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Abstract

Shifted sinusoidal illumination patterns are useful for appearance capture because they simultane-
ously separate local and non-local reflections and allow the recovery of surface geometry. Here we show
that the same illumination patterns can be used to estimate the local surface reflectance (BRDF) as well,
provided that an appropriate correction factor is applied. We derive a closed-form expression for this
correction factor, validate it experimentally, and discuss its implications.

1 Preliminaries

Consider the system in Fig. 1. A thin-lens camera observes a planar surface patch that is illuminated by a
custom light assembly, and this light assembly consists of a planar Lambertian area source placed at the focal
plane of another thin lens. The area source in this light assembly produces radiance patterns that are shifted
horizontal sinusoids with fixed frequency f , amplitude A, and DC offset G. The shifts are represented by
a discrete set of phase values: {φk}k=1...M , so we can write the radiance at a point p = (p, q) on the focal
plane of the source as

Lk(p, q) = A cos(2πf(p+ φk)) +G, k = 1 . . .M. (1)

Illumination from the source is focused at a point x on a planar surface patch, and this patch is observed
by a thin-lens camera, which is also focused at x. A pixel (or any square region) on the image plane that
is centered at the projection of x and has dimensions w × w measures flux due to the radiance from a
neighborhood of the point x on the surface, and assuming that the camera is a linear device, the intensity
recorded at the pixel is proportional to this flux. Under the sinusoidal illumination of Eq. 1, the pixel
response can be written in the form,

Ik(u) = α(u) cos(γtk + φ(u))) + β(u), k = 1 . . .M, (2)

where u = Πc(x) is the projection of x (the center of the pixel), and γ = 2πf(tk+1 − tk), the product of
the spatial frequency and the displacement of the sinusoid between consecutive shifts. This relation plays
a central role in phase mapping techniques (e.g. [4]), since the apparent phase φ(u) provides information
about the depth of the surface along the ray that is back-projected from pixel u.

Presently, we are interested in the apparent amplitude α(u) since, as we will show, it provides information
about the local surface reflectance (the BRDF at x) and can be used for reflectometry. We show that, in
addition to the BRDF, this expression depends on the intrinsic parameters of the lightsource and camera, as
well as their positions and orientations relative to the surface.
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Figure 1: A square pixel in the camera projects, via a planar surface patch, to an oriented parallelogram in
the focal plane of a focused light source. We are interested in the relationship between the amplitude of the
translating sinusoidal radiance pattern on the focal plane of the light source and the apparent amplitude at
the camera’s pixel. Note that the regions Alight and Apixel are not drawn to scale.

2 Relating projected and observed sinusoids

We obtain flux incident on the image plane from radiance emitted from the focal plane of the source using
three basic relations.

Image irradiance from surface radiance. The image irradiance Ec(u) that is due to radiance Ls(x, ω̂v)
at surface point x in direction ω̂v is given by the familiar thin-lens equation (e.g. [1]),

Ec(u) = σ(u)Ls(x, ω̂v). (3)

Here, σ(u) models optical fall-off in the camera, which for a thin lens depends on the area of the camera’s
aperture, its focal length, and the angle ψc between its optical axis and the ray through u: σ(u) = σ(ψc) =
Ac cos4(ψc)/f2

c . (See Fig. 1 and Table 1 for summaries of notation.) More generally, this sensitivity function
can be measured during a radiometric calibration procedure, and we assume it to be known.

Emitted radiance from incident irradiance at the surface. This relation simply follows from the defini-
tion of the bi-directional reflectance distribution function, or BRDF [3]:

Ls(x, ω̂v) = ρ(ω̂l, ω̂v)Es(x). (4)

We assume that the scattering properties are statistically uniform over the small area Asurf observed by
a single pixel, and that following the isolation of local reflections [2], light transport within the material
occurs over distances that are small relative to this area.

Surface irradiance from radiance on the source focal plane. This relation is less familiar, so we provide
a derivation. The basic idea is to compute the power emitted from the focal plane of the source toward its
lens, and then divide this by the differential surface area δS to obtain surface irradiance. The underlying
assumption is that δS is in focus, so that all of the power that reaches the lens arrives at δS.

Let L be the emitted radiance at the center of a differential patch δp on the focal plane of the source
assembly. The power received by the lens is this radiance multiplied by the differential area foreshortened
in the direction of travel and the solid angle subtended by the lens as seen by this small area:

Φ = Lδp · cosψl ·
Al cosψl

(f2
l / cos2 ψl)

= Lδp · Al cos4 ψl

f2
l

.



Table 1: Summary of notation
x scene point
u = (u, v) point on image plane of camera
p = (p, q) point on focal plane of lightsource
du, dp, dS differential areas on the image plane, source plane, and surface
n̂ surface normal
ω̂l, ω̂v local light and view directions
ρ(ω̂l, ω̂v) BRDF
σ(u) camera sensitivity function
l(x) lightsource emission function
fl, fc focal lengths of lightsource and camera
ψl, ψc angles from optical axes of lightsource and camera
rl, rc distances from scene point to lightsource and camera centers
Apixel = w2 area of square camera pixel
Asurf area of corresponding region on surface
Alight = ab area of corresponding parallelogram on source focal plane
c signed distance that characterizes the degree of skew in parallelogram
Al, Ac areas of lightsource and camera apertures
Ωl, Ωc solid angles subtended by lightsource and camera as seen by surface
Es(·), Ec(·) irradiance at the surface, and image plane of camera
L(·), Ls(·) radiance emitted at the lightsource, and surface
Φ(·) power (flux)

Since it is in focus, all of this power arrives at a differential area on the surface δS, and the surface irradiance
is Es = Φ/δS. The ratio of areas can be obtained by equating the solid angles subtended by δp and δS as
seen by the center of the lens,

δp

δS
=
f2

l

r2l

(n̂ · ω̂l)
cos3 ψl

, (5)

and combining these expressions yields the desired relationship:

Es = Al cosψl · L ·
(n̂ · ω̂l)
r2l

.

Analogous to the camera sensitivity function described above, in practice we generalize this expression to

Es = l(x)L(n̂ · ω̂l), (6)

where l(x) is an emission function that can be measured during a radiometric calibration process and is
assumed to be known.1

Equipped with Eqs. 3, 4, and 6, we are ready to proceed. The power received by the finite pixel area Apixel
centered at image point uo (and thus the response of that pixel) is the integral of the image irradiance, which
by Eq. 3 is

Φpixel = σ(uo)
∫

Apixel

Ls(Π−1
c (u))du,

where Π−1
c (·) is the back-projection of image point u onto the surface. (In this expression, we have assumed

the sensitivity function to be constant over the pixel.) Using an expression analogous to Eq. 5, we change
1In fact, as described in the main paper, we find it beneficial to incorporate the r2

l term into this function and thus allow it to
vary over the three-dimensional working volume: l(x).
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Figure 2: The source region Alight corresponding to a single camera pixel, depicted in a transformed coordi-
nate system (p′, q′) that aligns one side of the region with a coordinate axis (compare to the left of Fig. 1).
The shape of this parallelogram is determined by the lengths of its sides, a and b, and its skew, which is
characterized by the signed distance c. These parameters, along with the position and orientation ξ relative
to the horizontal axis of the source focal plane can be computed from the known surface geometry and the
parameters of the lightsource and camera.

variables to integrate over the observed area (Asurf) on the surface instead, and this yields

Φpixel = σ(uo)
f2

c

cos3 ψc

(n̂ · ω̂v)
r2c

∫
Asurf

Ls(x)dS,

when the pixel is small enough for the angles and distances (ψc, r2c , ω̂v) to be constant over its extent.

Finally, the surface radiance is related to the radiance on the source focal plane through Eqs. 4 and 6, and
making these substitutions along with another change of variables, dS → dp, gives

Φk
pixel = σ(uo)l(po)

f2
c cos3 ψl

f2
l cos3 ψc

(n̂ · ω̂v)
r2c

ρ(ω̂l, ω̂v)
∫

Alight

Lk(p)dp. (7)

The last term in this expression is the integral of the sinusoidal radiance pattern (Eq. 1) over an area Alight
that is obtained by projecting the square pixel Apixel onto the planar surface and into the lightsource. The
area Alight is a quadrilateral that, due to the small extent of a single pixel, is relatively unaffected by per-
spective distortion and is well-approximated by a parallelogram, as depicted in Fig. 1 and Fig. 2. Any such
parallelogram is completely described by the lengths of its sides, a and b, it’s orientation ξ relative to the
horizontal axis of the source focal plane, the position po = (po, qo) of its center, and it’s skew, which we
parameterize by the signed distance c shown in Fig. 2. In the present case, all of these parameters are deter-
mined by the camera and source parameters and the surface position and orientation, and since all of these
are known, we can compute the parallelogram parameters corresponding to any pixel in our camera.

In order to compute the integral over this region, we first change the coordinate system to be aligned with
side b and have one corner as its origin as shown in Fig. 2. We use (p′, q′) for these new coordinates, which
allow us to write the integral as∫

Alight

Lk(p)dp =
∫ b

0

∫ c
b
p+a

c
b
p

G+A cos
(
2πf(p′ cos ξ − q′ sin ξ + po + φk)

)
dp′dq′.



By twice using the identity
∫

cos(sx+ t)dx = sin(sx+ t)/s, performing trigonometric manipulations, and
using the expression sinc(x) = sin(πx)/(πx), we obtain∫

Alight

Lk(p)dp = ab(A sinc(af cos ξ) sinc(bf sin ξ+cf cos ξ) cos(πf(b sin ξ+a cos ξ+c cos ξ+po+φk))+G).

Now, substituting this into Eq. 7, we obtain an expression for the flux Φk
pixel (and thus the pixel response)

that is in the desired form of Eq. 2. From this it follows that the apparent amplitude of the observed sinusoid
in the camera satisfies

α(uo) ∝ σ(uo)l(x)ρ(ω̂l, ω̂v)(n̂ · ω̂l)A sinc(af cos ξ) sinc(bf sin ξ + cf cos ξ), (8)

where we have used the fact that the total area of the parallelogram Alight = ab is given by

ab = w2 (n̂ · ω̂l)r2cf
2
l cos3 ψc

(n̂ · ω̂v)r2l f
2
c cos3 ψl

.

3 Implications for reflectometry: “amplitude loss”

The result in Eq. 8 confirms that the apparent amplitude measured at each camera pixel α(u) (Section 5.2
in the main paper) is proportional to the product of the surface irradiance under point lighting l(x)(n̂ · ω̂l)
(recall that 1/r2l is captured by l(x)), the amplitude of the projected sinusoidal illumination A, the BRDF
ρ(ω̂l, ω̂v), and the camera sensitivity σ(u). In addition, it also predicts a less obvious effect that we call
“amplitude loss” whereby the measured response is inversely proportional (via the sinc functions) to the
product of the pixel width w and the frequency f of the source radiance pattern in addition to the relative
orientations and distances between x and the camera and source. In words, if either f or w increase (holding
everything else fixed) the measured amplitude will decrease at a rate predicted by the product of the sinc
functions in Equation 8 and eventually reach zero — this corresponds to the point at which the sine pattern
is no longer visible in the image. Similarly, as the camera approaches a grazing view of the surface in a
direction perpendicular to that of the sine wave with an overhead source held fixed or the distance from x
to the camera rv increases, then the measured amplitude will similarly decrease. This makes Eq. 8 a useful
analytic tool for estimating the lower bounds on f for a particular experimental setup and, more importantly,
it allows converting the amplitude measured at the camera into measurements of the surface BRDF.

The graphs in Fig. 3 confirm this effect and validate the analytic model derived above. They show the
amplitude measured at a camera pixel as it moves toward the horizon (n̂ · ω̂v) → 0 with it’s up vector
in the epipolar plane and for a stationary overhead light (n̂ · ω̂l) = 1. For this “in-plane” configuration,
the parallelogram reduces to a rectangle (c = 0). The three graphs correspond to different orientations of
the sine wave with respect to the plane of motion. These graphs also include predictions by a numerical
simulation that agree with our analytic model exactly — we have verified that this is true beyond the in-
plane case illustrated here. Note that this amplitude loss can be significant. In the case where ξ = 0, a
roughly 20% decrease in the amplitude is observed at an elevation angle of 60 degrees which falls off to
roughly 90% at 80 degrees.

In practice, when using measured amplitudes α(u) for reflectometry, we correct for this effect by dividing
by the terms on the right-hand side in Eq. 8 in order to isolate the BRDF ρ(ω̂l, ω̂v).
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Figure 3: Measurements and simulation results confirming the “amplitude loss” phenomenon and validating
our analytic model. Each graph shows the amplitude measured at a single camera pixel as the view direction
approaches the horizon (n̂ · ω̂v)→ 0 with the light source held fixed overhead (n̂ · ω̂l) = 1. The camera’s
up vector remains in the epipolar plane, causing the parallelogramAlight to reduce to a rectangle (c = 0). For
the measurements, we imaged a Spectralon board and corrected for deviations from a perfect Lambertian
reflector. We used the parameters of our experimental setup (focal lengths, pixel size, stand-off distances,
etc.) to perform a numerical simulation of the amplitude measured at the camera and to evaluate our model
in Eq. 8. We observed very close agreement between measured data, our simulation, and our model.
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