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AbstractÐWe consider the following natural model: Customers arrive as a Poisson stream of rate �n, � < 1, at a collection of

n servers. Each customer chooses some constant d servers independently and uniformly at random from the n servers and waits

for service at the one with the fewest customers. Customers are served according to the first-in first-out (FIFO) protocol and the service

time for a customer is exponentially distributed with mean 1. We call this problem the supermarket model. We wish to know how the

system behaves and in particular we are interested in the effect that the parameter d has on expected time a customer spends in the

system in equilibrium. Our approach uses a limiting, deterministic model representing the behavior as n!1 to approximate

the behavior of finite systems. The analysis of the deterministic model is interesting in its own right. Along with a theoretical

justification of this approach, we provide simulations that demonstrate that the method accurately predicts system behavior, even

for relatively small systems. Our analysis provides surprising implications: Having d � 2 choices leads to exponential improvements

in the expected time a customer spends in the system over d � 1, whereas having d � 3 choices is only a constant factor better than

d � 2. We discuss the possible implications for system design.

Index TermsÐLoad balancing, queuing theory, distributed systems, limiting systems, choices.

æ

1 INTRODUCTION

CONSIDER the following natural dynamic model: Custo-
mers arrive as a Poisson stream of rate �n, � < 1, at a

collection of n servers. Each customer chooses d servers
independently and uniformly at random with replacement
from the n servers for some fixed constant d. The customer
waits for service at the server from these d choices currently
containing the fewest customers (ties being broken
arbitrarily). Customers are served according to the first-
in first-out (FIFO) protocol and the service time for a
customer is exponentially distributed with mean 1. We
call this model the supermarket model, or the supermarket
system (Fig. 1). We wish to know how the system behaves in
equilibrium and, in particular, we are interested in the
expected time a customer spends in the system in
equilibrium. The supermarket model proves difficult to
analyze because of dependencies: Knowing the length of
one queue affects the distribution of the length of all the
other queues.

The supermarket model can be seen as a generalization

of the static load balancing model studied by Azar et al. [1],

in which there are a fixed number of customers to be

distributed who never leave the system. They also analyze a

different closed dynamic model, where the number of

customers remains fixed over all time and a customer

who completes service is recirculated in the system. They

do not analyze the open dynamic model in their work. As

described in [1], models of this kind have a number of

applications to computing problems, including resource

allocation, hashing, and online load balancing. Our results

apply to dynamic variations of these applications. For

example, the supermarket model provides a good abstrac-

tion of a simple, efficient load balancing scheme in the

setting where tasks arrive and execute at a large system of

parallel processors.
In this paper, we analyze the supermarket model and

introduce techniques that prove useful for studying other

randomized load balancing strategies. Our strategy is to

define an idealized process, corresponding to a system of

infinite size, where the number of servers n goes to infinity.

This idealized process is given by a family of differential

equations, whose behavior is cleaner and easier to analyze

because its behavior is completely deterministic. This

idealized system can be related to systems with finite n

using the appropriate mathematical tools. In practice, we

find the method provides a means of finding accurate

numerical estimates of performance, as we demonstrate

with simulations. Besides providing an analysis of the

supermarket model, this approach also provides a clean,

systematic approach to analyzing several other load

balancing models.
The following theorem is representative of the results we

obtain:

Theorem 1. For any fixed T and d � 2, the expected time a

customer spends in an initially empty supermarket system

over the first T units of time is bounded above by

X1
i�1

�
diÿd
dÿ1 � o�1�;

where the o�1� term is understood as n!1 (and may depend

on T and �).
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The summation is derived from the limiting system of
differential equations and the o�1� term arises when we
bound the error between this system and the random
process for a fixed n. The combination of the two analyses
yields the theorem. This result should be compared to the
case of d � 1, where in equilibrium the expected time is
1=�1ÿ ��. As we describe in Section 2.4, for � close to 1,
there is an exponential improvement in the expected time a
customer spends in the system.

The exponential improvement from two choices suggests
an excellent rule of thumb in the design of distributed load
balancing systems: Systems where items have two (or a
small number of) choices can perform almost as well as a
perfect load balancing system with global load knowledge.
Indeed, because a system based on two choices can have
significantly lower overhead, it is possible it may perform
better than apparently better but more complicated load
balancing algorithms. Although our model only demon-
strates this rule of thumb in a very simple setting, this effect
has been noted in distributed systems with much greater
structure [4], [5], [30]. We believe that this rule of thumb
will prove useful in many systems to come.

We note that at approximately the same time as the
initial publication of this work [24], [25], similar results for
the supermarket model were derived independently by
Vvedenskaya et al. [33]. In particular, they study the same
model and use an approach similar to ours in that they also
derive the same family of differential equations that
describe the limiting behavior as the number of servers n
goes to infinity. As a consequence, some of the results of
this paper duplicate (or are in some respects weaker than)
similar results in [33].

There are, however, noticeable differences. We summar-
ize some of them here; the interested reader is encouraged
to read [33] for a clearer picture. We apply simpler
techniques, similar in spirit to potential function arguments,
that should be more accessible. Our approach allows us to
prove exponential convergence of the limiting differential
equations, a stronger result than the convergence result
of [33]. Our simpler techniques, however, yield results
that depend on how long the system runs; the results of
[33] invoke more powerful theory and can therefore state
results in terms of the equilibrium distribution of the system.
Although the consequences are similar in practice, in this
respect the results of [33] are clearly stronger than ours.

Further differences include that we study the expected
time a customer spends in the system in substantially more
detail and test the performance on systems of reasonable
size through simulation. We find that having d choices in
the supermarket model provides an exponential improve-
ment in the average time a customer spends in the system.
Our detailed argument yields a surprising connection to the
previous results of Azar et al. [1]. Our simulation experi-
ments also demonstrate that despite the theory holding
essentially only in the limit as the number of servers n
goes to infinity, in practice one sees dramatic improve-
ments even in small systems for reasonable arrival rates
such as � < 0:95.

1.1 Related Work

The power of having two choices has been noted before,
although primarily in the static setting. An analysis using
two hash functions for load balancing was provided by
Karp et al. [11] in an application to PRAM simulation. They
analyzed a static case, where a number of memory items are
to be permanently distributed among a fixed number of
servers, and demonstrated an exponential improvement in
the maximum load. The static problem was further
developed and analyzed by Azar et al. in [1]. Results for
other static settings are given by MacKenzie et al. [19],
Adler et al. [2], and Stemann [32]. Related dynamic models,
where one is concerned with the behavior of a system over
an arbitrary time interval, have proven more difficult. A
different (and arguably less realistic) dynamic model was
successfully analyzed by Azar et al. [1]. We note that our
method can also be applied to these dynamic models and to
the static model of [1], providing new insight and results.
(See [24], [25], [26]) for details.) Previously, these problems
have all been attacked by applying complicated arguments
based on Chernoff-type bounds. Our approach has several
advantages: It is extremely general, it is simple to apply,
and it provides more detailed and accurate numerical
information about these systems.

The supermarket model, and variations thereof, were
studied in previous queueing theory work by Eager et al. [8].
This work and later related papers [9], [22], [23] also use an
approach based on Markov chains for their analysis.
However, the authors base their work on the assumption
that the state of each queue is stochastically independent of
the state of any other queue [8, p. 665]. The authors also
claim (without justification) that this approach is exact in
the asymptotic limit as the number of queues grows to
infinity. Besides introducing several new directions in the
analysis of these systems, we explain how to justify these
assumptions. Zhou [37] examines the load balancing
strategies proposed by Eager et al. as well as others using
a trace-driven simulation. Both Eager et al. and Zhou
suggest that simple randomized load balancing schemes,
based on choosing from a small subset of processors, appear
quite effective in practice.

To bound the error between the finite and limiting
systems we will use Kurtz's work on density dependent jump
Markov processes [7], [14], [15], [16], [17]. Kurtz's work has
previously been applied to matching problems on random
graphs [10], [12], [13]. More recently, the technique of using
differential equations has been used in queueing theory [31]
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and several works related to random graph structures [3],
[18], [29], [36].

Although in this paper we focus solely on the super-
market model, the techniques developed here can be used
to examine a wide variety of related models. In particular,
one can develop models for other service distributions [26]
or for cases where the available load information may be
inexact [26], [27].

Finally, a great deal of additional work on the general
theme of the power of two choices has appeared since this
paper was written. As a starting point, we suggest the
recent survey [28].

The rest of the paper is structured as follows: In
Section 2, we analyze the behavior of the infinite version
of the supermarket model. In Section 3, we briefly explain
Kurtz's work and how to adapt it to relate the finite and
limiting versions of the supermarket model; more techni-
cal details are available in the Appendix. In Section 4, we
provide simulation results demonstrating the accuracy of
this methodology, even for a small number of servers. We
conclude with some thoughts on the implications of these
results.

2 THE ANALYSIS OF THE SUPERMARKET MODEL

2.1 Preliminaries

Recall the definition of the supermarket model: Custo-
mers arrive as a Poisson stream of rate �n, � < 1, at a
collection of n FIFO servers. Each customer chooses some
constant d servers independently and uniformly at random
with replacement1 and queues at the server currently
containing the fewest customers with ties being broken
arbitrarily. The service time for a customer is exponentially
distributed with mean 1. The following lemma, which we
state without proof, will be useful:

Lemma 1. The supermarket system is stable for every � < 1; that
is, the expected number of customers in the system remains
finite for all time.

Remark. Lemma 1 can be proven by a simple comparison
argument against the system in which each customer
queues at a random server (that is, where d � 1); in this
system, each server acts like an M/M/1 server with
arrival rate �, which is well known to be stable (see any
introductory queueing theory text). The comparison
argument is entirely similar to those in [34], [35], which
show that choosing the shortest queue is optimal subject
to certain assumptions on the service process; alterna-
tively, an argument based on majorization, such as that in
[1], is possible. A similar argument also shows that the size
of the longest queue in a supermarket system of size n is
stochastically dominated by the size of the longest queue
in a set of n independent M/M/1 servers.

We now introduce a representation of the system that
will be convenient throughout our analysis. We define ni�t�
to be the number of queues with i customers at time t, mi�t�
to be the number of queues with at least i customers at time

t, pi�t� � ni�t�=n to be the fraction of queues of size i, and
si�t� �

P1
k�i pi�t� � mi�t�=n to be the tails of the pi�t�. We

drop the reference to t in the notation where the meaning is
clear. As we shall see, the si prove much more convenient to
work with than the pi. In an empty system, which
corresponds to one with no customers, s0 � 1 and si � 0
for i � 1. By comparing this system with a system of
M/M/1 queues as in the remark after Lemma 1, we
have that if si�0� � 0 for some i, then for all t � 0,
limi!1 si�t� � 0. Under the same conditions, the expected
number of customers per queue, or

P1
i�1 si�t�, is finite even

as t!1.
We can represent the state of the system at any given

time by an infinite dimensional vector ~s � �s0; s1; s2; . . .�.
Note that our state only includes information regarding the
number of queues of each size; this is all the information we
require. It is clear that for each value of n, the supermarket
model can be considered as a Markov chain on the above
state space.

We now introduce a deterministic limiting system
related to the finite supermarket system. The time evolution
of the limiting system is specified by the following set of
differential equations:

dsi
dt � ��sdiÿ1 ÿ sdi � ÿ �si ÿ si�1� for i � 1 ;
s0 � 1:

�
�1�

Let us explain the reasoning behind (1). Consider a
supermarket system with n queues and determine the
expected change in the number of servers with at least
i customers over a small period of time of length dt. The
probability a customer arrives during this period is �n dt
and the probability an arriving customer joins a queue of
size iÿ 1 is sdiÿ1 ÿ sdi . (This is the probability that all d servers
chosen by the new customer are of size at least iÿ 1, but not
all are of size at least i.) Thus, the expected change in mi due
to arrivals is exactly �n�sdiÿ1 ÿ sdi �dt. Similarly, the prob-
ability a customer leaves a server of size i in this period is
ni dt � n�si ÿ si�1�dt. Hence, if the system behaved accord-
ing to these expectations, we would have

dmi

dt
� �n�sdiÿ1 ÿ sdi � ÿ n�si ÿ si�1�:

Removing the factor of n permeating the equations yields
(1). That this infinite set of differential equations has a
unique solution given appropriate initial conditions is not
immediately obvious; however, it follows from standard
results in analysis (the Picard approximation method; see
also [20, p.188, Theorem 4.1.5] or [6, Theorem 3.2]). It should
be intuitively clear that as n!1 the behavior of the
supermarket system approaches that of this deterministic
system; this is justified by Kurtz's theorem, which is
explained in Section 3. For now, we simply take this set of
differential equations to be the appropriate limiting process.

2.2 Finding a Fixed Point

We will demonstrate that, given a reasonable condition on
the initial point ~s�0�, the limiting process converges to a
fixed point. A fixed point (also called an equilibrium point or a
critical point) is a point ~p such that if ~s�t� � ~p then ~s�t0� � ~p
for all t0 � t. It is clear that for the supermarket model a
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necessary and sufficient condition for~s to be a fixed point is
that for all i, dsidt � 0.

Lemma 2. System (1), with d � 2, has a unique fixed point withP1
i�1 si <1 given by

si � �diÿ1
dÿ1 :

Proof. It is easy to check that the proposed fixed point
satisfies dsi

dt � 0 for all i � 1. Conversely, from the
assumption dsi

dt � 0 for all i, we can derive that s1 � �
by summing (1) over all i � 1. (Note that we useP1

i�1 si <1 here to ensure that the sum converges
absolutely. That s1 � � at the fixed point also follows
intuitively from the fact that at the fixed point, the rate at
which customers enter and leave the system must be
equal.) The result then follows from (1) by induction. tu

The condition,
P1

i�1 si <1, which corresponds to the
average number of customers per queue being finite, is
necessary; �1; 1; . . .� is also a fixed point, which corresponds
the number of customers at each queue going to infinity.

Definition 1. A sequence �xi�1i�0 is said to decrease doubly
exponentially if and only if there exist positive constants
N;� < 1; � > 1, and 
 such that for i � N , xi � 
��i .

It is worth comparing the result of Lemma 2 to the case
where d � 1 (i.e., all servers are M/M/1 queues), for which
the fixed point is given by si � �i. The key feature of the
supermarket system is that for d � 2 the tails si decrease
doubly exponentially at the fixed point while for d � 1 the
tails decrease only geometrically (or singly exponentially).

2.3 Convergence to the Fixed Point

We now show that every trajectory of the supermarket
system converges to the fixed point of Lemma 2 in an
appropriate metric. Denote the above fixed point by
~� � ��i�, where �i � �diÿ1

dÿ1 . We shall assume that d � 2 in
what follows unless otherwise specified.

We begin with a result that shows the system has an
invariant, which restricts in some sense how far any si can
be from the corresponding value �i.

Theorem 2. Suppose there exists some j such that sj�0� � 0.
Then, the sequence �si�t��1i�0 decreases doubly exponentially
for all t � 0, where the associated constants are independent of
t. In particular, if the system begins empty, then si�t� � �i for
all t � 0.

Note that the hypothesis of Theorem 2 holds for any
initial state~s derived from the initial state of a finite system.
(However, as shown in [33], even this limitation can be
removed.)

Proof. Let M�t� � supi�si�t�=�i�1=d
i

. We first show that
M�t� �M�0� for all t � 0. We will then use this fact to
show that the si decrease doubly exponentially.

A natural, intuitive proof proceeds as follows: In the
case where there are a finite number of queues, an
inductive coupling argument can be used to prove that,
if we increase some si�0�, thereby increasing the number
of customers in the system, the expected value of all sj
after any time t increases as well. Extending this to the

limiting case as the number of queues n!1 (so that the
sj behave according to their expectations), we have that
increasing si�0� can only increase all the sj�t� and, hence,
M�t� for all t.

So, to begin, let us increase all si�0� (including s0�0�!)
so that si�0� �M�0�d

i

�i. But then it is easy to check that
the initial point is a fixed point (albeit possibly with
s0 > 1) and, hence, M�t� �M�0� in the raised system. We
conclude that in the original system M�t� �M�0� for
all t � 0.

A more formal proof that increasing si�0� only
increases all sj�t� relies on the fact that the dsi=dt are
quasimonotone: that is, dsi=dt is nondecreasing in sj for
j 6� i. The result then follows from [6, pp. 70-74].

We now show that the si decrease doubly exponen-
tially (in the limiting model). Let j be the smallest value
such that sj�0� � 0, which exists by the hypothesis of the
theorem. Then,

M�0� � �1=�jÿ1�1=d
jÿ1

< 1=�1=�dÿ1�:

Since M�t� �M�0�, M�0�di � si�t�=�i for t � 0 or

si�t� � �iM�0�d
i � �ÿ1=�dÿ1���1=�dÿ1�M�0��di :

Note that �1=�dÿ1�M�0� < 1 since

M�0� < 1=�1=�dÿ1�:

Hence, the si decrease doubly exponentially, with

� � �1=�dÿ1�M�0�
and � � d. In particular, if the system begins empty, then

si�t� � �i for all t and i. tu
To show convergence, we find a potential function (also

called a Lyapunov function in the dynamical systems
literature) ��t� with the following properties:

1. The potential function is related to the distance
between the current point on the trajectory and the
fixed point.

2. The potential function is strictly decreasing, except
at the fixed point.

The intuition is that the potential function shows that the
system heads toward the fixed point. By finding a suitable
potential function, we will also be able to say how fast the
system approaches the fixed point. A natural potential
function to consider is D�t� �P1i�1 jsi�t� ÿ �ij, which
measures the L1-distance between the two points. Our
potential function will actually be a weighted variant of
this, namely ��t� �P1i�1 wijsi�t� ÿ �ij for suitably chosen
weights wi.

Definition 2. The potential function � is said to converge
exponentially to 0 or simply to converge exponentially if
��t� � c0eÿ�t for some constant � > 0 and a constant c0 which
may depend on the state at t � 0.

We note that Vvedenskaya et al. [33] provide an

alternative convergence proof that does not yield exponen-

tial convergence. Their proof requires transforming the
vector of si values into a different infinite dimensional

vector, on which they show convergence coordinate by

coordinate.
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Theorem 3. Let ��t� �P1i�1 wijsi�t� ÿ �ij, where, for i � 1, the

wi are appropriately chosen constants to be determined,

satisfying wi � 1. If ��0� <1, then � converges exponen-

tially to 0. In particular, if there exists a j such that sj�0� � 0,

then � converges exponentially to 0.

Proof. Define �i�t� � si�t� ÿ �i. As usual, we drop the

explicit dependence on t when the meaning is clear.

For convenience, we assume that d � 2; the proof is

easily modified for general d.
As d�i=dt � dsi=dt, we have from (1)

d�i
dt
�����iÿ1 � �iÿ1�2 ÿ ��i � �i�2� ÿ ��i � �i ÿ �i�1 ÿ �i�1�
���2�iÿ1�iÿ1 � �2iÿ1 ÿ 2�i�i ÿ �2i � ÿ ��i ÿ �i�1�;

where the last equality follows from the fact that ~� is a

fixed point.
As ��t� �P1i�1 wij�i�t�j, the derivative of � with

respect to t, d�=dt, is not well defined if �i�t� � 0. We
shall explain how to cope with this problem at the end of
the proof and we suggest the reader proceed by
temporarily assuming �i�t� 6� 0.

Now,

d�

dt
�
X
i:�i>0

wi���2�iÿ1�iÿ1 � �2iÿ1 ÿ 2�i�i ÿ �2i � ÿ ��i ÿ �i�1��ÿX
i:�i<0

wi���2�iÿ1�iÿ1 � �2iÿ1 ÿ 2�i�i ÿ �2i � ÿ ��i ÿ �i�1��:

Let us look at the terms involving �i in this
summation. (Note: �1 terms are a special case, which
can be included in the following if we take w0 � 0.) There
are several cases, depending on whether �iÿ1; �i and �i�1

are positive or negative. Let us consider the case where
they are all negative (which, by Theorem 2, is always the
case when the system is initially empty). Then, the term
involving �i is

ÿ wiÿ1�i � wi�2��i�i � ��2
i � �i� ÿ wi�1�2��i�i � ��2i �: �2�

We wish to choose wiÿ1; wi; and wi�1 so that this term
is at most �wi�i for some constant � > 0. It is sufficient to
choose them so that

�wi ÿ wiÿ1� � �2��i � ��i��wi ÿ wi�1� � �wi
or, using the fact that j�ij � 1,

wi�1 � wi � wi�1ÿ �� ÿ wiÿ1

��2�i � 1� :

We note that the same inequality would be sufficient
in the other cases as well: For example, if all of �iÿ1; �i and
�i�1 are positive, the above term (2) involving �i is
negated, but now �i is positive. If �iÿ1; �i and �i�1 have
mixed signs, this can only decrease the value of (2).

It is simple to check inductively that one can choose an

increasing sequence of wi (starting with w0 � 0; w1 � 1)

and a � such that the wi satisfy the above restriction. For

example, we break the terms up into two subsequences.

The first subsequence consists of all wi such that �i

satisfies ��2�i � 1� � 1��
2 . For these i we can choose

wi�1 � wi � wi�1ÿ��ÿwiÿ1

3 . Because this subsequence has

only finitely many terms, we can choose a suitably small

� so that this sequence is increasing. For sufficiently

large i, we must have ��2�i � 1� < 1��
2 < 1, and for

these i we may set wi�1 � wi � 2wi�1ÿ��ÿ2wiÿ1

1�� . This

subsequence of wi will be increasing for suitably small

� and, hence, wi � 1 for all i � 1. Further, this sequence

of wi is dominated by a geometrically increasing

sequence and, hence, if sj�0� � 0 for some j, then

��0� <1.

Comparing terms involving �i in � and d�=dt yields

that d�=dt � ÿ��. Hence, ��t� � ��0�eÿ�t and, thus, �

converges exponentially.

We now consider the technical problem of defining

d�=dt when �i�t� � 0 for some i. Since we are interested

in the forward progress of the system, it is sufficient to

consider the upper right-hand derivatives of �i. (See, for

instance, [21, p. 16].) That is, we may define

dj�ij
dt

����
t�t0
� lim

t!t�
0

j�i�t�j
tÿ t0 ;

and similarly for d�=dt. Note that this choice has the

following property: If �i�t0� � 0, then dj�ij
dt

���
t�t0
� 0, as it

intuitively should be. The above proof applies unchanged

with this definition of d�=dt with the understanding that

the case �i > 0 includes the case where �i � 0 and

d�i=dt � 0 and similarly for the case �i < 0. tu
Theorem 3 yields the following corollary:

Corollary 1. Under the conditions of Theorem 3, the L1 distance
from the fixed point d�t� �P1i�1 jsi�t� ÿ �ij converges
exponentially to 0.

Proof. As the wi of Theorem 3 are all at least 1 for i � 1,
��t� � d�t� and the corollary is immediate. tu

Corollary 1 shows that the L1 distance to the fixed point

converges exponentially quickly to 0. Hence, from any

suitable starting point, the limiting system quickly becomes

extremely close to the fixed point. Although it seems

somewhat unusual that we first had to prove exponential

convergence for a weighted variation of the L1 distance in

order to prove exponential convergence of the L1 distance,

it appears that this approach was necessary.

Remark. Note that in the proof of Theorem 3, if we set all
the wi equal to 1 and let � � 0, the appropriate inequal-
ities hold. This yields a simple proof that the L1 distance
to the fixed point is nonincreasing over time on the
trajectory given by the differential equations. Although
such a result is not as strong as the exponential
convergence or even as strong as the convergence result
of [33], this technique proves useful for other problems
where exponential convergence may not be possible
(see [25], [26]).
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2.4 The Expected Time in the Limiting System

Using Theorems 2 and 3, we now examine the expected

time a customer spends in the limiting system. We

emphasize that the expected time in the system is easily

determined by the fixed point and, hence, this corollary is

also easily determined by the results in [33].

Corollary 2. The expected time a customer spends in the limiting

supermarket system for d � 2, subject to the condition of

Theorem 2, converges as t!1 to

Td��� �
X1
i�1

�
diÿd
dÿ1 :

Furthermore, Td��� is an upper bound on the expected time in

the limiting system for all t when the system is initially empty.

Proof. An incoming customer that arrives at time t becomes

the ith customer in the queue with probability

siÿ1�t�d ÿ si�t�d. Hence, the expected time a customer

that arrives at time t spends in the system is

X1
i�1

i�siÿ1�t�d ÿ si�t�d� �
X1
i�0

si�t�d:

As t!1, by Corollary 1, the limiting system converges

to the fixed point in the L1 metric. Hence, the expected

time a customer spends in the system can be made

arbitrarily close toX1
i�0

�di �
X1
i�1

�
diÿd
dÿ1

for all customers arriving at time t � t0 for some

sufficiently large t0 and the result follows. The second

result follows since we know that in an initially empty

limiting system si�t� � �i for all t by Theorem 2. tu
Recall that T1��� � 1=�1ÿ �� from standard queueing

theory. Intuitively, one would expect an exponential

improvement in the expected time in the system going

from one choice to some constant d � 2 choices since the

tails of the queue lengths decrease doubly exponentially

instead of exponentially. Analysis of the summation in

Corollary 2 in fact reveals the following:

Theorem 4. For � 2 �0; 1� and d � 2, Td��� � cd�logT1���� for

some constant cd dependent only on d. Furthermore,

lim
�!1ÿ

Td���
logT1��� �

1

log d
:

Proof. We prove only the limiting statement as �! 1ÿ; the

other statement is proved similarly. Let �0 � �1=�dÿ1�:
Then,

Td��� �
X1
i�1

�
diÿd
dÿ1 �

P1
i�1���0d

i

�d=�dÿ1� :

Hence,

lim
�0!1ÿ

Td���
logT1��� � lim

�0!1ÿ

P1
i�1���0d

i

ÿ log�1ÿ ���d=�dÿ1�

� lim
�0!1ÿ

P1
i�1 �

0di

ÿ log�1ÿ �0�
log�1ÿ �0�
log�1ÿ ��

1

�d=�dÿ1� :

In the final expression on the right, the last two terms go

to 1 as �! 1ÿ. The result then follows from the

following lemma. tu

Lemma 3. Let

Fd��� �
P1

i�0 �
di

log 1
1ÿ�

:

Then, lim�!1ÿ Fd��� � 1= log d.

Proof. We show that, for any small enough � > 0, there is a

corresponding � such that for � > 1ÿ �,
1

�log d� � � � Fd��� �
1

�log d� ÿ � :

We prove only the left inequality; the right inequality is

entirely similar. We use the following identity:

Y1
i�0

�1� �di � �2di � . . .� ��dÿ1�di� � 1

1ÿ � :

From this identity, it follows that

X1
i�0

log�1� �di � �2di � . . .� ��dÿ1�di� � log
1

1ÿ � :

For a given �, let �0 � �=2, and let

z � sup
h
f0g [ fx : 0 < x � 1;

log�1� x� x2 � . . .xdÿ1�
x

> log d� �0g
i
:

Note that z < 1. For any fixed �, we split up the

summation in the previous equation to obtainX
i:�di�z

log�1� �di � . . .� ��dÿ1�di�

�
X
i:�di>z

log�1� �di � . . .� ��dÿ1�di�

� log
1

1ÿ � :

�3�

The leftmost term of (3) is bounded by a constant,

dependent only on z and independent of �. Hence,X
i:�di�z

log�1� �di � . . .� ��dÿ1�di�

�
X
i:�di>z

log�1� �di � . . .� ��dÿ1�di�

� cz � �log d� �0�
X
i:�di�z

�d
i � �log d� �0�

X
i:�di>z

�d
i

;

�4�

where cz is a constant dependent only on z and is

independent of �. Combining (3) and (4) yields
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�log d� �0�
X1
i�0

�d
i � cz � log

1

1ÿ �
or

Fd��� � cz

�log d� �0� log 1
1ÿ�

ÿ � � 1

�log d� � �0 :

We now choose � small enough so that for � > 1ÿ �,
1

�log d� � �0 ÿ
cz

�log d� �0� log 1
1ÿ�

ÿ � � 1

�log d� � � ;

and the lemma follows. tu
Hence, choosing from d > 1 queues yields an exponential

improvement in the expected time a customer spends in the
limiting system and as �! 1ÿ the choice of d affects the
time only by the constant factor log d. These results are
remarkably similar to those for the static case studied in [1],
where again the choice of d only affects the bound on the
maximum load by a log d factor in the denominator. This
correspondence is perhaps not surprising; the static system
studied in [1] can also be related to a similar set of
differential equations [24]. A more direct connection
between these results, however, remains lacking and might
be enlightening.

3 FROM INFINITE TO FINITE: KURTZ'S THEOREM

3.1 An Overview of Kurtz's Theorem

The supermarket model is an example of a density dependent
family of jump Markov processes, the formal definition of
which we shall give in the Appendix. Informally, such a
family is a one parameter family of Markov processes,
where the parameter n corresponds to the total population
size (or, in some cases, area or volume). The states can be
normalized and interpreted as measuring population
densities so that the transition rates depend only on these
densities. As we have seen in the supermarket model, the
transition rates between states depend only upon the
densities si. Hence, the supermarket model fits our informal
definition of a density dependent family. The limiting
system corresponding to a density dependent family is the
limiting model as the population size grows arbitrarily
large.

Kurtz's work provides a basis for relating the limiting
system for a density dependent family to the corresponding
finite systems. Essentially, Kurtz's theorem provides a law
of large numbers and Chernoff-like bounds for density
dependent families. We provide some intuition for this
result. The primary differences between the limiting system
and the finite system are

. The limiting system is deterministic; the finite
system is random.

. The limiting system is continuous; the finite system
has jump sizes that are discrete values.

Imagine starting both systems from the same point for a
small period of time. Since the jump rates for both processes
are initially the same, they will have nearly the same
behavior. Now, suppose that, if two points are close in the
state space, then their transition rates are also close: This is

called the Lipschitz condition and it is a precondition for
Kurtz's theorem. Then, even after the two processes
separate, if they remain close, they will still have nearly
the same behavior. Continuing this process inductively over
time, we can bound how far the processes separate over any
interval �0; T �.

We can apply Kurtz's results to the supermarket model
to obtain bounds on the expected time a customer spends in
the system and the maximum queue length. The proofs,
however, are somewhat technical; these technicalities are
due to the fact that the states �s0; s1; . . .� are infinite-
dimensional. The interested reader may examine [25].

Theorem 5. For any fixed T , the expected time a customer spends
in an initially empty supermarket system with d � 2 over the
interval �0; T � is bounded above by

X1
i�1

�
diÿd
dÿ1 � o�1�;

where o�1� is understood as n!1 and depends on T and �.

Theorem 5 says the expected time in a finite system is the
same as that for the limiting system (Corollary 2) plus a o�1�
term. Similarly, we can bound the maximum load:

Theorem 6. For any fixed T , the length of the longest queue in an

initially empty supermarket system with d � 2 over the

interval �0; T � is log logn
log d �O�1� with high probability,2 where

the O�1� term depends on T and �.

Hence, in comparing the systems where customers have
one choice and customers have d � 2 choices, we see that
the second yields an exponential improvement in both the
expected time in the system and in the maximum observed
load for sufficiently large n. In practice, simulations reveal
that this behavior is apparent even for relatively small n
over long periods of time, as shown in Section 4.

Also, we note that a more sophisticated use of the
underlying theory, as shown in [33], can yield stronger
results, in the following sense. It can be shown that as the
number of servers n grows to infinity, the equilibrium
distribution of the system becomes concentrated at the
fixed point. Hence, after running the system a sufficiently
long time, the expected time a customer spends in the
system and the maximum load will be as in Theorems 5
and 6, with the improvement that the low order terms
will not depend on T .

3.2 Further Implications for Finite Systems

Intuitively, Kurtz's theorem says that the random, finite
system tends to travel along the same trajectory as the path
defined by the differential equations. This fact, combined
with the exponential convergence we have proven in
Section 2.3, suggests that the system reaches its equilibrium
quickly and that its equilibrium distribution is sharply
concentrated around the fixed point. Moreover, even when
the random process deviates from the expected path, its
tendency is to quickly return on a trajectory toward the
fixed point. One would therefore expect that simulations of

1100 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 10, OCTOBER 2001

2. Here, with high probability will mean with probability 1ÿO�1=n� and
all logarithms have base e.



the supermarket system would tend to closely match the
results predicted by the limiting system. In the next section,
we demonstrate that this in fact holds, even for a very small
number of queues.

4 SIMULATION RESULTS

We provide the results of some simulations based on the
supermarket model, focusing on the average time a
customer spends in the system. In these simulations,
choices were made without replacement as this method is
more likely to be used in practice. (The limiting system is
the same regardless of whether the choices are made with
or without replacement; we have described the model with
replacement to simplify the exposition.) The results of
Table 1 are based on a system of n � 100 queues at various
arrival rates. The results are based on the average of 10 runs,
where each run consists of a simulation of 100,000 time steps

and the first 10,000 steps are ignored in recording data in
order to give the system time to approach equilibrium. For
arrival rates of up to 95 percent of the service rate
(i.e., � � 0:95), the predictions are within a few percent
of the simulation results. Even at 99 percent of capacity, the
prediction is within 10 percent when two queues are
selected. It is not surprising that the error increases as the
arrival rate or the number of choices available to a customer
increases as these parameters affect the error term in
Kurtz's theorem. As one would expect, however, the
approximation does improve if the number of queues is
increased, as can be seen by the results for 500 queues given
in Table 2.

The simulations clearly demonstrate the impact of
having two choices as well as the accuracy of the differential
equations. The effect is made apparent by Fig. 2, which
compares the expected time in the system given by
simulations of 100 queues and two choices to the prediction
given by the differential equations and the logarithm of the
expected time in equilibrium when just one choice (d � 1) is
used. The points for 100 queues and the prediction coincide
nearly exactly. Fig. 2 also shows similar results for a much
smaller system of only eight queues. For systems this small,
one would expect the limiting model to be less accurate,
and of course it is, especially under high arrival rates.
However, at moderate arrival rates it still proves a good
approximation to actual behavior and it demonstrates the
appropriate trend as the arrival rate increases.

The qualitative behaviors that we predicted with our
analysis are thus readily observable in our simulations,
even of relatively small systems on the order of 100 queues.
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This lends weight to the predictive power of our theoretical
results in practical settings.

While we have focused on the average time a customer
spends in the system in this section, because the fixed point
of the limiting system gives a complete distribution over
queue lengths, it would also be possible to use the limiting
system to predict other measures of the system as well. For
example, in many systems the variance of the time in the
system may also be important. The limiting system proves
useful for determining this quantity as well. Table 3
compares the predicted variance with the average of the
sample variance from the runs used for Table 1. We note
that, as with the average time in the system, the accuracy
improves with the number of queues simulated and
worsens as the arrival rate increases.

5 CONCLUSIONS

We have demonstrated that in a simple dynamic load
balancing model allowing customers to choose between the
shortest of two servers yields an exponential improvement
over distributing customers uniformly at random. Although
this model is arguably unrealistic for many applications, it
can be extended to other similar domains [24], [25], [26] and
we believe that, more generally, as a rule of thumb, it will
prove useful in the design of distributed systems.

Perhaps the most interesting open question is to include
locality in this model. For example, suppose the servers are
arranged in a ring and each customer chooses to queue
either at a server chosen uniformly at random or its right
neighbor. The locality complicates the state space
sufficiently that it appears the techniques used here will
not apply. Finding other scenarios where the power of
two choices proves evident, both in theory and in practice,
also remains open for further exploration.

APPENDIX

DENSITY DEPENDENT MARKOV CHAINS

For the interested reader, we now give a more technical
presentation of the background for Kurtz's theorem. The
reader is recommended to [17] or [31] for a more complete
discussion and derivation. We begin with the definition of a
density dependent family of Markov chains, as in
Kurtz [17, chapter 7]. For convenience, we drop the
vector notation where it can be understood by context.
Given a set of transitions L � ZD for some fixed D and a
collection of nonnegative functions �l for l 2 L defined on a
subset E � RD, a density dependent family of Markov chains

Xn is a sequence fXng of jump Markov processes such that
the state space of Xn is En � E \ fnÿ1k : k 2 ZDg and the
transition rates of Xn are

q�n�x;y � n�n�yÿx��x�; x; y 2 En:

As an example of this definition, consider the super-

market model for d � 2 with n queues. The state of the

system ~s � k=n, where ~s represents the state by the fraction

of servers of size at least i and k represents the state by the

number of servers of size at least i. Note that we may think

of the state of the system either as ~s or k, as they are the

same except for a scale factor. The possible transitions from

k is given by the set L � f�ei : i � 1g, where the ei are

standard unit vectors; these transitions occur either when a

customer enters or departs. The transition rates are given by

q
�n�
k;k�l � n�l�k=n� � n�l�~s�, where �ei�~s� � ��s2

iÿ1 ÿ s2
i � and

�ÿei�~s� � si ÿ si�1. These rates determined our limiting

system (1). Note that, in this case, our system is not in ZD

for any fixed D but in ZN and, hence, technically does not fit

Kurtz's definition of a density dependent Markov chain.

This technical problem is, in this case, minor; see [25] for

explicit details.

It follows from [17, Chapter 7] that a Markov process X̂n

with intensities q
�n�
k;k�l � n�l�k=n� satisfies

X̂n�t� � X̂n�0� �
X
l2L

lYl n

Z t

0

�l
X̂n�u�
n

 !
du

 !
;

where the Yl�x� are independent standard Poisson
processes. This equation has a natural interpretation: The
process at time t is determined by the starting point and the
rate of each transition integrated over the history of the
process. In the supermarket system, X̂n is the unscaled
process with state space ZN that records the number of
servers with at least i customers for all i and X̂n�0� is the
initial state, which we usually take to be the empty system.

We set

F �x� �
X
l

�l�x�; �5�

and by setting Xn � nÿ1X̂n to be the appropriate scaled
process, we have from the above:

Xn�t� � Xn�0� �
X
l2L

l

n
~Yl n

Z t

0

�l�Xn�u��du
� �

�
Z t

0

F �Xn�u��du;
�6�

where ~Yl�x� � Yl�x� ÿ x is the Poisson process centered at
its expectation.

Kurtz's theorem shows that the deterministic limiting
process is given by

X�t� � x0 �
Z t

0

F �X�u��du; t � 0; �7�
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where x0 � limn!1X�0�: An interpretation relating (6)
and (7) is that, as n!1, the value of the centered Poisson
process ~Yl�x�will go to 0 by the law of large numbers. In the
supermarket model, the deterministic process corresponds
exactly to the differential equations we have in (1), as can be
seen by taking the derivative of (7). Also, in the super-
market model we have x0 � Xn�0� � �1; 0; 0; . . .� in the case
where we begin with the empty system.

We now present Kurtz's theorem.

Theorem 7 [Kurtz]. Suppose we have a density dependent
family satisfying the Lipschitz condition

jF �x� ÿ F �y�j �Mjxÿ yj
for some constant M. Further, suppose limn!1X�0� � x0

and let X be the deterministic process:

X�t� � x0 �
Z t

0

F �X�u��du; t � 0:

Consider the path fX�u� : u � tg for some fixed t � 0 and
assume that there exists a neighborhood K around this path
satisfying X

l2L
jlj sup

x2K
�l�x� <1: �8�

Then,

lim
n!1 sup

u�t
jXn�u� ÿX�u�j � 0 a:s:

Kurtz's theorem says that the limiting process is indeed
the deterministic process given by the appropriate differ-
ential equations. Although we do not show it here, one can
use the proof of Kurtz's theorem to bound the deviation
between the finite and the limiting system as well. These
bounds generally take the same form as Chernoff-type
bounds, up to constant factors.

We note that the most important condition for Kurtz's
theorem is that the underlying density dependent Markov
chain is Lipschitz. Hence, we show here that the limiting
supermarket model is Lipschitz.

Lemma 4. The supermarket model satisfies the Lipschitz
condition.

Proof. For the supermarket model, we have

F �x� �
X1
i�1

��xdiÿ1 ÿ xdi � ÿ �xi ÿ xi�1�:

Let x � �xi� and y � �yi� be two states of the supermarket
model. Then,

jF �x� ÿ F �y�j �
X1
i�1

j��xdiÿ1 ÿ xdi � ÿ �xi ÿ xi�1� ÿ ��ydiÿ1 ÿ ydi �

� �yi ÿ yi�1�j

�2
X1
i�0

jxi ÿ yij � 2�
X1
i�0

jxdi ÿ ydi j

�
X1
i�0

�2� 2d��jxi ÿ yij;

where we have used the fact that 0 � xi; yi � 1 for all i.tu
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