
Specification

Oak

Confidential

 © firstperson, inc.

2 Confidential

Contents iii

Confidential

Contents
Oak is.... 5

Program Structure. 7

Lexical Issues. 8
Comments 8
Identifiers 8
Keywords 9
Literals 9

Integer Literals 9
Floating Point Literals 9
Boolean Literals 9
Character Literals 10

Operators and Miscellaneous Separators 10

Types . 10
Integer Types 10
Floating Point Types 11
Boolean Types 11
Character Types 12
Arrays 12
Types Created with the typedef Keyword 12

Classes. 13
Instance Variables 14
Methods 15
Overriding and Overloading Methods 15
Used before Set 16
Static Variables and Methods 16
Volatile Variables 17
Transient Variables 17
Final Classes and Methods 17
Properties of Variables 17

iv Oak Specification—11/9/93

Confidential

Access to Variables and Methods 18
Variables with Public-Key Seals 18
Synchronized Methods 19
Constructors 19
Order of Declarations 20

Interfaces. 21

Packages . 22

Assertions. 22
Constraints on Class Variables 22
Preconditions and Postconditions 23

Expressions. 23
Operators 23

Operators on Integers 24
Operators on Boolean Values 25
Operators on Floating Point Values 25
Operators on Character Arrays 25
Operators on Objects 25

Casts and Conversions 26

Statements. 26
Declarations 26
Expressions 26
Control flow 26
Exceptions 27

Garbage Collection. 29

Appendix: Floating Point. 31
Special Values 31
Binary Format Conversion 31
Ordering 32
Precision 32
Summary of IEEE-754 Differences 32

© firstperson, inc. 1993 Confidentiall 7

November 9, 1993 11:38 am
Preliminary

Language Specification

1 Program Structure

The source code for an Oak program consists of one or more files with the “.oak” suffix.
Each file can contain only the following (in addition to white space and comments):

• import statements

• class definitions (see “Classes” on page 13)

• interface definitions (see “Interfaces” on page 21)

• main code

Main code is Oak code that isn’t associated with an object. Generally, main code simply
serves to get a program underway, by creating one or more objects and starting their
execution. Oak main code is analogous to the C main() routine. For example, variables
defined in main code are local to the main code; they cannot be used by classes defined in
the same file. Exactly one file per program can contain main code.

When an Oak source file is compiled, several files containing Oak bytecode can be
created. Specifically, the compiler creates one bytecode file per class, with each file named
after its class with an additional “.class” suffix. The compiler also creates one bytecode
file for the main code; by default, this file is named after the Oak source file containing the
main code, without the “.oak” suffix.

When Oak bytecode is interpreted, the Oak runtime system checks a predetermined class
path for each class used in the program. When the runtime system finds the file containing
the class bytecode, it loads the class definition. Each class in a program is searched for at
most once each time the program runs; subsequent references to the class are immediately
resolved. See the oak(1) man page for more information on class paths and the Oak
compiler and interpreter.

Notes about the current im-
plementation are off to the
side.
Future Oak development en-
vironments might use a dif-
ferent compilation unit than
files.

2.1 Lexical Issues November 9, 1993 11:38 am © firstperson, inc.

8 Language Specification Confidential

2 Lexical Issues

During compilation, the characters in an Oak source file are reduced to a series of tokens.
Oak has five kinds of tokens: identifiers, keywords, literals, operators, and miscellaneous
separators. Comments and white space such as blanks, tabs, and line feeds are not tokens,
but they often are used to separate tokens.

Oak programs are written using the Unicode character set, or some character set that is
converted to Unicode before being compiled.

 2.1 Comments

Oak has three kinds of comments:

// text All characters from // to the end of the line are ignored.

/* text */ All characters from /* to */ are ignored.

/** text */ Like /* ...*/ , except that these comments are treated
specially when they occur immediately before a
declaration. These comments indicate that the enclosed
text should be included in automatically generated
documentation as a description of the following
declaration. See <<wherever the oakc -doc option is
documented>> for information on automatically
generating documentation.

 2.2 Identifiers

Identifiers must start with a letter and can contain letters, digits, and underscores (“_”).
Since Unicode is a large character set that is hard to characterize, the definition of a letter
is difficult. For the part of Unicode that overlaps ISO-Latin-1, letters are the characters
“A” through “Z”, “a” through “z”, and all the accented characters. Other characters valid
after the first letter of an identifier include every character except those in the segment of
Unicode reserved for special characters.

Thus “garçon” and “Mjølner” are legal identifiers, but strings containing characters such
as “¶” are not.

Unicode source files aren’t al-
lowed yet because there’s no
editor/development environ-
ment to generate them. In-
stead, ASCII input is
accepted.

Unicode identifiers aren’t im-
plemented yet. Instead, iden-
tifiers are ASCII and follow
the C rules.

2.3 Lexical Issues November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 9

 2.3 Keywords

The following identifiers are reserved for use as keywords. They must not be used in any
other way.

 2.4 Literals

Literals are the basic representation of any integer, floating point, boolean, or character
value.

2.4.1 Integer Literals

Integers can be expressed in decimal (base 10), hexidecimal (base 16), or octal (base 8)
format. A decimal integer literal consists of a sequence of digits (optionally suffixed as
described below) without a leading zero (0). If an integer literal begins with 0x, it is
interpreted as a hexidecimal integer. If a nonzero literal begins with 0, it is interpreted as
an octal integer. Hexidecimal integers can include digits (0-9) and the letters a-f and A-F.
Octal integers can include only the digits 0-7.

The type of an integer literal is the narrowest integer type that it fits in (see “Integer
Types” on page 10). A literal can be forced to be long by appending an L or l to its value.

2.4.2 Floating Point Literals

A floating point literal consists of a decimal integer, a decimal point, a fraction part
(another decimal number), an exponent part, and an optional type suffix. The exponent
part is an e or E followed by an integer, which can be signed.

As described in “Floating Point Types” on page 11, Oak has two floating point types: float
(32 bits, also known as single precision) and double (64 bits, known as double precision).
You specify the type of a floating point literal as follows:

2.0d or 2.0D double
2.0f or 2.0F or 2.0 float

Specifying too many significant digits for a single precision literal is an error.

2.4.3 Boolean Literals

The boolean type has two literal values: true and false. See “Boolean Types” on page
11 for more information on boolean values.

break
byte
case
catch
char
class
clone
const

continue
default
do
double
else
enum
final
float

for
goto
if
instanceof
int
interface
long
new

private
protected
public
return
short
static
switch
synchronized

throw
transient
try
typedef
unsigned
void
volatile
while

Not every keyword has been
completely implemented yet.

enum might go away.

instanceof will probably be-
come a method instead of a
keyword.

unsigned isn’t implemented
yet.

void might go away.

Type determination is not imple-
mented yet. Forcing literals to be
long is not implemented yet.

Double precision, NaN, Inf,
and the type suffixes are not
implemented yet.

2.5 Types November 9, 1993 11:38 am © firstperson, inc.

10 Language Specification Confidential

2.4.4 Character Literals

A character literal is a character (or group of characters representing a single character)
enclosed in single quotes. Characters have type char and are drawn from the Unicode
character set (see “Character Types” on page 12).

An array of characters can be represented by a sequence of characters between double
quotes. For example, "hello world\n" is a literal array of characters.

 2.5 Operators and Miscellaneous Separators

The following characters are used in Oak source code as operators or separators:

+ – ! % ^ & * | ~ / > < () { } [] ; : , .

In addition, the following character combinations are used as operators:

++ –– == <= >= != += – = *= /= &= |= ^= %= <<= >>=
>>>= &= &= &= || && << >> >>>

3 Types

Every variable and every expression has a type. Type determines the allowable range of
values a variable can take on, allowable operations on those values, and the meanings of
the operations. A number of built-in types are provided by the Oak language.
Programmers can compose new types using the class mechanism (see “Classes” on page
13) and, in a limited way, using typedef.

Oak has two kinds of types: simple and composite. Simple types are those that cannot be
broken down; they are atomic. The simple types are all integer, floating point, boolean, or
character types. Composite types are built on simple types. Oak has three kinds of
composite types—arrays, types created with typedef, and classes. Simple types, arrays,
and typedef are discussed in this section. Classes are discussed in “Classes” on page 13.

 3.1 Integer Types

Integers in Oak are similar to those in C and C++, with two exceptions: all integer types
are machine independent, and some of the traditional definitions have been changed to

Character literals are currently im-
plemented much like in C. When
Unicode support is implemented,
escape sequences will change.

Unicode support is not imple-
mented yet. Some or all strings
might become objects.

Not implemented yet.

3.2 Types November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 11

reflect changes in the world since C was introduced. The four integer types are signed
unless prefixed by the unsigned modifier and have widths of 8, 16, 32, and 64 bits.

A variable’s type does not directly affect its storage allocation. Type only determines the
variable’s arithmetic properties and legal range of values. If a value is assigned to a
variable that is outside the legal range of the variable, then the value is reduced modulo the
range.

 3.2 Floating Point Types

The float keyword denotes single precision (32 bit); double denotes double precision (64
bit). The result of a binary operator on two floats is a float. If either operand is a double,
the result is a double.

Floating point arithmetic and data formats are defined by IEEE 754. See “Appendix:
Floating Point” on page 31 for details on Oak’s floating point implementation.

 3.3 Boolean Types

The boolean type is used for variables that can be either true or false, and for methods
that return true and false values. It’s also the type that is returned by relational
operators such as >.

Although boolean values are ordered, with false < true, booleans aren’t numbers.
They can’t be converted into numbers by casting.

Width Name Comments

8 byte

The Oak byte type is what C programmers are used to
thinking of as the char type. But in Oak, characters are
16 bits wide. Having a separate byte type removes the
confusion in C between the interpretation of char as an
8 bit integer and as a character.

16 short In C, the width of short is generally 16 bits, but the spec-
ification says it can be larger.

32 int

An int in Oak is always 32 bits wide. In C, the width of
int is implementation defined and is most often 32 bits,
but is sometimes 16 bits, and has been other values (such
as 60).

64 long

Oak’s definition of long is a break from the C tradition
that specifies that long is 32 bits and long long is 64 bits.
With the standardization of int to mean 32 bits, it is re-
dundant to have two types with the same meaning and
unnecessary to have such an odd type name for 64 bits.

Value reduction is not imple-
mented yet.

double not implemented yet.

3.4 Types November 9, 1993 11:38 am © firstperson, inc.

12 Language Specification Confidential

 3.4 Character Types

Oak uses the Unicode character set throughout. Consequently the char data type is
defined as a 16 bit, unsigned integer (unsigned short). Character strings are implemented
with the string type (see “Arrays” on page 12).

 3.5 Arrays

Oak includes support for arrays—sets of ordered data items. Arrays are referred to and
passed by reference.

Oak checks subscripts to make sure they’re valid:

int a[10];
a[5] = 1;
a[11] = 2;/* ERROR */

Array dimensions can be integer expressions:

void doIt(int n) {
float arr[n];
...

}

The length of any array can be found by using .length:

int a[10][3];
prints(a.length + ", " + a[0].length + "\n");

10, 3

Arrays are allocated either where they’re declared (by specifying the dimensions of the
array when it is declared) or dynamically with the new keyword:

int a[];
a = new int[10];
Raster foo[];
foo = new Raster[10]; //creates an array, but not the

//Raster objects in the array.
foo[1] = new Raster("blah.jpg");

 3.6 Types Created with the typedef Keyword

Programmers can define new, nonclass types using the typedef keyword. Types defined
with typedef are not globally defined; instead, they are defined only within the scope of
the class that contains the typedef statement. To use such a type in another class that is not
a subclass, the programmer specifies the class and the type name together. For example,
assume a class named AClass defines a type aType. A class that is not a subclass of AClass
would define a variable named x with type aType as follows:

AClass.aType x;

Unicode not implemented
yet. Characters currently have
ASCII values.

The prints operator is one of
a group of function- and con-
stant-like operators whose
functionality will eventually
be moved into classes. This
API is documented
<<where?>>.

Although arrays can be creat-
ed with new, just as instances
of classes are created, arrays
are not currently objects.

The typedef keyword and
functionality might go away.

3.6 Classes November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 13

Types defined with typedef can be thought of as synonyms for simple types, arrays, or
existing classes. In particular, Oak doesn’t support the C struct and union keywords, so
the only way to create a type with multiple types of data fields is to create a class.

4 Classes

Classes represent the classical object oriented programming model. They support data
abstraction and implementations tied to data.

To make a new class, the programmer must base it on an existing class. The new class is
said to be derived from the existing or base class. The derived class is also called a
subclass of the other, which is sometimes known as a superclass. Class derivation is
transitive: if B is a subclass of A, and C is a subclass of B, then C is a subclass of A.

If a class B is a subclass of A, then a value of B can be used as a value of A. In fact, if there
is no ambiguity, then no explicit cast is needed. If a value of class A needs to be used as if
it were of class B, the programmer can write a type conversion or cast. Conversions from a
base to a derived class are always checked.

Oak supports only single inheritance, but some advantages of multiple inheritance are
supported through the use of interfaces (see “Interfaces” on page 21). Instances of classes
are stored in a garbage collected heap (see “Garbage Collection” on page 29), and the
actual stack variable is an object reference.

The base class of a class and the interfaces that the class implements (if any) are indicated
in the class definition by the keywords extends and implements:

class classname extends superclassname
implements interface1, interface2{

/* . . . */
}

Every class except the root class has exactly one base class. Unlike in C++, all Oak classes
are derived from a single root class: Object. If a class is defined without specifying a base
class, Object is assumed. For example, the following

class point {
float x, y;

}

is the same as

class point extends Object{
float x, y;

}

To limit the scope of a class definition, classes can be defined inside of classes.

Interfaces not implemented
yet.

Not implemented yet.

4.1 Classes November 9, 1993 11:38 am © firstperson, inc.

14 Language Specification Confidential

class MyClass {
class Helper {

/* . . . */
}
Helper helper;

}

 4.1 Instance Variables

Instance variables are declared just like any other variable. They can be of any type and
can have initializers. These initializers are executed when the instance is initialized. An
example of an initializer for an instance variable named j follows.

class a {
int j = 23;

}

Inside the scope of an instance of a class, the name this represents the current object. For
example, an object may need to pass itself as an argument to another object’s method:

class Foo {
 /* . . . */
 otherObject.Method(this);
 /* . . . */

Any time a method refers to its own instance variables or methods an implicit this. is in
front of each reference:

class Foo {
 int a, b, c;
 /* . . . */
 prints(a + "\n"); // a == "this.a"

Instance variable accesses can be overloaded with methods based on the name of the
variable, as follows:

class Foo {
int a;

// Get...
int a() { return a; }

// Set...
void a(int v) { this.a = v; }

}
Foo p;
p.a = 3; // equivalent to p.a(3)
i = p.a; // equivalent to i = p.a();

Overloading variable access allows classes to evolve by hiding the distinction between
instance variables and accessor methods. For example, a point data type could be
implemented as either polar or cartesian coordinates, without the client being aware of the
distinction, and while retaining the convenient instance variable access syntax.

Overloading variable access
with method access is not im-
plemented yet.

4.2 Classes November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 15

Changing variable access to method access does not require separately compiled modules
to be recompiled. For example, assume you have a class A defined in file A.oak and a
class B defined in B.oak, and B references a variable in an A object. If A is changed so
that the referenced variable changes from being an instance variable to being a pair of
accessor methods, B.oak does not need to be recompiled. The runtime system handles the
change transparently.

 4.2 Methods

A method is a function defined within a class. A method definition must follow this form:

[returntype] methodname (<parameter list>) {
 <method body>
}

The above form means that methods must:

• Have a return type if the method returns a value. If the method does not return any
value, it must either have a void return type or no return type.

• Have a parameter list—the parameter list should be empty if the method has no
parameters.

• Have a body—the body can be null.

 4.3 Overriding and Overloading Methods

Oak allows polymorphic method naming—defining a method with a name that has already
been used in the class or its superclass—for overriding and overloading methods.
Overriding means providing a different implementation of an inherited method.
Overloading means defining a method that has the same name and return type as another
method, but a different parameter list.

Note: Return types are not used to distinguish methods. In each scope, methods that have
the same name and parameter list must return the same type.

To override a method, a subclass of the class that originally defined the method must
define a method with the same name, return type (or a subtype), and parameter list. When
the method is invoked on an instance of the subclass, the new method is called rather than
the original method.

To overload a method, a class defines a method that has the same name and return type as
another method (which has been defined in the class or in one of its superclasses), but a
different parameter list. Oak resolves which method to call by matching the actual
parameter list (the parameter list passed to the method) against the formal parameter lists
of all methods with the same name.

class A {
void Thermostat(Foo f) {}

}
class B extends A{

You must currently specify a re-
turn type, even if the method
doesn’t return a value.

4.4 Classes November 9, 1993 11:38 am © firstperson, inc.

16 Language Specification Confidential

void Thermostat(Foo f) {} // override
void Thermostat() {} // overload
int Thermostat() {} // ERROR: Duplicate method

}

When deciding which method to invoke, the runtime system computes the number of
conversions required to change the actual parameter list into the types declared in each
method’s formal parameter list. The method that requires the fewest conversions is
chosen. If there is a tie, the method call is ambiguous and an exception occurs.

 4.4 Used before Set

Methods are rigorously checked to be sure that all local variables (variables defined inside
a method) are set to something before they are referenced. Used-before-set is a fatal
compilation error.

 4.5 Static Variables and Methods

Variables and methods defined in a class can be declared static, which makes the same
implementation apply to every object in the class and to the class itself. Unlike instance
variables, static variables have the same value, no matter what instance of the class is used
to obtain them. As shown in the following code example, both static variables and static
methods can also be accessed using the class name, instead of using an instance of the
class.

class Ahem {
int i; // Instance variable
static int j; // Static variable
void seti(int I) { i = I; }// Instance method
static void setj(int J) { j = J; } // Static method

};

Ahem a = new Ahem();
a.j = 2; /* valid; static var via instance */
Ahem.j = 3; /* valid; static var via class */
a.setj(2); /* valid; static method via instance */
Ahem.setj(3); /* valid; static method via class */
a.i = 4; /* valid; instance var via instance */
Ahem.i = 5; /* INVALID; instance var via class */
a.seti(4); /* valid; instance method via instance */
Ahem.seti(5); /* INVALID; instance method via class */

A static variable exists only once per Oak application, no matter how many objects of the
class exist in the application. For distributed applications that run in multiple address
spaces, each application has one occurrence of the static variable. When you refer to a
static variable relative to some object (for example, obj.aVar) the static variable aVar is
fetched from the address space where obj resides. To achieve synchronized access to
static variables, you have to use a static method (see “Synchronized Methods” on page
19).

Not implemented yet.

Not completely implemented.

4.6 Classes November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 17

Static variables can have initializers, just as instance variables can. These initializers are
executed just before the first runtime use of the class, before any instances are created. You
can add a code fragment to be executed at the same time the static variables are initialized,
as shown in the following example.

class A {
static int arr[12];
static { /* initialize the array */

int i;
for (i = 0; i<arr.length; i++)

arr[i] = i;
}

}

Static methods cannot refer to instance variables; they can only use static variables.

 4.6 Volatile Variables

Variables marked volatile are treated specially by the optimizer. The values of volatile
variables are never cached in registers and are always re-read when referenced. Variables
should be marked volatile when they might be changed by means undetectable by the
compiler, such as by another thread or device.

 4.7 Transient Variables

Variables marked transient are treated specially when instances of the class are written
out to the file system. Specifically, the values of transient variables are not written out.

 4.8 Final Classes and Methods

The final keyword should be used for classes that cannot be superclasses and for methods
that cannot be overridden. Using final lets the compiler perform a variety of optimizations.
One such optimization is inline expansion of method bodies, which is done for small and
final methods (where the meaning of small is implementation dependent).

 4.9 Properties of Variables

Instance and static variables can be assigned user defined properties. The syntax is

prop(connection) Raster v;

which declares v to be an instance of class Raster that has the connection property.
Properties are used by a variety of different runtime packages. For example, the
development environment uses the connection property to label variables that are
connections to other objects that the editor can hook up to other objects.

Not implemented yet.

Not implemented; experimental.

Not implemented yet. Not implemented yet. Not implemented yet.

4.10 Classes November 9, 1993 11:38 am © firstperson, inc.

18 Language Specification Confidential

 4.10 Access to Variables and Methods

Each variable or method defined in a class has one of the following types of access:
public, protected, or private. These access types affect whether the variable or method
can be used by other classes.

Note: All classes in the same package can use all variables and methods defined in the
classes in that package, regardless of public, protected, and private declarations (see
“Packages” on page 22).

By default all variables and methods in a class are protected. Protected variables and
methods can be accessed only by methods defined in the class and its subclasses, and not
by other classes (except for classes in the same package). Public variables and methods—
those declared with the public type modifier—can be accessed by anyone. The private
type modifier makes a variable or method inaccessible even to subclasses (except those in
the same package).

The following example shows how to specify access.

class Stuff {
int i; /* protected by default */
public int j; /* visible to everyone */
private int k; /* not even subclasses

see this */
void method1() { }/* protected by default */
void public method2() { }//public
static private void method3() { } //private
private static void method4() { }//private; alternate

word order
};

Access to variables can also be controlled with public-key seals.

 4.11 Variables with Public-Key Seals

Access to an instance or static variable can be enforced by the use of a public-key seal. A
seal is like an unforgeable1 stamp that can be placed on an object module. These seals
have a variety of meanings:

upgrade If a new module arrives that is to be installed as an upgrade to the
current one, the new module must have been sealed with the same
private key.

requires States that this module (or a particular instance or static variable)
requires that client modules have a corresponding has seal.

has States that this module has permission to use interfaces that require this
seal.

When a sealed class or a class with sealed variables is compiled, the private key specified
by the name following the word seal is used to place a requires seal on the object module.

1. Made unforgeable through the use of RSA public key encryption and MD5 message digests.

Not implemented; experi-
mental. The public key
stuff is especially subject to
change.

4.12 Classes November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 19

 4.12 Synchronized Methods

The synchronized access specifier marks a method as being required to run in the
monitor, so that it does not run at the same time as another method that needs access to the
same resource. (The other method must also be declared synchronized.) For more
information on synchronized, see the section on class Thread in the class documentation.

 4.13 Constructors

Constructors are special methods provided for initialization. They are distinguished by
having the same name as their class. Constructors are automatically called upon the
creation of an object. They cannot be called explicitly through an object. Constructors do
not have any return value.

Constructors can be overloaded by varying the number and types of parameters, just as
any other method can be overloaded.

Class Foo {
int x;
float y;
Foo() { x=0; y=0.0; }
Foo(int a) { x=a; y=0.0; }
Foo(float a) { x=0; y=a; }
Foo(int a, float b) { x=a; y=b; }

}

Foo obj1 = new Foo(); //calls Foo();
Foo obj2 = new Foo(4); //calls Foo(int a);
Foo obj3 = new Foo(4.0); //calls Foo(float a);
Foo obj4 = new Foo(4, 4.0);//calls Foo(int a, float b);

Before the constructor is called, storage for an instance is atomically allocated and
initialized to be a copy of the prototype for the class.

Instance variable initializations (see “Instance Variables” on page 14) are effectively
turned into code that is prepended to all constructors. (Static variable initializations are
executed at a different time, as described in “Static Variables and Methods” on page 16.)

class a {
long n = 42;
static long k = 99;

}

class Foo {
int a;
Foo(float a, int b) { this.a = a * b; }
Foo(int a) { this.a = a; }

}
Foo z = new Foo(.4, 100);

Method discrimination based
on int versus float doesn’t
work.

4.14 Classes November 9, 1993 11:38 am © firstperson, inc.

20 Language Specification Confidential

The instance variables of superclasses are initialized by calling either the constructor for
the base class or a constructor for the current class. If neither is specified in the code,
“super();” is assumed. Calling a constructor must be the first thing in the method body;
calling a constructor later is illegal.

Invoking a constructor in the base class is done as follows:

super(parameters); /* Call base class constructor */

Invoking a constructor in the current class is done as follows:

this(parameters); /* Call constructor from this
class. Normally this is only
done when there are multiple
constructors, all having
different parameter lists */

The Foo and FooSub methods below are examples of constructors.

class Foo extends Bar{
int a;
Foo(int a) {

// implicit call to Bar()
this.a = a;

}
Foo(){

this(42); // no implicit call to Bar()
}

}

class FooSub extends Foo{
FooSub(int a, int b) {

super(13); // calls Foo(13); without this line,
// would have called Foo()

this.b = b;
}

}

 4.14 Order of Declarations

The order of declaration of classes and the methods and instance variables within them is
irrelevant. Methods are free to make forward references to other methods and instance
variables. The following works:

class A {
void a() { f.set(42); }
B f;

}
class B {

void set(long n) { N = n; }
long N;

}

4.14 Interfaces November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 21

5 Interfaces

 An interface specifies a collection of methods without defining their bodies. Interfaces
provide encapsulation of method protocols without chaining the implementation to one
inheritance tree. When a class implements an interface, it must implement the bodies of all
the methods described in the interface. (If the implementing class is abstract—never
instantiated—it can leave the implementation of some or all methods to its subclasses.)
Using interfaces allows several classes to share a programming interface without having to
be fully aware of each other’s implementation. The following example shows an interface
definition (with the interface keyword) and a class that implements the interface.

interface Storing {
void FreezeDry(Stream);
void Reconstitute(Stream);

}

class Raster implements Storing, Painting {
...
void FreezeDry(Stream s) {

/* JPEG compress image before storing */
...

}

void Reconstitute (stream s) {
/* JPEG decompress image before reading */

}
}

The declaration syntax classname<interfacename> declares a variable to be an instance of
some subclass of classname that implements interfacename. This lets the programmer
specify that an object must implement a given interface, without having to know the exact
type or inheritance of that object. Using interfaces makes it unnecessary to to force related
classes to share a common abstract superclass or to add methods to Object just to
guarantee that many classes implement the same methods.

class StorageManager {
Stream stream;
...
void Pickle(Object<Storage> obj) {

obj.FreezeDry(stream);
}

}

Interfaces solve some of the same problems that multiple inheritance does without as
much overhead at runtime. However, because interfaces sometimes involve dynamic name
lookups, there is often a small performance penalty to using interfaces.

Interfaces not implemented
yet.

7.1 Packages November 9, 1993 11:38 am © firstperson, inc.

22 Language Specification Confidential

6 Packages

 Packages are groups of classes. They are a tool for managing a large namespace of classes
and avoiding conflicts. Every class name is contained in some package. A package may be
nested in some other package, or it may be a root package. Root package names generally
correspond to organizations (corporations, schools, or governments) developing software.
Subpackages generally correspond to suborganizations, projects, or products.

The package declaration defines the name of the package that all subsequent class
definitions should be placed in:

package fp.os;
class Thread {

...
}

Each file is required to have a package statement at the beginning, and no other package
statements. A package name can be associated with a public/private key pair used to
control who is allowed to write classes that become part of a package.

Within a package, classes are free to access elements of other classes without regard to
public, protected, and private declarations.

The import declaration is used to make the name of a class from another package
available in the current compilation:

import fp.os.Thread;
Thread p = new Scheduler();

7 Assertions

Oak has a set of facilities that allow assertions to be made about the behavior of programs.
These allow extensive checking and a corresponding increase in the reliability of
programs. A failed assertion throws an AssertionFailedException (see “Exceptions” on
page 27).

Oak automatically converts assertions into exception traps and ensures that such checks
are consistently and completely incorporated.

 7.1 Constraints on Class Variables

The assert keyword can be used to declare a set of constraints on class variables. This
enables concise documentation of a class designer’s intentions. The annotations also serve
as a binding contract between a class designer and a class maintainer.

While objects are not required to obey the legality constraints within methods, the
constraints are enforced at the entry and exit of every public method. All public methods
can expect to operate on a coherent object and have the responsibility of restoring

Public/private key protection
is not implemented yet.

Assertions aren’t implement-
ed yet.

7.2 Expressions November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 23

coherence before finishing. The following example shows how to use assert to constrain
the values of two instance variables.

class Calender {
static int lastDay[12]=

{31,29,31,30,31,30,31,31,30,31,30,31};
int month assert(month >=1 && month <=12);
int date assert(date>=1 && date<=lastDay[month]);

}

 7.2 Preconditions and Postconditions

The behavior of a method can be specified by a set of preconditions that must hold before
the method begins and a set of postconditions that must hold after it finishes.

class Stack {
int length;
Element element[];
int sizeof() {}
int full();
int empty() { return length==0; }
Element pop() {

precondition: !empty();
postcondition: !full();

}
void push(Element x) {

precondition: !full();
postcondition: !empty();

}
}

Preconditions and postconditions are inherited by subclasses: methods overridden by a
subclass must obey the preconditions and postconditions of their superclass.

8 Expressions

Expressions in Oak are much like expressions in C.

 8.1 Operators

The Oak operators, from highest to lowest priority, are:

. [] ()
++ -- ! ~ instanceof new clone
* / %
+ -
<< >> >>>
< > <= >=
== !=
& (binary)
^

8.1 Expressions November 9, 1993 11:38 am © firstperson, inc.

24 Language Specification Confidential

|
&&
||
?:
= op=
,

8.1.1 Operators on Integers

If any operand is long, then the result type is long. Otherwise the result type is int. When
a result outside an operator’s range would be produced, the result is reduced modulo the
range of the result type.

Table 1. Unary Integer Operators: op integer ⇒ integer

Table 2. Binary Integer Operators: integer op integer ⇒ integer

Integer division rounds toward zero. Division and modulus obey the identity (a/b)*b +
(a%b) == a. Although it may not be obvious that % could overflow, it does for a zero
divisor.

An op= assignment operator corresponds to each of the binary operators in the above
table.

The integer relational operators <, >, <=, >=, ==, and != produce boolean results. They
cannot overflow.

Operator Operation

– unary negation

~ bitwise complement

Operator Operation

+ addition

– subtraction

* multiplication

/ division

% modulus

& bitwise AND

| bitwise OR

^ bitwise XOR

<< left shift

>> sign-propagating
right shift

>>> zero-fill right shift

8.1 Expressions November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 25

In the current implementa-
tion, the left hand side of an
op= operator gets re-evaluat-
ed. This is a bug

8.1.2 Operators on Boolean Values

Variables or expressions that are boolean can be combined to yield other boolean values.
The unary operator ! is boolean negation. The binary operators & , |, and ̂ are the logical
(not bitwise) AND, OR, and XOR operators; they force evaluation of both operands. To
avoid evaluation of right-hand operands, you can use the short-cut evaluation operators
&& and ||. You can also use == and !=. Since boolean values are ordered, you can use the
relational operators <, >, <=, and >=. The assignment operators also work: &= , |=, ̂ = .

8.1.3 Operators on Floating Point Values

Floating point values can be combined using the usual operators: unary –; binary +, –, * ,
and /; and the assignment operators +=, –=, *= , and /=. Floating point expressions
involving only single-precision operands are evaluated using single-precision operations
and produce single-precision results. Floating point expressions that involve at least one
double-precision operand are evaluated using double-precision operations and produce
double-precision results. Floating point operations cannot cause exceptions, but they can
produce the special values of Infinity or (non-signaling) Not-a-Number. Special
mathematical values are documented <<nowhere yet>>.

The usual relational operators are also available, and produce boolean results: >, <, >=,
<=, ==, !=. Because of the properties of Not-a-Number, floating point values are not fully
ordered, so care must be taken in comparison. For instance, if a<b is not true, it
paradoxically does not follow that a>=b. Likewise, a!=b does not imply that a>b ||
a<b. In fact, there may no ordering at all.

8.1.4 Operators on Character Arrays

The operator + concatenates arrays of characters, automatically converting operands if
necessary.

float a = 1.0;
prints("The value of a is " + a + "\n");
prints("" + 1.01 + 2 + "\n");
prints(1.01 + 2 + "\n");

The value of a is 1
1.012
3.01

8.1.5 Operators on Objects

The unary operator clone is applied to an object instance. It atomically allocates space for
a new object of the same type and copies the contents of the existing object into it, making
the new object a perfect copy of the old one. This is normally used inside new to clone the
prototype of some class, before applying the initializers (constructors).

The binary operator instanceof tests whether the specified object is an instance of the
specified class or one of its subclasses. For example,

Double precision and special
mathematical values are not
implemented yet.

This may be replaced by an opera-
tor that is more dynamic. And it
may become a method.

8.2 Statements November 9, 1993 11:38 am © firstperson, inc.

26 Language Specification Confidential

(thermostat instanceof MeasuringDevice)

determines whether thermostat is a MeasuringDevice object (an instance of
MeasuringDevice or one of its subclasses).

 8.2 Casts and Conversions

Oak protects against doing anything illegal. Integers and floating point numbers can be
cast back and forth, but integers cannot be cast to pointers. An object reference can be cast
to a superclass with no penalty. Casting to a subclass generates a runtime check, which
raises the InvalidClassCastException if the object is not, in fact, an instance of some
subclass. Use the instanceof operator to determine whether such an exception would be
raised for a cast.

Conversions between the arithmetic types might be checked and exceptions might be
raised for range violations. C programmers should be especially aware that casting
between int and unsigned is not a simple re-interpretation of a bit pattern.

9 Statements

 9.1 Declarations

Declarations can appear anywhere that a statement is allowed. The scope of the
declaration ends at the end of the enclosing block.

In addition, declarations are allowed at the head of for statements, as shown below:

for (int i = 0; i<10; i++)

 9.2 Expressions

As in C, expressions are statements:

a = 3;
print(23);

 9.3 Control flow

Again, this is just like C:

if(boolean) statement
else statement

switch(e1) {
case e2: statements

Not implemented yet.

9.4 Statements November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 27

default: statements
}

break;

goto label;

continue;

return e1;

for(e1; e2; e3) statement

while(boolean) statement

do statement
while(boolean);

 9.4 Exceptions1

When an error occurs in an Oak program—for example, when an argument has an invalid
value—the code that detects the error can throw an exception. By default, exceptions
result in the program terminating. However, programs can define exception handlers that
catch the exception and recover from the error.

Some exceptions are thrown by the Oak runtime. However, any class can define its own
exceptions and cause them to occur using throw statement. A throw statement consists of
the throw keyword followed by an object. By convention, the object should be an instance
of GenericException or one of its subclasses. The throw statement causes execution to
switch to the appropriate exception handler. Any code following the throw statement is
not executed, and no value is returned by its enclosing method.

class GenericException.MyException {};

if (/* no error occurred */)
/* do something */

else
throw new MyException();

To define an exception handler, the program must first surround the code that can cause the
exception with a try statement. After the try statement come one or more catch clauses—
one per exception class that the program can handle at that point. In each catch clause is
exception handling code.. For example:

try {
p.a = 10;

} catch (NullPointerException e) {
prints("p was null\n");

}

1. Oak’s exception handling closely follows the proposal in the second edition of The C++ Programming
Language, by Bjarne Stroustrup.

9.4 Statements November 9, 1993 11:38 am © firstperson, inc.

28 Language Specification Confidential

A catch clause is like a method definition with exactly one parameter and no return type.
When an exception occurs, the runtime system searches the nested try /catch clauses. The
first one that has a parameter type that matches the type of the thrown object has its catch
clause executed. After the catch clause executes, execution resumes after the try /catch
statement. It is not possible for an exception handler to resume execution at the point that
the exception occurred.

For example, this code fragment:

class Foo {};

prints("now ");
try {

prints("is ");
throw new Foo();
prints("a ");

} catch(Foo p) {
prints("the ");

}
prints("time\n");

prints “now is the time”. As this example shows, exceptions don’t have to be used only for
error handling, but any other use is bound to cause confusion.

Exception handlers can be nested, allowing exception handling to happen in more than
one place. To pass exception handling up to the next higher handler, use the thr ow
keyword without specifying a GenericException instance. Note that the method that
rethrows the exception stops executing after the thr ow statement; it never returns.

The following example shows the use of a finally statement that is useful for guaranteeing
that some cleanup code gets executed:

try {
/* do something */

} finally {
/* clean up after it */

}

is the same as:

try {
/* do something */

} catch(Object e){
/* clean up after it */
throw;

}
/* clean up after it */

finally isn’t implemented yet.

9.4 Garbage Collection November 9, 1993 11:38 am © firstperson, inc.

Language Specification Confidential 29

10 Garbage Collection

The Oak garbage collector makes most aspects of storage management simple and robust.
Applications never need to explicitly free storage: it is done for them automatically. The
garbage collector never frees pieces of memory that are still referenced, and it always frees
pieces that are not. This makes both dangling pointer bugs and storage leaks impossible. It
also frees designers from having to figure out which parts of a system have to be
responsible for managing storage.

The garbage collector also does compaction: it copies all objects to the beginning of the
heap, coalescing free space in one large chunk at the end. This eliminates the loss of free
space due to fragmentation.

The algorithm used is a fairly conventional mark-and-sweep <<refer to some old lisp
book, like the Lisp 1.5 manual>> with modifications for compaction and asynchronous
operation.

9.4 Garbage Collection November 9, 1993 11:38 am © firstperson, inc.

30 Language Specification Confidential

