -fold derivative as in (16) is not
necessary. Instead, we shall focus on the structure of the for-
mula to get an upper bound. Using Leibnitz’ rule for differen-
tiating multiple products finitely many times and considering
the higher derivatives of (finite sums of terms of the type

, where and are nonnegative), it is clear
that the contribution to (20) from consists of two types
of sums: a finite set of sums that (up to bounded multipliers
and various multinomial coefficients that we suppress) are of
the shape in (22) with replaced by (all such sums being

since ), and finitely many more sums that
(again up to bounded multipliers) have the form

(24)

for some and a fixed . The sums in (24) are absolutely
convergent since the terms of the sum are as
with fixed ; the implicit constant in the -estimate does
not depend on since . Thus, we get an estimate

for (24) as . But
as since with and

for all . This completes the proof of Theorem III-A.

Remark V-B: For , the infinite series in (24) can
even be computed in closed form by repeated differentiation of
(23) with respect to , so, in fact, (20) can be presented in closed
form as a finite sum when .

VI. THE REMAINING CASES

Since we found explicit formulas for the limit in the case of
rational ratios in Theorem III-A, it is tempting to try to
“pass to the limit” via rational approximation of irrationals to
guess what to expect in the case when some ratio is ir-
rational. Such irrational ratios cannot occur when , so in
this section we assume .

To motivate things, observe that as an -tuple
with rational ratios converges to an -tuple with an irra-
tional ratio, the value of must explode to because
the common denominator must grow without bound while

stays bounded (and away from zero). Note that the unique
zero of on is a continuous (and even ana-
lytic) function of the ’s (by the Implicit Function Theorem)
and uniformly converges to as ,
Also, as we have uniformly

for in a fixed small region. Since is continuous
in the ’s, when we slightly move the ’s it follows that
remains within a fixed small region in .

One may be tempted to believe that the asymptotics should
behave roughly continuously in input data for fixed

. This is actually false, since Theorem III-A shows
it to fail when approximating a sequence with rational
ratios by other arbitrarily close (but distinct) such se-
quences with rational ratios. Approximating a rational number
by an infinite sequence of (distinct) rationals is pathological.
If we recall that the problem of interest is one of counting the
number of ways to express numbers below some bound as
sums of the ’s (with fixed weights ), it is not unreasonable
to imagine that the count might behave more “continuously” in
the ’s for fixed weights if we only use approximations of the

’s that lead to good rational approximations of the ’s,
say through continued fractions. This restriction causes rational
sequences with to be nonapproximable by infin-
itely many distinct rational sequences with , and
so it eliminates the pathology (as well as any meaningful limit
process in cases with rational ratios) and leads one to predict
the asymptotic in the following result that covers precisely the
“irrational” cases not handled by Theorem III-A.
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Theorem VI-A (H. Montgomery): Fix , positive reals
satisfying , and a strictly decreasing se-

quence with some irrational. Define
for , and let be the unique

nonnegative solution to the equation . Define

Consider the formal expansion ,
with for a discrete set of ’s. As

We remind the reader that in the motivating case of the
variant on Miller’s experiment with letter probabilities that
are not all equal, the ratio is the exponent that arises
when expressing the th probability as a power of the

th probability (when distinct probabilities are labeled
). Thus, in most interesting situations at least

one ratio is irrational.

Remark VI-B: The scaling arguments as in Theorem III-A
show that the assertion in the theorem (including the value of

) is unaffected by common scaling on the ’s. To be precise,
if then we have seen that and

, so clearly

Such scaling invariance does not play a role in the proof of the
theorem.

Remark VI-C: Although Montgomery’s proof of Theo-
rem VI-A will require more analytic input than the proof of
our complementary Theorem III-A, as we shall explain in the
following, it is interesting that (as we saw earlier) the concrete
formula (8) in the case of rational ratios does naturally lead to
a prediction of the asymptotic proved by Montgomery in all
other cases. Hence, even though the case of rational ratios is of
much less significance in practice, its more elementary char-
acter and predictive power provides an interesting conceptual
and intuitive way for a nonmathematician to understand the
difference in behavior between the case of rational ratios and
all other cases.

In the remainder of this section, we present Montgomery’s
proof of Theorem VI-A; the proof uses more advanced analytic
methods. We are grateful to Montgomery for permission to ex-
plain his argument. The irrationality of some ratio does
play an essential role in the analysis, so the following argument
does not also prove Theorem III-A (though a refinement of the
method likely provides an alternative, more mathematically so-
phisticated, approach to Theorem III-A). Let us begin by iso-
lating a property that is a variant on Lemma IV-A and explains
the mathematical significance of an irrational ratio.

In order to describe this variant, let be positive
reals satisfying , and let be an

arbitrary strictly decreasing sequence of positive real numbers.
Let

and let be the unique positive number such that
. As was explained in the proof of Lemma

IV-A without using a rationality condition on the ’s, all poles
of satisfy (and there is certainly a pole at ).
This is really a logarithmic reformulation of a conclusion in
the proof of Lemma IV-A, adapted to the case of arbitrary
(possibly nonintegral) positive ’s; recall that when is
not an integer, the expression (as in ) is
not well-defined for not a positive real number.
The importance of the irrationality of some ratio is as
follows.

Lemma VI-D: With notation as above, the pole of at
is the unique pole of on the line if and only if

some ratio is irrational.

Recalling the use of the periodic sequence of simple poles for
along in the computation of the dominant

term in the proof of Theorem III-A, one can appreciate a priori
that different asymptotic behavior may be expected when there
is uniqueness of as the rightmost pole of under the hy-
pothesis of Theorem VI-A. This uniqueness from Lemma VI-D
is crucial in Montgomery’s proof of Theorem VI-A.

Proof: Assuming to have a pole at with
, we wish to show that is forced precisely when some

ratio is irrational. The condition of a pole at
says

Since the terms on the right all lie on the same half-line (namely,
) in , the equality of these sums happens if and only if

the phase shifts all equal (argue via angle cancella-
tion, as in the proof of Lemma IV-A). That is, the pole condition
at says exactly that for all . Hence, we
need to check that the implication

holds if and only if some ratio is irrational. Clearly, if
the implication fails, so for some nonzero and
(necessarily nonzero) integers , we compute that

for all . Conversely, if all ratios are ra-
tional, then by taking for a positive integer
divisible by the denominators of all ratios , we get

for all .

Lemma VI-D puts us in the following situation. We have a
meromorphic function

that is analytic in the half-plane , and has a unique
pole on at the real point . Given this, the
aim is to deduce that as , with

, where is the unique positive
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real number such that is equal to at . By
the elementary argument proving Lemma III-E, this result also
yields the asymptotic .

The basic problem is to make asymptotic estimates on
partial sums of (generalized) Dirichlet series coefficients when
the (generalized) Dirichlet series of interest is meromorphic
around a closed right half-plane with a pole on the real line
that its unique rightmost pole in . This type of asymptotic
estimation problem is ubiquitous in analytic number theory,
where one studies functions such as the Riemann zeta function

(and its more sophisticated variants) that
have a meromorphic continuation beyond with a
unique (simple) rightmost pole that is, moreover, located at

. In our situation, if we consider the function

with (i.e., ), the pole is shifted to
and

Thus, one can restate Theorem VI-A as the asymptotic
. If we let be the values

such that and define , then for
we have

and

with . The aim is, therefore, to prove
as .

But is a generalized Dirichlet series that is absolutely and
uniformly convergent in right half-planes
and has a meromorphic continuation past with
a unique pole on the line at the point . We
compute that

is the reciprocal of the difference quotient for the derivative of
at , and this derivative at is equal

to

a nonzero quantity. Hence, has a simple pole at , so its
residue at is equal to

Now consider an arbitrary generalized Dirichlet series

with a strictly increasing discrete sequence in
and the ’s are nonnegative real numbers. Assume that

is convergent on and is meromorphic on
with a unique rightmost pole that is moreover located at .

Assume the pole at is simple; we have seen that is such
a function, taking and . For such , we
wish to establish the asymptotic estimate as

, where is the residue of at ; for this
would provide exactly what we need.

Consider the left-continuous monotonically increasing sum-
matory function

that jumps at the ’s with a gap of for the jump at
. The infinite series for can be ex-

pressed as an absolutely convergent Riemann–Stieltjes integral
. Since is assumed to meromorphically ex-

tend past the line with a simple pole at
having residue , the Wiener–Ikehara–Tauberian theorem gives

as (two references for this theorem are [13,
Sec. 6.1, Theorem 3] and [14, Ch. V, Sec. 17, Theorem 17]).
Now letting , this says , as desired.
This completes Montgomery’s proof of Theorem VI-A.

VII. CONCLUSION

Through arguments based on complex analysis, the question
of power laws for word frequencies in the case of unequal key-
stroke probabilities in Miller’s random monkey experiment has
been settled affirmatively in all cases, including some inter-
esting subtleties. In certain cases, including the case originally
analyzed by Miller, there is a multiplicative gap, corresponding
to ’s and ’s for which we have given explicit for-
mulas. (The discussion at the end of Example III-D shows that,
in principle, the gap might disappear when working in the dis-
cretized language of individual word probabilities (ordered
by the rank-frequency parameter ), but (1) provides an explicit
example when such a gap really occurs even at the level of word
probabilities.) In the generic cases, when the log-ratios of the
probabilities are not all rational, this gap disappears and one has
an explicit coefficient for the power law on word frequencies.
Complex analysis explains this behavior via the pole structure
of the generating function for the problem, when this generating
function is viewed as a function of a complex variable through
an exponential change of parameter .

It would, of course, be pleasant to have a proof of the power
law behavior in the case of unequal probabilities that avoids
some of this technical machinery. One possible approach is the
following. Suppose that a random variable has a lognormal
distribution with mean and variance . Now consider a
random variable chosen according to the distribution ,
where the value of is itself an exponentially distributed random
variable. It is known that the distribution of follows a power
law [11], [15], [16]. Miller’s experiment is quite similar. If we
let be the number of characters in a word, it follows a geo-
metric distribution and this approximates the exponential distri-
bution. If we let correspond to the probability that a word
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chosen uniformly at random from all words of length is gen-
erated by Miller’s experiment, then is approximately log-
normal for sufficiently large [5]. If these approximations are
sufficiently good, one might expect to obtain that the rank-fre-
quency of words in Miller’s experiment approximately follows
a power law. We are somewhat skeptical, however, that an ap-
proach through probability theory can yield the rich insights ob-
tained from utilizing the methods of analytic number theory,
particularly an understanding of the significance of the arith-
metic condition of rationality of log-ratios of the probabilities.
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