Oak

Specification

flrstp erson

Confidential

© firstperson, inc.

Confidential

Contents

Program Structure ... 7

Lexical ISSUes. 8
Comments 8
Identifiers 8
Keywords 9
Literals 9
Integer Literals 9
Floating Point Literals 9
Boolean Literals 9
Character Literals 10
Operators and Miscellaneous Separators 10

Integer Types 10

Floating Point Ypes 11

Boolean Jpes 11

Character ypes 12

Arrays 12

Types Created with thiypedef Keyword 12

ClaSSES. . oot 13
Instance ¥riables 14
Methods 15
Overriding and Oerloading Methods 15
Used before Set 16
Static \ariables and Methods 16
Volatile Variables 17
Transient \riables 17
Final Classes and Methods 17
Properties of ¥riables 17

Contents ili

Confidential

Access to Yriables and Methods 18
Variables with Public-ky Seals 18
Synchronized Methods 19
Constructors 19

Order of Declarations 20

INterfaces. ...
Packages

ASSEItIONS . .ot

Constraints on Classaviables 22
Preconditions and Postconditions 23

EXPressions.

Operators 23
Operators on Infgers 24
Operators on Booleanallies 25
Operators on Floating PoingWies 25
Operators on Character Arrays 25
Operators on Objects 25

Casts and Corersions 26

Statements.

Declarations 26
Expressions 26
Control flav 26
Exceptions 27

Garbage Collection.

Appendix: Floating Point

Special \alues 31

Binary Format Conersion 31
Ordering 32

Precision 32

Summary of IEEE-754 Digérences 32

Oak Specification-11/9/93

Confidential

November 9, 1993 11:38 am
Preliminary

person

Notes about the current im-
plementation are bfo the

side.
Future Oak deslopment en-
vironments might use a dif-
ferent compilation unit than
files.

Languae Specification

Program Structure

The source code for an Oak program consists of one or more files with the “.dak” suf
Each file can contain only the folling (in addition to white space and comments):

e import statements

e class definitions (see “Classes” on page 13)

* interface definitions (see “Intextes” on page 21)
e main code

Main code is Oak code that ishassociated with an object. Generathain code simply
senes to get a program undeayy by creating one or more objects and starting their
execution. Oak main code is analogous to then() routine. For example, ariables
defined in main code are local to the main codsy, damnot be used by classes defined in
the same file. Exactly one file per program can contain main code.

When an Oak source file is compiledvesal files containing Oak bytecode can be

created. Specificallyhe compiler creates one bytecode file per class, with each file named
after its class with an additional “.class” fsuf The compiler also creates one bytecode

file for the main code; by dafilt, this file is named after the Oak source file containing the
main code, without the “.0ak” Hix.

When Oak bytecode is interpreted, the Oak runtime system checks a predetermined class
path for each class used in the program. When the runtime system finds the file containing
the class bytecode, it loads the class definition. Each class in a program is searched for at
most once each time the program runs; subsequent references to the class are immediately
resolhed. See theak(1) man page for more information on class paths and the Oak
compiler and interpreter

© firstperson, inc. 1993 Confidentiall 7

Unicode source files araral-
lowed yet because thesaio
editor/derelopment eviron-
ment to generate them. In-
stead, ASCII input is
accepted. 1

2.2

Unicode identifiers arehim-
plemented yet. Instead, ide
tifiers are ASCII and foll
the C rules.

2.1 Leical Issues November 9, 1993 11:38 am © firstperson, inc.

Lexical Issues

During compilation, the characters in an Oak source file are reduced to a seriensf tok
Oak has fie kinds of tokns: identifiers, &words, literals, operators, and miscellaneous
separators. Comments antite space such as blanks, tabs, and line feeds are nehtgk
but they often are used to separatednk.

Oak programs are written using the Unicode character set, or some character set that is

converted to Unicode before being compiled.

Comments

Oak has three kinds of comments:

/1 text All characters froni/ to the end of the line are ignored.
[* text */ All characters front* to*/ are ignored.
[** text */ Like/*..*/, except that these comments are treated

specially when theoccur immediately before a
declaration. These comments indicate that the enclosed
text should be included in automatically generated
documentation as a description of the filog

declaration. See<wherever the oakc -doc option is
documented>> for information on automatically
generating documentation.

Identifiers

Identifiers must start with a letter and can contain letters, digits, and underscores (*_").
Since Unicode is a lge character set that is hard to characterize, the definition of a letter
is difficult. For the part of Unicode thaverlaps ISO-Latin-1, letters are the characters

“A” through “Z”, “a” through “z”, and all the accented characters. Other charaetkas v
after the first letter of an identifier includeegy characterneept those in the geent of
Unicode resemd for special characters.

Thus “carcon” and “Mjglner” are Igal identifiers, ht strings containing characters such
as “” are not.

Language Specification Confidential

2.3

Not every keyword has beer
completely implemented ye

enum might go avay.

instanceof will probably be-
come a method instead of ¢

keyword.

unsigned isn't implemented

yet.
void might go avay.

Type determination is not imple
mented yet. &rcing literals to be

2.4

24.1

long is not implemented yet.

24.2

Double precision, NaN, Inf,
and the type stikes are not

implemented yet.

243

2.3 Leical Issues November 9, 1993 11:38 am © firstperson, inc.

Keywords

The following identifiers are reseed for use asdywords. Thg must not be used inan
other vay.

break continue for private throw
byte default goto protected transient
case do if public try

catch double instanceof return typedef
char else int short unsigned
class enum interface static void
clone final long switch volatile
const float new synchronized while
Literals

Literals are the basic representation of ameger, floating point, boolean, or character
value.

Integer Literals

Integers can bexpressed in decimal (base 10)xidecimal (base 16), or octal (base 8)
format. A decimal intger literal consists of a sequence of digits (optionalliisad as
described belw) without a leading zerd0). If an intayer literal bgins withOx, it is
interpreted as a kelecimal intger If a nonzero literal kgins withO, it is interpreted as
an octal intger. Hexidecimal intgers can include digits (0-9) and the letters a-f and A-F
Octal intgyers can include only the digits 0-7.

The type of an ingger literal is the narkgest intger type that it fits in (see “Irger
Types” on page 10). A literal can be forced tddrgy by appending ah orl to its \alue.

Floating Point Literals

A floating point literal consists of a decimal igéz a decimal point, a fraction part
(another decimal number), arp@nent part, and an optional typefsufThe exponent
part is are or E followed by an intger, which can be signed.

As described in “Floating Poinypes” on page 11, Oak hasafloating point typedioat
(32 bits, also knan assingle precision) anddouble (64 bits, knan asdouble precision).
You specify the type of a floating point literal as falo

2.0dor2.0D double
2.0f or2.0For2.0 float

Specifying too maysignificant digits for a single precision literal is an error

Boolean Literals

Thebooleantype has tw literal values:t r ue andf al se. See “Booleanypes” on page
11 for more information on booleaalues.

Language Specification Confidential 9

244
Character literals are currently im-
plemented much likein C. When

Unicode support isimplemented,
escape sequences will change.

Unicode support is not imple-
mented yet. Some or all strings
might become objects.

3.1

Not implemented yet.

10

2.5 Types November 9, 1993 11:38 am © firstperson, inc.

Character Literals

A character literal is a character (or group of characters representing a single character)
enclosed in single quotes. Charactersehgpechar and are dran from the Unicode
character set (see “Charactgp&s” on page 12).

An array of characters can be represented by a sequence of characters between double
guotes. Br example, hel | o wor | d\ n" is a literal array of characters.

Operators and Miscellaneous Separ ator s

The following characters are used in Oak source code as operators or separators:
+ -1 % ~& |~/ ><(){Y[L1:

In addition, the follaving character combinations are used as operators:

++ — == <= >= I=z 4= — = *= [= &= |: N= Ofp= <<= >>=
>>>= &= &= &= || && << >> >>>
Types

Every variable andeery expression has a typeyfe determines the all@able range of
values a griable can takon, allevable operations on thosalues, and the meanings of
the operations. A number ofiiit-in types are praded by the Oak language.
Programmers can composevigypes using thelass mechanism (see “Classes” on page
13) and, in a limited @y, usingtypedef.

Oak has tw kinds of types: simple and composite. Simple types are those that cannot be
broken davn; they are atomic. The simple types are all ggefloating point, boolean, or
character types. Composite types arit lon simple types. Oak has three kinds of
composite types—arrays, types created wjpiedef, and classes. Simple types, arrays,
andtypedef are discussed in this section. Classes are discussed in “Classes” on page 13.

Integer Types

Integers in Oak are similar to those in C and C++, with &iceptions: all intger types
are machine independent, and some of the traditional definitisaskan changed to

Language Specification Confidential

3.2 Types November 9, 1993 11:38 am © firstperson, inc.

reflect changes in theasld since C was introduced. The four irger types are signed
unless prefigd by theunsignedmodifier and hae widths of 8, 16, 32, and 64 bits.

Width Name Comments

The Oakbyte type is what C programmers are used to

thinking of as thehar type. But in Oak, characters are
8 byte 16 bits wide. Having a separdigte type removes the

confusion in C between the interpretatiorcbér as an

8 bit integer and as a character.

In C, the width ofhort is generally 16 bits, but the spec-

16 short ification says it can be larger.
Anint in Oak is always 32 bits wide. In C, the width of
32 int int is implementation defined and is most often 32 bits,

but is sometimes 16 bits, and has been other values (such
as 60).

Oak’s definition oflong is a break from the C tradition
that specifies thdbng is 32 bits andbng longis 64 bits.

64 long With the standardization dfit to mean 32 bits, it is re-
dundant to have two types with the same meaning and
unnecessary to have such an odd type name for 64 bits.

A variables type does not directlyfatt its storage allocationype only determines the
variables arithmetic properties andgld range of alues. If a @lue is assigned to a

Value reduction is not imple- variable that is outside thegi range of theariable, then thealue is reduced modulo the
mented yet. range.

3.2 Floating Point Types

double not implemented yet. Thefloat keyword denotes single precision (32 bdyjuble denotes double precision (64
bit). The result of a binary operator onatfloats is afloat. If either operand is double,
the result is @ouble.

Floating point arithmetic and data formats are defined by IEEE 754A8peridix:
Floating Point” on page 31 for details on Gaftbating point implementation.

3.3 Boolean Types

Thebooleantype is used forariables that can be eithierue orf al se, and for methods
that returrt r ue andf al se values. It5 also the type that is returned by relational
operators such as

Although boolean alues are ordered, wiftal se < true, booleans arehhumbers.
They cant be corerted into numbers by casting.

Language Specification Confidential 11

3.4 Types November 9, 1993 11:38 am © firstperson, inc.

3.4 Character Types

Unicode not implemented Oak uses the Unicode character set throughout. Consequenthathéata type is
Xeébﬂ‘ga?ﬁgscu”mﬂy have defined as a 16 bit, unsigned e (Insigned short). Character strings are implemented

with thestring type (seeArrays” on page 12).

35 Arrays

Oak includes support farrays—sets of ordered data items. Arrays are referred to and
passed by reference.

Oak checks subscripts to neakure thg're valid:

Array dimensions can be igfer expressions:

void dolt(int n) {
float arr[n];

}
The length of aparray can be found hysing.length:

int a[10][3];

The prints operator is one of prints(a.length + ", + a[0].length + "\n");

agroup of function- and con-

stant-like operators whose 10. 3

functionality will eventually ’

be moved into classes. This . o . .

API is documented Arrays are allocated either whereyhe declared (by specifying the dimensions of the

<<where?>>. array when it is declared) or dynamically with thesv keyword:

Although arrays can be creat- int a[];

ed with new, just asinstances a = new int[10];

of classes are created, arrays Raster foo[];

are not currently objects. foo = new Raster[10]; //creates an array, but not the

" /I Raster objects in the array.

foo[1] = new Raster(blah.jpg);

3.6 Types Created with the typedef Keyword

The typedef keyword and Programmers can definemenonclass types using thgpedef keyword. Types defined

functionality might go away. with typedef are not globally defined; instead, yrare defined only within the scope of
the class that contains thgedef statement. @ use such a type in another class that is not
a subclass, the programmer specifies the class and the type name.tbgetkample,
assume a class nameglass defines a type yle. A class that is not a subclass @idss
would define a ariable named x with type ge as follavs:

ACl ass. aType Xx;

12 Language Specification Confidential

Interfaces not implemented
yet.

Not implemented yet.

3.6 Classes November 9, 1993 11:38 am © firstperson, inc.

Types defined witllypedef can be thought of as syngns for simple types, arrays, or
existing classes. In particulaDak doesr’support the Gtruct andunion keywords, so
the only vay to create a type with multiple types of data fields is to create a class.

Classes

Classes represent the classical object oriented programming modesufipert data
abstraction and implementations tied to data.

To male a n& class, the programmer must base it onxéstiag class. The meclass is
said to bederived from the &isting orbase class. The dered class is also called a
subclass of the otherwhich is sometimes kmm as asuperclass. Class dewation is
transitive: if B is a subclass of A, and C is a subclass of B, then C is a subclass of A.

If a class B is a subclass of A, theredue of B can be used asalue of A. In &ct, if there

is no ambiguity, then naxplicit cast is needed. If alue of class A needs to be used as if
it were of class B, the programmer can write a typ&eion orcast. Corversions from a
base to a dered class are whys checkd.

Oak supports only single inheritancet Bome adantages of multiple inheritance are
supported through the use of interés (see “Intesces” on page 21). Instances of classes
are stored in aagbage collected heap (see “Garbage Collection” on page 29), and the
actual stack ariable is an object reference.

The base class of a class and the iate$ that the class implements (ifpare indicated
in the class definition by theswordsextends andimplements:

cl ass cl assnane extends supercl assnane
i mpl enents interfacel, interface2{
[* o .. *

Every class gcept the root class hagaetly one base class. Undilin C++, all Oak classes
are dened from a single root class: Object. If a class is defined without specifying a base
class, Object is assumedrfexample, the follaing

class point {
float x, v;
}

is the same as

cl ass point extends Qbject(
float x, v;
}

To limit the scope of a class definition, classes can be defined inside of classes.

Language Specification Confidential 13

4.1 Classes November 9, 1993 11:38 am © firstperson, inc.

class Myd ass {
cl ass Hel per {
[* . .ox

}
Hel per hel per;

4.1 Instance Variables

Instance ariables are declared justdilary other \ariable. Thg can be of aptype and
can hae initializers. These initializers argezuted when the instance is initialized. An
example of an initializer for an instancanable namegl follows.

class a {
int j = 23;
}

Inside the scope of an instance of a class, the tlaisieepresentthe currentobject. For
example, an object may need to pass itself as an argument to another object’s method:

cl ass Foo {
/> . . 0%
ot her bj ect. Met hod(thi s);
1* .00

Any time a method refers to itsva instance ariables or methods an implitihi s. isin

front of each reference:

class Foo {
int a, b, c;

[* . . 0%
prints(a + "\n"); // a == "this.a"
Overloading variable access Instance @riable accesses can beedoaded with methods based on the name of the
with method accessis not im- Vanable as fo”ws
plemented yet. '
cl ass Foo {
int a;
[l CGet...
int a() { return a; }
/Il Set...
void a(int v) { this.a =v; }
}
Foo p;
p.a = 3; // equivalent to p.a(3)
i =p.a; // equivalent toi = p.a();

Overloading wariable access alles classes tovelve by hiding the distinction between
instance wariables and accessor methods. &le, a point data type could be
implemented as either polar or cartesian coordinates, without the client \vairegcd the
distinction, and while retaining the cgmient instanceariable access syntax.

14 Language Specification Confidential

4.2 Classes November 9, 1993 11:38 am © firstperson, inc.

Changing ariable access to method access does not require separately compiled modules
to be recompiledFor example, assume you have a class A defined iAfilgk and a

class B defined iB.oak, and B references a variable in an A object. If A is changed so

that the referenced variable changes from being an instance variable to being a pair of
accessor methodB,oak does not need to be recompiled. The runtime system handles the
change transparently.

4.2 M ethods

A method is a function defined within a class. A method definition muswfaiiis form:
[returntype] methodname (<parameter list>) {

<method body>
}

The abee form means that methods must:

You must currently specify a re- « Have a return type if the method returnsadue. If the method does not returryan

turn type, een if the method value, it must either va avoid return type or no return type.
doesnt return a ®alue.) i _
* Have a parameter list—the parameter list should be empty if the method has no
parameters.

« Have a body—the body can be null.

4.3 Overriding and Overloading M ethods

Oak allavs polymor phic method naming—defining a method with a name that has already
been used in the class or its superclass—ferriing and gerloading methods.

Overriding means praiding a diferent implementation of an inherited method.

Overloading means defining a method that has the same name and return type as another
method, lot a diferent parameter list.

Note: Return types are not used to distinguish methods. In each scope, methodgethat ha
the same name and parameterrfigét return the same type.

To override a method, a subclass of the class that originally defined the method must
define a method with the same name, return type (or a subtype), and parameter list. When
the method is woked on an instance of the subclass, tive method is called rather than

the original method.

To overload a method, a class defines a method that has the same name and return type as
another method (which has been defined in the class or in one of its superclasses), b
different parameter list. Oak reses/which method to call by matching tual

parameter list (the parameter list passed to the method)re theformal parameter lists

of all methods with the same name.

class A {
voi d Thernostat (Foo f) {}

class B extends A{

Language Specification Confidential 15

Not implemented yet.

Not completely implemented.

4.5

16

4.4 Classes November 9, 1993 11:38 am © firstperson, inc.

voi d Thernostat (Foo f) {}
void Thernostat () {}
int Thernostat() {}

/'l override

/1 overl oad

/1 ERROR: Duplicate nethod
}

When deciding which method tovimke, the runtime system computes the number of
conversions required to change the actual parameter list into the types declared in each
methods formal parameter list. The method that requires thedecorersions is

chosen. If there is a tie, the method call is ambiguous anxtapten occurs.

Used before Set

Methods are rigorously cheeft to be sure that dtical variables (variables defined inside
a method) are set to something beforg the referenced. Used-before-set iatalf
compilation errar

Static Variables and M ethods

Variables and methods defined in a class can be destatay] which males the same
implementation apply tovery object in the class and to the class itself. @rililstance
variables, staticariables hae the samealue, no matter what instance of the class is used
to obtain them. As slwn in the follaving code gample, both staticariables and static
methods can also be accessed using the class name, instead of using an instance of the
class.

cl ass Ahem {

int i; /1 lInstance variable

static int j; /1 Static variable

void seti(int 1) { i =1; }// Instance nethod

static void setj(int J) {J =3J; }// Static nethod
1
Ahem a = new Ahen{);
a.j = 2; /* valid; static var via instance */
Ahem | = 3; /* valid; static var via class */
a.set) (2); /* valid; static nethod via instance */
Ahem setj (3); /* valid; static nethod via class */
a.i = 4, /* valid; instance var via instance */
Ahemi = 5; /* I NVALID; instance var via class */
a.seti(4); /* valid; instance method via instance */
Ahem seti (5); /* INVALID; instance nethod via class */

A static \ariable aists only once per Oak application, no mattex meary objects of the
class aist in the application. & distrituted applications that run in multiple address
spaces, each application has one occurrence of the stadible. When you refer to a
static \ariable relatre to some object (foxample,obj . aVar) the static ariableaVar is
fetched from the address space whahie resides. @ achiee synchronized access to
static \ariables, you hzae to use a static method (see “Synchronized Methods” on page
19).

Language Specification Confidential

4.6 Classes November 9, 1993 11:38 am © firstperson, inc.

Static \ariables can he initializers, just as instancanables can. These initializers are
executed just before the first runtime use of the class, befgiestances are createcby
can add a code fragment to beeuted at the same time the statidables are initialized,
as shavn in the follawving example.

class A {
static int arr[12];
static { /[* initialize the array */
int i;
for (i = 0; i<arr.length; i++)
arr[i] =1i;
}

Not implemented yet. Static methods cannot refer to instanagables; thg can only use staticaviables.

Not implemented yet. . .
Volatile Variables

Variables mar&dvolatile are treated specially by the optimiZ€ne \alues of wlatile
variables are ner cached in gisters and arewhys re-read when referencedribles
should be markdvolatile when thg might be changed by means undetectable by the
compiler such as by another thread ovide.

4.7 Transient Variables

Variables mar&dtransient are treated specially when instances of the class are written
out to the file system. Specificaltye \alues of transientariables are not written out.

4.8 Final Classes and Methods

Thefinal keyword should be used for classes that cannot be superclasses and for methods
that cannot beverridden. Usinginal lets the compiler perform axiety of optimizations.

One such optimization is inlineggansion of method bodies, which is done for small and
final methods (where the meaningsofall is implementation dependent).

4.9 Properties of \ariables
Not implemented; experimental. Instance and stati@viables can be assigned user defined properties. The syntax is
prop(connecti on) Raster v;

which declares v to be an instance of class Raster that has the connection.property
Properties are used by ariety of diferent runtime packagesoiFexample, the
development evironment uses the connection property to lalbelables that are
connections to other objects that the editor can hook up to other objects.

Language Specification Confidential 17

4.10 Classes November 9, 1993 11:38 am © firstperson, inc.

410 Accessto Variablesand Methods

Not implemented; experi- Each wariable or method defined in a class has one of thenfoliptypes of access:
mental. The public key public, protected, orprivate. These access typedeaft whether theariable or method
stuff isespecially subject to
change. can be used by other classes.
Note: All classes in the same package can useaalbles and methods defined in the
classes in that packagegagedless opublic, protected, andprivate declarations (see
“Packages” on page 22).

By default all variables and methods in a class@retected. Protected &riables and

methods can be accessed only by methods defined in the class and its subclasses, and not
by other classes Xeept for classes in the same package). Publiables and methods—

those declared with thaublic type modifier—ean be accessed byyame Theprivate

type modifier mags a ariable or method inaccessibleea to subclassesx@ept those in

the same package).

The folloving example shws hav to specify access.

class Stuff {

int i; /* protected by default */
public int j; /* visible to everyone */
private int k; /* not even subcl asses

see this */
voi d nethodl() { }/* protected by default */
void public nmethod2() { }//public
static private void nmethod3() { }//private
private static void nethod4() { }//private; alternate
word order

b

Access to griables can also be controlled with publeykeals.

411 Variableswith Public-Key Seals

Access to an instance or statariable can be enforced by the use of a pul#icdeal. A
seal is lile an unfogeablé stamp that can be placed on an object module. These seals
have a \ariety of meanings:

upgrade If a new module arrives that is to be installed as an upgrade to the
current one, the new module must have been sealed with the same
private key.

requires States that this module (or a particular instance or statiable)
requires that client modulesveaa correspondinigas seal.

has States that this module has permission to use amesfthat require this
seal.

When a sealed class or a class with seaedies is compiled, the pate ley specified
by the name follwing the vord seal is used to placerequires seal on the object module.

1. Made unfageable through the use of RSA publéy lencryption and MD5 message digests.

18 Language Specification Confidential

4.12 Classes November 9, 1993 11:38 am © firstperson, inc.

4.12 Synchronized Methods

Thesynchronized access specifier marks a method as being required to run in the

monitor, so that it does not run at the same time as another method that needs access to the
same resource. (The other method must also be deslareltt onized.) For more

information onsynchronized, see the section on class Thread in the class documentation.

4.13 Constructors

Constructors are special methodsvidled for initialization. The are distinguished by
having the same name as their class. Constructors are automatically called upon the
creation of an object. Tlgecannot be calledxplicitly through an object. Constructors do
not have ary return \alue.

Constructors can beverloaded by arying the number and types of parameters, just as
ary other method can beverloaded.

G ass Foo {

int x;
float vy;
Foo() { x=0; y=0.0; }
Foo(int a) { x=a; y=0.0; }
Foo(float a) { x=0; y=a; }
Foo(int a, float b) { x=a; y=b; }
}
Method discrimination base Foo obj1 = new Foo(); /lcalls Foo();
onint versusfloat doesnt Foo obj 2 = new Foo(4); //calls Foo(int a);
work. Foo obj 3 = new Foo(4.0); /lcalls Foo(float a);
Foo obj4 = new Foo(4, 4.0);//calls Foo(int a, float b);

Before the constructor is called, storage for an instance is atomically allocated and
initialized to be a copof the prototype for the class.

Instance griable initializations (see “InstancaNables” on page 14) arefedtively
turned into code that is prepended to all constructors. (Statable initializations are
executed at a diérent time, as described in “Statiariables and Methods” on page 16.)

class a {
long n = 42;
static long k = 99;
}
cl ass Foo {

int a;
Foo(float a, int b) { this.a =a* b; }
Foo(int a) { this.a = a; }

Foo z = new Foo(.4, 100);

Language Specification Confidential 19

20

4.14

4.14 Classes November 9, 1993 11:38 am © firstperson, inc.

The instanceariables of superclasses are initialized by calling either the constructor for
the base class or a constructor for the current class. If neither is specified in the code,
“super () ; ”is assumed. Calling a constructor must be the first thing in the method body;
calling a constructor later is itjal.

Invoking a constructor in the base class is done asmgillo

super (par aneters); /* Call base class constructor */

Invoking a constructor in the current class is done asaisllo

t hi s(paraneters); /* Call constructor fromthis
class. Nornally this is only
done when there are nultiple
constructors, all having
different paraneter lists */

The Foo and BoSub methods beloare &les of constructors.

cl ass Foo extends Bar{

int a;
Foo(int a) {
/] inplicit call to Bar()
this.a = a;
}
Foo() {
this(42); /1 no inmplicit call to Bar()

}

cl ass FooSub extends Foo
FooSub(int a, int b)

super (13); 11 [l's Foo(13); without this Iine,

/1 woul d have cal |l ed Foo()

this.b = b;

Order of Declarations

The order of declaration of classes and the methods and instaratges within them is
irrelevant. Methods are free to netkorward references to other methods and instance
variables. The follwing works:

class A {
void a() { f.set(42); }
B .

class B {
void set(long n) { N=n; }
long N

Language Specification Confidential

5

Interfaces not implemented
yet.

4.14 Interfces November 9, 1993 11:38 am © firstperson, inc.

| nterfaces

An interface specifies a collection of methods without defining their bodies alcesrf
provide encapsulation of method protocols without chaining the implementation to one
inheritance tree. When a class implements an aterfit must implement the bodies of all
the methods described in the intexé. (If the implementing classabstract—never
instantiated—it can le@ the implementation of some or all methods to its subclasses.)
Using interbces allavs several classes to share a programming iatarfwithout haing to

be fully avare of each othes'implementation. The foleing example shas an interdce
definition (with theinterface keyword) and a class that implements the itsteet

interface Storing {
voi d FreezeDry(Stream;
voi d Reconstitute(Stream;

}
cl ass Raster inplements Storing, Painting {

voi d FreezeDry(Streams) {
/* JPEG conpress i mge before storing */

}

void Reconstitute (streams) {
/* JPEG deconpress imge before reading */
}

}

The declaration syntadtassname<interfacename> declares aariable to be an instance of
some subclass afassname that implementsnterfacename. This lets the programmer
specify that an object mushplement a given interface, without having to kritne exact
type or inheritance of that object. Using inteds maks it unnecessary to to force related
classes to share a common abstract superclass or to add methods to Object just to
guarantee that mgrclasses implement the same methods.

cl ass StorageManager {
Stream stream

voi d Pickl e(Obj ect <St orage> obj) {
obj . FreezeDry(stream;

}

Interfaces solg some of the same problems that multiple inheritance does without as
much averhead at runtime. Kever, because inteates sometimesvolve dynamic name
lookups, there is often a small performance penalty to usingaoéesrf

Language Specification Confidential 21

Public/private ley protection

is not implemented yet.

7

Assertions arenimplement-

ed yet.

22

7.1

7.1 Rackages November 9, 1993 11:38 am © firstperson, inc.

Packages

Packages are groups of classes.ylde a tool for managing a ¢gr namespace of classes

and aoiding conflicts. Eery class name is contained in some package. A package may be
nested in some other package, or it may mgpackage. Root package names generally
correspond to organizations (corporations, schools, or governments) developing software.
Subpackages generally correspond to suborganizations, projects, or products.

The package declaration defines the name of the package that all subsequent class
definitions should be placed in:

package fp. os;
cl ass Thread {

}

Each file is required to kia apackage statement at the beginning, and no offemkage
statements. A package name candssociated with a public/private key pair used to
control who is allowed to write classes that become part of a package.

Within a package, classes are free to access elements of other classes wgahbto re
public, protected, andprivate declarations.

Theimport declaration is used to makhe name of a class from another package
available in the current compilation:

i mport fp.os. Thread;
Thread p = new Schedul er();

Assertions

Oak has a set ohéilities that allav assertions to be made about the kidnaf programs.
These allav extensive checking and a corresponding increase in the reliability of
programs. Adiled assertion thms an Assertion&iledException (see “Exceptions” on
page 27).

Oak automatically carerts assertions intxeeption traps and ensures that such checks
are consistently and completely incorporated.

Constraints on Class Variables

Theassert keyword can be used to declare a set of constraints on eldables. This
enables concise documentation of a class desfiméentions. The annotations also gerv
as a binding contract between a class designer and a class maintainer

While objects are not required to ghtbe legality constraints within methods, the

constraints are enforced at the entry axitlad every public method. All public methods
can &pect to operate on a coherent object ane ltlae responsibility of restoring

Language Specification Confidential

7.2

8.1

7.2 Expressions November 9, 1993 11:38 am © firstperson, inc.

coherence before finishing. The fallimg example shws hav to useassert to constrain
the \alues of tvo instance ariables.

cl ass Cal ender ({
static int |astDay[12]=
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int month assert(month >=1 && nmonth <=12);
int date assert(date>=1 && dat e<=| ast Day[nont h]);

}

Preconditions and Postconditions

The behwior of a method can be specified by a set of preconditions that must hold before
the method bgins and a set of postconditions that must hold after it finishes.

class Stack {

int length;

El ement el ement[];

int sizeof() {}

int full();

int enpty() { return | ength==0; }

El ement pop() {
precondition: !'enpty();
postcondition: !full();

voi d push(EIenent x) {
precondition: !'full();
post condi tion: !enmpty();

}
}

Preconditions and postconditions are inherited by subclasses: methaidden by a
subclass must olgehe preconditions and postconditions of their superclass.

Expressions

Expressions in Oak are muchdikpressions in C.

Operators

The Oak operators, from highest tavkst priority, are:

[]

++ -- | ~ instanceof new cl one
* [%

+ -

<< >> >>>

< > <= >=

== | =

& (bi nary)

N

Language Specification Confidential 23

24

8.11

8.1 Expressions November 9, 1993 11:38 am © firstperson, inc.

Operators on Integers

If any operand idong, then the result type Isng. Otherwise the result typeiist. When

a result outside an operawrange wuld be produced, the result is reduced modulo the
range of the result type.

Table 1. Unary Integer Operators; opinteger L] integer

Operator Operation

- unary negation
~ bitwise complement

Table 2. Binary Integer Operators: integer op integer 0 integer

Operator Operation
+ addition
- subtraction
* multiplication
/ division
% modulus
& bitwise AND
| bitwise OR
A bitwise XOR
<< left shift
o> sign-propagating
right shift
>>> zero-fill right shift

Integer division rounds tavard zero. Diision and modulus olyehe identity(a/ b) *b +
(a%) == a. Although it may not be afious that% could overflow, it does for a zero
divisor.

An op= assignment operator corresponds to each of the binary operators invlie abo
table.

The intger relational operators >, <=, >=, ==, and!= produceboolean results. The
cannot oerflow.

Language Specification Confidential

8.1.2

8.1.3

Double precision and special
mathematical values are not
implemented yet.

8.14

In the current implementa-
tion, the left hand side of an
op= operator gets re-evaluat-
ed. Thisisabug

8.1.5

This may be replaced by an opera-
tor that is more dynamic. And it
may become a method.

8.1 Expressions November 9, 1993 11:38 am © firstperson, inc.

Operators on Boolean Values

Variables or gpressions that af@ooleancan be combined to yield othieooleanvalues.
The unary operatdris boolean ngation. The binary operatoés, |, and" are the logical
(not bitwise) AND, OR, and XOR operators; yHferce avaluation of both operandsoT
avoid evaluation of right-hand operands, you can use the shortralutagion operators

&& and||. You can also use == and !=. Sifmmleanvalues are ordered, you can use the
relational operators, >, <=, and>=. The assignment operators alsork &=, |=, "=.

Operators on Floating Point Values

Floating point alues can be combined using the usual operators: unhiyary+, — *,
and/; and the assignment operaters —=, *=, and/=. Floating point gpressions
involving only single-precision operands avaleated using single-precision operations
and produce single-precision results. Floating poiptessions that irolve at least one
double-precision operand areatiated using double-precision operations and produce
double-precision results. Floating point operations cannot causpt®ns, bt they can
produce the speciablues of Infinity or (non-signaling) Not-a-Numb&pecial
mathematical alues are documentedk nowhere yet>>.

The usual relational operators are algailable, and produdeooleanresults>, <, >=,
<=, ==, I=. Because of the properties of Not-a-Numlfleating point @alues are not fully
ordered, so care must be ¢akin comparison.d¥ instance, ii<b is not true, it
paradoxically does not foNethata>=b. Likewise,a! =b does not imply thaa>b | |

a<b. In fact, there may no ordering at all.

Operators on Character Arrays

The operatot concatenates arrays of characters, automaticallectimg operands if
necessary

float a = 1.0;

prints("The value of ais " + a + "\n");
prints("" + 1.01 + 2 + "\n");
prints(1.01 + 2 + "\n");

The value of ais 1
1.012
3.01

Operators on Objects

The unary operatarloneis applied to an object instance. It atomically allocates space for
a nav object of the same type and copies the contents okiting object into it, making

the nev object a perfect cgpof the old one. This is normally used insidav to clone the
prototype of some class, before applying the initializers (constructors).

The binary operatdnstanceoftests whether the specified object is an instance of the
specified class or one of its subclasses. For example,

Language Specification Confidential 25

8.2

9.1

Not implemented yet.

9.2

9.3

26

8.2 Statements November 9, 1993 11:38 am © firstperson, inc.

(thernostat instanceof MeasuringDevice)

determines whether thermostat is a Measurinvgi®eobject (an instance of
MeasuringDeice or one of its subclasses).

Casts and Conersions

Oak protects agjnst doing aything illegal. Integers and floating point numbers can be

cast back and forthubintegers cannot be cast to pointers. An object reference can be cast
to a superclass with no penal§asting to a subclass generates a runtime check, which
raises the walidClassCastExceptidhthe object is not, in fact, an instance of some
subclassUse thdnstanceofoperator to determine whether such goeption would be

raised for a cast.

Corversions between the arithmetic types might be atbekd rceptions might be

raised for range violations. C programmers should be especialhe dhat casting
betweerint andunsignedis not a simple re-interpretation of a bit pattern.

Statements

Declarations

Declarations can appearyavhere that a statement is alled. The scope of the
declaration ends at the end of the enclosing block.

In addition, declarations are alled at the head dbr statements, as sha belaw:

for (int i = 0; i<10; i++)

Expressions

As in C, &pressions are statements:
a = 3
print(23);

Control flow

Again, this is just like C:

i f (bool ean) statemnent
el se statenent

switch(el) {
case e2: statenents

Language Specification Confidential

9.4

9.4 Statements November 9, 1993 11:38 am © firstperson, inc.

default: statenents

}

br eak;

goto | abel;

conti nue;

return el;

for(el; e2; e3) statenent
whi | e(bool ean) st at enment

do statenent
whi | e(bool ean) ;

Exceptions!

When an error occurs in an Oak program—iaraple, when an gument has an valid
value—the code that detects the error tteow an exception. By dedult, exceptions
result in the program terminating. Wever, programs can defirexception handlers that
catch the exception and rear from the error

Some &ceptions are thmen by the Oak runtime. Heever, ary class can define itsvm
exceptions and cause them to occur ushrgw statement. Ahrow statement consists of
thethrow keyword followed by an object. By ceention, the object should be an instance
of GenericException or one of its subclasses.thhew statement causegezution to
switch to the appropriatexeeption handlerAny code follaving thethrow statement is

not executed, and noalue is returned by its enclosing method.

cl ass Ceneri cException. MyException {};

if (/* no error occurred */)
/* do sonething */

el se
t hr ow new MyException();

To define anxception handlethe program must first surround the code that can cause the
exception with ary statement. After thiy statement come one or mach clauses—

one per gception class that the program can handle at that point. Ircatthclause is
exception handling code. oF example:

try {
p.a = 10;

} catch (Nyll PointerException e) {
prints(p was null\n’);

1. Oaks exception handling closely foles the proposal in the second editioThé C++ Programming
Language, by Bjarne Stroustrup.

Language Specification Confidential 27

9.4 Statements November 9, 1993 11:38 am © firstperson, inc.

A catch clause is lik a method definition wittxactly one parameter and no return type.
When an gception occurs, the runtime system searches the riegtedtch clauses. The
first one that has a parameter type that matches the type of tive tibject has itsatch
clause gecuted. After theatch clause gecutes, xecution resumes after thwy /catch
statement. It is not possible for axception handler to resumgeeution at the point that
the exception occurred.

For example, this code fragment:

class Foo {};

pri nts("now ");
try { s

throw new Foo();
prints(a);

} catch(Fog p) {
prints(the);

prints("time\n");

prints “naw is the time”. As thisxample shws, exceptions dort’have to be used only for
error handling, bt ary other use is bound to cause confusion.

Exception handlers can be nested,veilhy exception handling to happen in more than
one place. @ pass xception handling up to the xtehigher handleruse thehr ow
keyword without specifying a GenericException instance. Note that the method that
rethravs the &ception stops»acuting after théhr ow statement; it neer returns.

finally isn't implemented ye The following example shars the use of finally statement that is useful for guaranteeing
that some cleanup code gexeeuted:

try {
/* do sonething */
} finally {

/* clean up after it */

}

is the same as:

try {
/* do sonething */

} catch(Object e){
/* clean up after it */
t hr ow,

/* clean up after it */

28 Language Specification Confidential

10

9.4 Garbage Collection November 9, 1993 11:38 am © firstperson, inc.

Garbage Collection

The Oak g@rbage collector mas most aspects of storage management simple amst.rob
Applications neer need toxlicitly free storage: it is done for them automaticallige
garbage collector mer frees pieces of memory that are still referenced, andatalfrees
pieces that are not. This meskboth dangling pointeubys and storage leaks impossible. It
also frees designers fromuirag to figure out which parts of a systenvéo be
responsible for managing storage.

The garbage collector also does compaction: it copies all objects todghelrey of the
heap, coalescing free space in ongdarhunk at the end. This eliminates the loss of free
space due to fragmentation.

The algorithm used is aifly corventional mark-and-sweep<refer to some old lisp

book, like the Lisp 1.5 manual>> with modifications for compaction and asynchronous
operation.

Language Specification Confidential 29

30

9.4 Garbage Collection

Language Specification

November 9, 1993 11:38 am

Confidential

© firstperson, inc.

