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Compressed Bloom Filters
Michael Mitzenmacher, Member, IEEE

Abstract—A Bloom filter is a simple space-efficient randomized
data structure for representing a set in order to support member-
ship queries. Although Bloom filters allow false positives, for many
applications the space savings outweigh this drawback when the
probability of an error is sufficiently low. We introduce compressed
Bloom filters, which improve performance when the Bloom filter is
passed as a message, and its transmission size is a limiting factor.
For example, Bloom filters have been suggested as a means for
sharing Web cache information. In this setting, proxies do not share
the exact contents of their caches, but instead periodically broad-
cast Bloom filters representing their caches. By using compressed
Bloom filters, proxies can reduce the number of bits broadcast, the
false positive probability, and/or the amount of computation per
lookup. The cost is the processing time for compression and de-
compression, which can use simple arithmetic coding, and more
memory use at the proxies, which utilize the larger uncompressed
form of the Bloom filter.

Index Terms—Algorithms, computer networks, information
theory, distributed computing, distributed information systems.

I. INTRODUCTION

B LOOM filters are an excellent data structure for succinctly
representing a set in order to support membership queries

[3]. We describe them in detail in Section II-A; here, we simply
note that a Bloom filter is a bit array, it is randomized (in that it
uses randomly selected hash functions), and it has some prob-
ability of leading to afalse positive, that is, it may posit that
an element is in a set when it is not. For many applications, the
probability of a false positive can be made sufficiently small and
the space savings are significant enough that Bloom filters are
useful.

In fact, Bloom filters have a great deal of potential for
distributed protocols where systems need to share information
about what data they have available. For example, Fanet al.
describe how Bloom filters can be used for Web cache sharing
[7], [18]. To reduce message traffic, proxies do not transfer
URL lists corresponding to the exact contents of their caches,
but instead periodically broadcast Bloom filters that represent
the contents of their caches. If a proxy wishes to determine if
another proxy has a page in its cache, it checks the appropriate
Bloom filter. In the case of a false positive, a proxy may request
a page from another proxy, only to find that that proxy does not
actually have that page cached. In that case, some additional
delay has been incurred. The small chance of a false positive

Manuscript received August 1, 2001; revised December 5, 2001; approved by
IEEE/ACM TRANSACTIONS ONNETWORKING Editor J. Rexford. This work was
supported in part by the National Science Foundation under CAREER Grant
CCR-9983832, Grant CCR-0118701, Grant CCR-0121154, and an Alfred P.
Sloan Research Fellowship.

The author is with Harvard University, Cambridge, MA 02138 USA (e-mail:
michaelm@eecs.harvard.edu).

Digital Object Identifier 10.1109/TNET.2002.803864.

introduced by using a Bloom filter is greatly outweighed by the
significant reduction in network traffic achieved by using the
succinct Bloom filter instead of sending the full list of cache
contents. This technique is used in the open source Web proxy
cache Squid, where the Bloom filters are referred to as cache
digests [16], [14]. Bloom filters have also been suggested for
other distributed protocols, e.g., [6], [10], [15].

Our paper is based on the following insight. In this situation,
the Bloom filter plays a dual role. It is both a data structure being
used at the proxies, and a message being passed between them.
When we use the Bloom filter as a data structure, we may tune
its parameters for optimal performance as a data structure. For
example, given a memory size (or more specifically, the number
of bits allowed in the bit array that represents the Bloom filter)
and the number of elements in the set to be represented, we can
minimize the probability of a false positive. Indeed, this is the
approach taken in the analysis of [7], [18]. If this data structure
is also being passed around as a message, however, then we in-
troduce another performance measure we may wish to optimize
for: transmission size. The transmission size is the size of the
data being sent; if no compression is used, it is simply the size
of the bit array, but it could potentially be smaller once compres-
sion is introduced. Transmission size may be of greater impor-
tance when the amount of network traffic is a concern but there
is memory available at the endpoint machines. This is especially
true in distributed systems where information must be trans-
mitted repeatedly from one endpoint machine to many others.
For example, in the Web cache sharing system described above,
the required memory at each proxy is linear in the number of
proxies, while the total message traffic rate is quadratic in the
number of proxies, assuming point-to-point communication is
used. Moreover, the amount of memory required at the endpoint
machines is fixed for the life of the system, where the traffic is
additive over the life of the system.

In this paper, we show how compressing a Bloom filter can
lead to improved performance. By using compressed Bloom
filters, protocols reduce the number of bits broadcast, the
false positive probability, and/or the amount of computation
per lookup. The tradeoff costs are the increased processing
requirement for compression and decompression and larger
memory requirements at the endpoint machines, which may
use a larger original uncompressed form of the Bloom filter in
order to achieve improved transmission size.

We start by defining the problem as an optimization problem,
which we solve using some simplifying assumptions. We
then consider practical issues, including effective compression
schemes and actual performance. We recommend arithmetic
coding [12], a simple compression scheme well suited to this
situation with fast implementations. We follow by showing
how to extend our work to other important cases, such as in
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the case where it is possible to update by sending changes (or
deltas) in the Bloom filter rather than new Bloom filters.

Our work underscores an important general principle for dis-
tributed algorithms: when using a data structure as a message,
one should consider the parameters of the data structure with
both of these roles in mind. If transmission size is important,
tuning the parameters so that compression can be used effec-
tively may yield dividends.

II. COMPRESSEDBLOOM FILTERS: THEORY

A. Bloom Filters

We begin by introducing Bloom filters, following the frame-
work and analysis of [7], [18].

A Bloom filter is used to represent a set
of elements from a universe . Note

that representing elements of the underlying universe uniquely
with fixed length identifiers requires bits per element,
so transmitting the set directly requires bits. A
Bloom filter consists of an array of bits, initially all set to
0; generally is a fixed constant determined by design for
the application. A Bloom filter uses independent random
hash functions with range . We
make the natural assumption that these hash functions map
each element in the universe to a random number uniform over
the range for mathematical convenience. For
each element , the bits are set to 1 for .
A location can be set to 1 multiple times, but only the first
change has an effect. To check if an elementis in , we
check whether all are set to 1. If not, then clearly is
not a member of . If all are set to 1, we assume that
is in , although we are wrong with some probability. Hence, a
Bloom filter may yield afalse positive, where it suggests that an
element is in even though it is not. For many applications,
this is acceptable as long as the probability of a false positive
is sufficiently small.

The probability of a false positive for an element not in the set,
or thefalse positive probability, can be calculated in a straight-
forward fashion, given our assumption that hash functions are
perfectly random. After all the elements ofare hashed into
the Bloom filter, the probability that a specific bit is still 0 is

We let . For a false positive to occur, when an ele-
ment not in the set is checked, each of thelocations checked
must not contain a 0. To simplify the analysis, let us assume
that entries in the Bloom filter are independently set to 0 with
probability and set to 1 with probability . (Technically,
this is not precisely true, both because the fraction of bits set to
1 is a random variable and the bits are not completely indepen-
dent: the fact that one bit was set to 1 affects the probability of
other bits being set to 1, since the set element and hash that set
a bit to 1 cannot set any other bit to 1. An argument showing
that the fraction of 0 entries is sharply concentrated around
is given in the Appendix. Also, asymptotically and in practice
the dependence is negligible; see, for example, [1]. In fact, inde-
pendence is not required for the argument below, but henceforth,

we make the simplifying assumption of independence for ease
of exposition.) The probability of a false positive is thus

We let . From now on, for
convenience, we use the asymptotic approximationsand to
represent, respectively, the probability that a bit in the Bloom
filter is 0 and the probability of a false positive.

Although it is clear from the above discussion, it is worth
noting that there arethreefundamental performance metrics for
Bloom filters that can be traded off: 1) computation time (cor-
responding to the number of hash functions); 2) size (corre-
sponding to the array size ); and 3) the probability of error
(corresponding to the false positive probability).

Suppose we are given and and we wish to optimize
the number of hash functionsto minimize the false positive
probability . There are two competing forces: using more hash
functions gives us more chances to find a 0 bit for an element
that is not a member of , but using fewer hash functions
increases the fraction of 0 bits in the array. The optimal number
of hash functions that minimizesas a function of is easily
found taking the derivative. More conveniently, note that
equals . Let .
Minimizing the false positive probability is equivalent to
minimizing with respect to . We find

It is easy to check that the derivative is 0 when
; further efforts reveal that this is a global

minimum. In this case the false positive probability is
. In practice, of course, must be an

integer, and smaller might be preferred since they reduce the
amount of computation necessary.

For comparison with later results, it is useful to frame the
optimization another way. Letting be a function of , we find

(1)

From the symmetry of this expression, it is easy to check that
minimizes the false positive probability. Hence, the

optimal results are achieved when each bit of the Bloom filter is
0 with probability (roughly) 1/2.

Note that Bloom filters are highly effective even if
for a small constant, such as . The obvious approach
when more bits are available is to simply hash each element into

bits and send a list of hash values. Bloom filters can
allow significantly fewer bits to be sent while still achieving a
very good false positive probability.

B. Compressed Bloom Filters

Our optimization above of the number of hash functionsis
based on the assumption that we wish to minimize the failure of
a false positive as a function of the array sizeand the number
of objects . This is the correct optimization if we consider
the Bloom filter as an object residing in memory. In the Web
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cache application, however, the Bloom filter is not just an object
that resides in memory, but an object that must be transferred
between proxies. This fact suggests that we may not want to
optimize the number of hash functions forand , but instead
optimize the number of hash functions for the size of the data
that needs to be sent, or thetransmission size. The transmission
size, however, need not be; we might be able to compress the
bit array. Therefore, we choose our parameters to minimize the
failure probability after using compression.

Let us consider the standard uncompressed Bloom filter,
which is optimized for , or, equivalently, for

. Can we gain anything by compressing the resulting bit
array? Under our assumption of good random hash functions,
the bit array appears to be a random string of0’s and 1’s,
with each entry being 0 or 1 independently with probability
1/2.1 Hence, compression does not gain anything for this choice
of .

Suppose, however, we instead chooseso that each of the
entries in the bit array is 1 with probability 1/3. Then we
can take advantage of this fact to compress thebit array and
reduce the transmission size. After transmission, the bit array
is decompressed for actual use. Note that the uncompressed
Bloom filter size is still bits. While this choice of is not
optimal for the uncompressed size, if our goal is to optimize
for the transmission size, using compression may yield a better
result. The question is whether this compression gains us any-
thing, or if we would have been better off simply using a smaller
number of bits in our array and optimizing for that size.

We assume here that all lookup computation on the Bloom
filter is done after decompression at the proxies. A compres-
sion scheme that also provided random access might allow us
to compute on the compressed Bloom filter; however, achieving
random access, efficiency, and good compression simultane-
ously is generally difficult. One possibility is to split the Bloom
filter into several pieces, and compress each piece. To look up
a bit would only require decompressing a certain piece of the
filter instead of the entire filter, reducing the amount of memory
required [11]. This approach will slightly reduce compression
but greatly increase computation if many lookups occur between
updates.

To contrast with the original Bloom filter discussion, we note
that for compressed Bloom filters there are nowfour funda-
mental performance metrics for Bloom filters that can be traded
off. Besides computation time (corresponding to the number of
hash functions ) and the probability of error (corresponding to
the false positive probability), there are two other metrics: the
uncompressed filter sizethat the Bloom filter has in the proxy
memory, which we continue to denote by the number of array
bits ; and thetransmission sizecorresponding to its size after
compression, which we denote by. Our starting point is the
consideration that in many situations the transmission size may
be more important than the uncompressed filter size.

We may establish the problem as an optimization problem as
follows. Let be the desired compressed size. Recall that each
bit in the bit array is 0 with probability ; we treat the bits as

1Again, technically the bits are not completely independent, but they are so
near independent that the difference is unimportant for this argument.

independent. Also, as a mathematically convenient approxima-
tion, we assume that we have an optimal compressor. That is,
we assume that our bit filter can be compressed down to only

bits, where
is the binary entropy function. Our compressor, therefore, uses
the optimal bits on average for each bit in the original
string. We consider the practical implications more carefully
subsequently. Here, we note just that near-optimal compressors
exist; arithmetic coding, for example, requires on average less
than bits per character for any , given suitably
large strings.

Our optimization problem is as follows: givenand , choose
and to minimize subject to . One possibility

is to choose and so that ; this
is the original optimized Bloom filter. Hence, we can guarantee
that .

We can, however, do better. Indeed, in theory this choice
of is theworst choice possible once we allow compression.
To see this, let us again write as a function of :

subject to (we may without
loss of generality choose as large as possible). Equivalently,
we have

Since and are fixed with , we may equivalently seek
to minimize . Simple calculations show

(2)

It is interesting to compare this equation with (1); the relevant
expression in shows a similar symmetry, here with additional
terms due to the compression.

The value of is maximized when the exponent is maxi-
mized, or equivalently when the term

is minimized. Note that

The value of is clearly 0 when , and using sym-
metry it is easy to check that is negative for and
positive for . Hence, the maximum probability of a false
positive using a compressed Bloom filter occurs when ,
or equivalently .

We emphasize the point again: the number of hash functions
that minimizes the false positive probability without compres-
sion in fact maximizes the false positive probability with com-
pression. Said in another way, in our idealized setting using
compression always decreases the false positive probability.

The argument above also shows thatis maximized and,
hence, and are minimized in one of the limiting situations as

goes to 0 or 1. In each case, using, for example, the expansion
, we find that goes to .

Hence, goes to 1/2 in both limiting cases, and we can in theory
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achieve a false positive probability arbitrarily close to
by letting the number of hash functions go to 0 or infinity.

It is an interesting and worthwhile exercise to try to under-
stand intuitively how the expression for the lim-
iting case arises. Suppose we start with a very large bit array,
and use just one hash function for our Bloom filter. One way of
compressing the Bloom filter would be to simply send the array
indices that contain a 1. Note that this is equivalent to hashing
each element into a bit string; that is, for one hash function
and suitably large values ofand , a compressed Bloom filter
is equivalent to the natural hashing solution. Thinking in terms
of hashing, it is clear that increasing the number of bits each el-
ement hashes into by 1 drops the false positive probability by
approximately 1/2, which gives some insight into the result for
Bloom filters.

In practice, we are significantly more constrained than the
limiting situations suggest, since, in general, lettinggo to 0
or 1 corresponds, respectively, to using an infinite number of
one or zero hash functions. Of course, we must use at least one
hash function! Note, however, that the theory shows we may
achieve improved performance by taking for
the compressed Bloom filter. This has the additional benefit that
a compressed Bloom filter uses fewer hash functions and, hence,
requires less computation per lookup. This contrasts with the
additional computation required for encoding before transmis-
sion and decoding upon receipt, which are one-time costs. Fur-
ther practical considerations are discussed in Section III.

The optimization framework developed above is not the
only one possible. For example, one could instead fix the
desired false positive probability and optimize for the final
compressed size. To compare in this situation, note that in the
limit as the number of hash functions goes to 0, the compressed
Bloom filter has a false positive probability tending to ,
while the standard Bloom filter has a false positive probability
tending to . Hence, the best possible compressed
Bloom filter achieving the same false positive probability as
the standard Bloom filter would have , a savings
in size of roughly 30%. Again, this is significantly better than
what can be realized in practice.

The primary point of this theoretical analysis is to demon-
strate that compression is a viable means of improving perfor-
mance, in terms of reducing the false positive probability for a
desired compressed size, or for reducing the transmission size
for a fixed false positive probability. Indeed, because the com-
pressed Bloom filter allows us another performance metric, it
provides more flexibility than the standard original Bloom filter.
An additional benefit is that the compressed Bloom filters use
a smaller number of hash functions, so that lookups are more
efficient. Based on this theory, we now consider implementa-
tion details and specific examples.

III. COMPRESSEDBLOOM FILTERS: PRACTICE

Our theoretical analysis avoided several issues that are im-
portant for a real implementation:

Restrictions on : While the size of the compressed
Bloom filter may be of primary importance, limitations on the

size of the uncompressed Bloom filter also constrain the pos-
sibilities. For example, while theoretically we can do well using
one hash function and compressing, achieving a false positive
probability of with one hash function requires , which
may be too large for real applications.

Also, it may be desirable to have be a power of two for
various computations. We do not restrict ourselves to powers of
two here.

Compression overhead: Compression schemes do not
achieve optimal performance; all compression schemes have
some associated overhead so that they do not exactly match the
space as given by the entropy formula. Hence, the gain from
the compressed Bloom filter must overcome the associated
overhead costs.

Compression variability: Of perhaps greater practical im-
portance is that if there is an absolute maximum packet size,
we generally want that the compressed array does not exceed
the size of some fixed number of packets. Compression per-
formance, however, varies depending on the input. We would
like to make our Bloom filter memory size as large as pos-
sible while maintaining a high probability that the compressed
size does not exceed a given threshold, so that we do not send
additional packets beyond the threshold with little information.
A related problem is that if the number of elementsin the
set cannot be determined in advance, a misprediction of
could yield insufficient compression.

Hashing performance: Depending on the data and the hash
functions chosen, real hash functions may behave differently
from the analysis above.

The issue of achieving good hashing performance on arbi-
trary data sets is outside the scope of this paper, and we do not
consider it further except to raise the following points. First,
in practice we suspect that using standard universal families of
hash functions [5], [13] or MD5 (used in [7], [18]) will be suit-
able. Second, in situations where hashing performance is not
sufficiently random, we expect that compressed Bloom filters
will still generally outperform the uncompressed Bloom filter.
The point is that if the false positive probability of a compressed
Bloom filter is increased because of weak hash functions, we
would expect the false positive probability of the uncompressed
Bloom filter to increase as well; moreover, since compressed
Bloom filters use fewer hash functions, we expect the effect will
be worse for the uncompressed filter. For compressed Bloom
filters, however, there is the additional problem that weak hash
functions may yield bit arrays that do not compress as much as
expected. The choice of parameters may, therefore, have to be
tuned for the particular data type. Finally, for the Bloom filter
to function properly, all of the senders and receivers must agree
on the hash functions used. There are several ways to achieve
agreement; the correct approach may depend on the application.
The hash functions can be fixed once and for all. With this ap-
proach, in rare instances a specific data set may yield poor per-
formance, in that it might not compress as well as expected or
the false positive rate might be higher than expected. Alterna-
tively, the sender can specify the hash functions from the family
to be used in some explicit form with the Bloom filter. This ap-
proach incurs some overhead, but it allows the sender to avoid
hash functions that perform poorly on specific data. The hash
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TABLE I
AT MOST EIGHT BITS PERELEMENT (COMPRESSED)

functions can also be changed periodically through a similar
mechanism.

For compression issues, arithmetic coding provides a
flexible compression mechanism for achieving near-optimal
compression performance with low variability. Moreover,
arithmetic coding is well understood and has extremely fast
implementations for both encoding and decoding. Loosely
speaking, for a random bit string where the bit values are
independent and each bit is 0 with probabilityand 1 with
probability , arithmetic coding compresses the string
to near bits with high probability, with the deviation
from the average having a Chernoff-like bound. For more
information on arithmetic coding, we refer the reader to [12],
[17]. For more precise statements and details regarding the
low variability of arithmetic coding, we refer the reader to the
Appendix. We note that other compression schemes may also
be suitable, including, for example, run-length coding.

Given this compression scheme, we suggest the following
approach. Choose a maximum desired uncompressed size.
Then design a compressed Bloom filter using the above theory
using a slightly smaller compressed size than desired; for
example, if the goal is that the compressed size be, design the
structure so that the compressed size is . This provides
room for some variability in compression. Note that the amount
of room necessary may depend on; the 0.99 factor is a rough
target that should be subjected to empirical testing, as is done in
our examples given below. (The exact amount of room depends
on how much overhead the specific compression implementa-
tion has, for example; the concentration bounds and bounds
for arithmetic coding given in the Appendix can also be used
to determine appropriate settings based on the paramaters.) A
similar effect may be achieved by slightly overestimating. If
our uncompressed filter is more than half full of zeros, then if
we have fewer than expected elements in the set, our filter will
tend to have even more zeros than expected and, hence, will
compress better. With this design, the compressed filter should
be within the desired size range with high probability.

To deal with cases that still do not compress adequately, we
suggest using multiple filter types. Each filter typeis associ-
ated with an array of size , a set of hash functions, and a de-
compression scheme. These types are agreed on ahead of time.
A few bits in the header can be used to represent the filter type.
If one of the filter types is the standard Bloom filter (no com-
pression), then the set can always be sent appropriately using
at least one of the types. In most cases, two types—compressed
and uncompressed—would be sufficient.

A. Examples

We test the theoretical framework above by examining a few
specific examples of the performance improvements possible

using compressed Bloom filters. We consider cases where 8 and
16 bits are used in the compressed Bloom filter for each ele-
ment; this corresponds to configurations examined in [7], [18].
Also, it is important to note that in these tables, the false posi-
tive probability is given for the Bloom filter in isolation. In an
application such as shared Web caching, additional false posi-
tives and negatives may arise because changes in the local cache
contents may occur between times when the Bloom filters are
updated. For a further discussion of this point, see [7], [18].

Suppose we wish to use at most 8 bits per set element in our
transmission with a Bloom filter; that is, .
Then using the optimal number of hash functions yields
a false positive probability of 0.0216. For , the false pos-
itive probability is only 0.0217, so this might be preferable in
practice. If we are willing to allow 14 array bits for the uncom-
pressed Bloom filter per set element, then we can reduce the
false positive probability by almost 20% to 0.0177 and reduce
the number of hash functions to two while keeping the (theoret-
ical) transmitted bits per element below eight, as shown in
Table I.

It is also interesting to compare the standard Bloom and the
compressed Bloom filter pictorially in this case where .
In Fig. 1, we show the false positive probability as a function of
the number of hash functionsbased on the theoretical analysis
of Sections II-A and II-B, where we allow to behave as a
continuous variable. Note that, as the theory predicts, the opti-
mized uncompressed filter actually yields the largest false posi-
tive probability once we introduce compression. Fig. 2 provides
a similar picture for the case where .

We tested the compressed Bloom filter via simulation. We
repeated the following experiment 100 000 times. A Bloom
filter for elements and bits was
created, with each element being hashed to two positions
chosen independently and uniformly at random in the bit array.
The resulting array was then compressed using a publicly
available arithmetic coding compressor based on the work
of Moffat, Neal, and Witten [4], [12].2 Using
suggests that the compressed size should be near 9904 bytes; to
meet the bound of 8 bits per element requires the compressed
size not exceed 10 000 bytes. Over the 100 000 trials, we found
the average compressed array size to be 9920 bytes, including
all overhead; the standard deviation was 11.375 bytes; and the
maximum compressed array size was only 9971 bytes, giving
us several bytes of room to spare. For largerand , we
would expect even greater concentration of the compressed size
around its mean; for smaller and , the variance would be a

2We note that this is an adaptive compressor, which bases its prediction of the
next bit based on the bits seen thus far. Technically, it is slightly suboptimal for
our purposes, since we generally know the probability distribution of the bits
ahead of time. In practice, the difference is quite small.
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Fig. 1. False positive probability as a function of the number of hash functions
for compressed and standard Bloom filters using 8 bits per element.

Fig. 2. False positive probability as a function of the number of hash functions
for compressed and standard Bloom filters using 16 bits per element.

larger fraction of the compressed size. We believe the example
provides good insight into what is achievable in real situations.

Theoretically, we can do even better by using just one hash
function, although this greatly increases the number of array bits
per element, as seen in Table I.

It is worth noting that if the memory for the Bloom filter array
after decompression is a concern, it is often possible to do better
by not keeping the Bloom filter in array form. Instead, the array
indices where there is a 1 can be kept as a list in sorted order.
Checking if an index is 1 can then be accomplished with interpo-
lation search in time on average [8]. While this is
more than the constant time for an array lookup, it may be suit-
able for some applications. In the case of one hash function as
described above, instead of using bits for the uncompressed

bit array, only bits could be used for the sorted list;
this is much smaller for reasonable values of.

Similarly, considering the specific case of a Bloom filter
where , we would use eleven hash functions
to achieve an optimal false positive probability of 0.000 459.
As eleven hash functions seems somewhat large, we note that
we could reduce the number of hash functions used without
applying compression, but using only six hash functions more
than doubles to 0.000 935. Table II summarizes the improve-
ments available using compressed Bloom filters. If we allow
28 array bits per element, our false positive probability falls
about 30% while using only four hash functions. If we allow 48
array bits per element, our false positive probability falls over
50% using only three hash functions. We simulated the case
with elements, bits, and hash
functions using 100 000 trials. The theoretical considerations
above suggest the compressed size will be 19 787 bytes. Over
our simulation trials, the average compressed array size was
19 805 bytes, including all overhead; the standard deviation
was 14.386 bytes and the maximum compressed array size was
only 19 865 bytes, well below the 20 000 bytes available.

We have also tested the case where against
using , or 7 array bits per element. The results ap-
pear in Table III. We expect this case may prove less useful in
practical situations because the false positive probability is so
high. In this case, using the standard Bloom filter with the op-
timal three hash functions yields a false positive probability of
0.147; using and one hash function gives a false posi-
tive probability of 0.133. Again, we performed 100 000 random
experiments with . The largest compressed filter re-
quired 4998 bytes, just shy of the 5000 byte limit.

As previously mentioned, we may also consider the optimiza-
tion problem in another light: We may try to maintain the same
false positive ratio while minimizing the transmission size. In
Tables IV and V, we offer examples based on this scenario. Our
results yield transmission size decreases in the range of roughly
5%–15% for systems of reasonable size. Here again, our sim-
ulations bear out our theoretical analysis. For example, using

elements, bits, and hash func-
tions over 100 000 trials, we find the average compressed filter
required 9493 bytes, closely matching the theoretical prediction.
The largest filter over the 100 000 trials required 9539 bytes.

IV. DELTA COMPRESSION

In the Web cache sharing setting, the proxies periodically
broadcast updates to their cache contents. As described in [7],
[18], these updates can either be new Bloom filters or repre-
sentations of the changes between the updated filter and the old
filter. The difference, ordelta, between the updated and old filter
can be represented by the exclusive-or of the corresponding bit
arrays of size , which can then be compressed using arith-
metic coding as above. For example, one may decide that up-
dates should be broadcast whenever 5% of the underlying array
bits have changed; in this case, the compressed size of the delta
would be roughly . Hence, one may wish to opti-
mize the array size for a target size of the compressed delta and
allow the one-time cost of longer initial messages to establish
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TABLE II
AT MOST SIXTEEN BITS PERELEMENT (COMPRESSED)

TABLE III
AT MOST FOUR BITS PERELEMENT (COMPRESSED)

TABLE IV
MAINTAINING A FALSE POSITIVE PROBABILITY AROUND 0.02

TABLE V
MAINTAINING A FALSE POSITIVE PROBABILITY AROUND 0.000 45

a base Bloom filter at the beginning. It makes sense to cast this
problem as an optimization problem in a manner similar to what
we have done previously. As we will show, using compressed
Bloom filters in conjunction with delta compression can yield
even greater performance gains.

We emphasize that using delta compression may not be suit-
able for all applications. For example, sending deltas may not
be suitable for systems with poor reliability; a missed delta may
mean a proxy filter remains improperly synchronized for a long
period of time (assuming full filters are sent occasionally to
resynchronize). In many cases, however, sending deltas will be
preferred.

Suppose that our setof elements changes over time through
insertions and deletions, but the size is fixed atelements. We
send a delta whenever a fractionof the elements of the
set have changed. We consider the case where our goal is to
minimize the false positive probability while maintaining a
specific size for the delta. We again have the power to choose
the array size and the number of hash functions, given
and the compressed delta size, which we denote here by. In
this setting, we let be the probability that a bit in the delta is a
1, given that a fraction of the elements have changed. Sim-
ilar to the case for compressed Bloom filters, our constraint is

. As before, we let be the probability
that a bit in the Bloom filter is 0.

We determine an expression for in terms of other
parameters. A bit will be 1 in the delta in one of two cases.
In the first case, the corresponding bit in the Bloom filter
was originally a 0 but became a 1 after the elements changed.
The probability that the bit was originally 0 is just; the
probability that the new elements fail to change that bit to
a 1 is , so (using the asymptotic

approximation) the overall probability of this first case is
.

In the second case, the corresponding bit in the Bloom filter
was originally a 1 but became a 0 after the elements changed.
This is equivalent to the previous case. The probability that the
bit is 0 at the end is just, and the probability that the deleted
elements failed to set that bit to 1 was , and the
overall probability of this case is also . Hence,

.
The false positive probability satisfies

Since and are given, minimizing is equivalent to mini-
mizing

Unfortunately, we have lost the appealing symmetry of the stan-
dard and compressed Bloom filter, making analysis of the above
expression unwieldy. The value of still appears to be mini-
mized as for any , but a simple formal proof
appears challenging.

It is worthwhile to again consider howbehaves in the lim-
iting case as . Algebraic manipulation yields that in this
case , so approaches . This result is
intuitive under the reasoning that the limiting case corresponds
to hashing each element into a large number of bits. The expo-
nent is instead of since the updates represent both
deletions and insertions of elements; half of the bits sent
describe the array elements to be deleted.

We present some examples for results in this setting in
Tables VI and VII. As before, these tables give the false
positive probability for the Bloom filter in isolation. Also,
the tables are based on the analysis above and do not take into
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TABLE VI
COMPARING THE STANDARD BLOOM FILTER AND COMPRESSEDBLOOM FILTERS WITH DELTA ENCODING; c = 0:05

TABLE VII
COMPARING THE STANDARD BLOOM FILTER AND COMPRESSEDBLOOM FILTERS WITH DELTA ENCODING; c = 0:01

account compression overhead and variability, which tend to
have a greater effect when the number of transmitted bits is
smaller.

In Table VI, we consider the case where 5% of the elements of
change between updates. A standard Bloom filter using 8 bits

per element and five hash functions uses only about 1.67 bits
per element when using delta compression. (Another reason-
able measure is the number of bits per changed element, instead
of the number of bits per element; we include this number in
Table VI.) Alternative configurations using more array bits per
element and fewer hash functions can achieve the same trans-
mission size while dramatically reducing the false positive prob-
ability . Using four times as much memory (32 bits per ele-
ment) for the decompressed filter lowersby a factor of six. The
scenario with and hash functions was tested
with simulations. Over 100 000 trials, the average compressed
filter required 2090 bytes, closely matching the theoretical pre-
diction of 2066.5 bytes. The maximum size required was 2129
bytes. Alternatively, one can aim for the same false positive ratio
while improving compression. As shown in the last column of
Table VI, one can achieve the same false positive ratio as the
standard Bloom filter while using only about 1.31 bits per ele-
ment, a reduction of over 20%.

With more frequent updates, so that only 1% of the elements
change between updates, the transmission requirements drop
below 1/2 of a bit per element for a standard Bloom filter. As
shown in Table VII, substantial reductions in the false positive
probability or the bits per element can again be achieved.

V. COUNTING BLOOM FILTERS

In [7], the authors also describe an extension to a Bloom filter,
where instead of using a bit array the Bloom filter array uses a
small number of bits per entry to keep counts. To represent a
set, the th entry is incremented for each hash functionand
each element in the set such that . The counting
Bloom filter is useful when elements can be deleted from the
filter; when an element is deleted, one can decrement the value
at location in the array for each of the hash functions,
i.e., for . We emphasize that these counting Bloom
filters are not passed as messages in [7], [18]; they are only used
locally.

We note that if one wanted to pass counting Bloom filters
as messages, compression would yield substantial gains. The

entropy per array entry would be much smaller than the number
of bits used per entry, since large counts would be extremely
unlikely. Our optimization approach for finding appropriate
parameters can be extended to this situation, and arithmetic
coding remains highly effective. We expect that similar varia-
tions of Bloom filters would benefit from compression as well.

VI. CONCLUSION

We have shown that using compression can improve Bloom
filter performance, in the sense that we can achieve a smaller
false positive probability as a function of the compressed size
over a Bloom filter that does not use compression. More gen-
erally, this is an example of a situation where we are using a
data structure as a message in a distributed protocol. In this
setting, where the transmission size may be important, using
compression affects how one should tune the parameters of the
data structure. It would be interesting to find other useful exam-
ples of data structures that can be tuned effectively in a different
manner when being compressed.

Our work suggests several interesting theoretical questions.
For example, our analysis depends highly on the assumption that
the hash functions used for the Bloom filter behave like com-
pletely random functions. It is an open question to determine
what sort of performance guarantees are possible using prac-
tical hash function families. Also, it is not clear that the Bloom
filter is necessarily the best data structure for this problem; per-
haps another data structure would allow even better results.

Finally, we have not yet implemented compressed Bloom fil-
ters in the context of a full working system for an application
such as distributed Web caching. We expect that significant per-
formance improvement will occur even after minor costs such
as compression and decompression time are factored in. The
interaction of the compressed Bloom filter with a full system
may lead to further interesting questions.

APPENDIX

MATHEMATICAL DETAILS

Here, we briefly discuss some of the mathematical issues that
we glossed over previously. Specifically, we wish to show that
the size of a compressed Bloom filter is very close to
with high probability. We sketch the argument, omitting the fine
detail and focusing on the main points.
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We calculated that the expected fraction of 0 bits in a Bloom
filter with bits, hash functions, and elements is

. We proceeded as though the bits in the Bloom filter
were independent with probability . The difference
between and is well known to be very small, as
converges quickly to . We will ignore this distinction. The
bits of the Bloom filter, however, are also not independent. In
fact, as we describe later, for arithmetic coding to perform well,
it suffices that the fraction of 0 bits is highly concentrated around
its mean. This concentration follows from a standard martingale
argument.

Theorem 1: Suppose a Bloom filter is built with hash func-
tions, elements, and bits, using the model of perfectly
random hash functions. Let be the number of 0 bits. Then

Proof: This is a standard application of Azuma’s in-
equality. (See, e.g., [2, Th. 2.1].) Pick an order for the elements
to be hashed. Let be a random variable representing the
number of 0 bits after hashes. Then,
is a martingale, with . The theorem then
follows.

For our arithmetic coding, we suppose that we use an adaptive
arithmetic coder that works as follows. There are two counters,

and ; is incremented every time the bit valueis seen.
Initially, the are set to 1, to avoid the division-by-zero prob-
lems discussed below. The encoder and decoder use the model
that the probability the next bit isis to be to de-
termine how to perform the arithmetic coding. (Thus, initially,
when no information is given, the encoder and decoder assume
the first bit is equally likely to be a 0 or a 1.)

Recall that for arithmetic coding the total lengthof the en-
coding can be taken to be the logarithm of the inverse of the
product of the model probabilities for each bit, plus 1. (See, for
example, [9].) In this case, if there arebits total and of the
bits are 0, regardless of the position of the0 bits, the total
length of the encoding satisfies

We consider the case where for some constant. Sim-
plifying, we have

In the above, we used the approximation

which follows by Stirling’s formula for a constant.
Since is with high probability close to , which is very

close to , the total number of bits used by the encoding is close
to with high probability.
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