
CS146 Computer Architecture 

Fall 2017 

Midterm Exam  

This exam is worth a total of 100 points. 
Note the point breakdown below and budget your time wisely. 

To maximize partial credit, show your work and state any assumptions explicitly.   
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Total  /100

Name: 



1. Multiple Choice and Short Answer (35pts) 
 

1.1 (10 points) Amdahl’s Law 
 
a. (5 points) Consider a workload where 50% of the execution time consists of multimedia 

processing for which the MMX instruction set extensions might be helpful.  According to 
Amdahl’s law, what is the maximum speedup that can be achieved by implementing 
them? 

 
 
 
 
 
 
 
 
 
 
b. (5 points)  Now, say that you work at Intel and the MMX designers claim that multimedia 

code sequences will see a 3.5 times (3.5X) speedup by using the MMX extensions.  What 
is the fraction of the execution time that must be multimedia code in order to achieve an 
overall speedup of 1.8X? 

 
 



 
1.2 (9 points)  CISC vs. RISC 
 
When pipelined microprocessors were first becoming more common (early to mid 80’s) 
designers believed that RISC instruction sets were easier to pipeline because…? 
(Please give 3 reasons) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.3 (5 points) In spite of this, high-performance pipelined implementations of CISC 

instruction sets have been successfully built; various VAX and x86 implementations are 
examples including Intel’s P6-Microarchitecture discussed in class.  The most 
effective/common implementation strategy used by these machines has been to: 

 
a. pipeline the CISC instructions, despite their wide variability in instruction execution 

times, and use elaborate memory disambiguation techniques to avoid stalls due to 
memory address calculations. 

 
b. Pipeline the CISC instructions and handle the extra structural hazards using aggressive 

scoreboarding techniques. 
 
c. Use link-time techniques to break CISC instructions into small RISC-like operations that 

are more easily pipelined 
 
d. Use run-time techniques to break CISC instructions into easily-pipelined RISC-like 

operations 
 



 
1.4 (6 points) Pipelining Limits 
 
We have seen how pipelining improves the instruction throughput increasing effective 
performance.  Machines with deeper pipelines perform less work per pipestage but have 
more “in-flight” instructions processing at the same time allowing instructions to complete at 
a higher rate.  In class we discussed several reasons why the effectiveness of deeply pipelined 
machines can be limited – too much pipelining can be detrimental.   Describe two reasons 
here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.5 (6 points) Limits of Loop Unrolling 
 
We have seen how loop unrolling can significantly improve performance by removing loop 
overhead and providing a better opportunity for the compiler to generate an efficient static 
schedule.  In class we discussed several reasons why loop unrolling cannot be performed 
indefinitely – too much loop unrolling can limit performance.  Describe two reasons here. 
 



2. Pipelining (20 Points) 
 
For this question, consider the code segment below.  Assume that full bypassing/forwarding has 
been implemented.  Assume that the initial value of register R23 is much bigger than the initial 
value of register R20.  Assume that all memory references hit in the caches and TLBs.  Assume 
that both load-use hazards and branch delay slots are hidden using delay slots.  You may- 
not reorder instructions to fill such slots, but if a subsequent instruction is independent and is 
properly positioned, you may assume that it fills the slot.  Otherwise, fill slots with additional no-
ops as needed. 
 
  LOOP: lw  R10, X(R20) 
    lw  R11, Y(R20) 
    subu  R10, R10, R11 
    sw  Z(R20), R10 
    addiu R20, R20, 4 
    subu  R5, R23, R20 
    bnez  R5, LOOP 
    nop    ; 1 delay slot 
 

a. (5 points) On the grid page at the end of the exam, draw a pipeline diagram of 2 iterations 
of its execution on a standard 5-stage MIPS pipeline.  (You may want to turn it 
horizontally).  Assume that the branch is resolved using an ID control point.  In the box 
below, write the total number of cycles required to complete 2 iterations of the loop. 

 
 

Cycles =   
 



b.  (15 points) On the second grid page that follows, draw a pipeline diagram of 2 iterations 
of the loop on the pipeline below.  Note that the loop has a single branch delay slot nop 
included – you may need to add more.  You can not assume anything about the program’s 
register usage before or after this code segment.  Fill in the boxes below. 

 
 

Pipeline Branch Delay =  

Pipeline Load Delay =  

Cycles =  

 
Pipeline: 
 
IF1 IF2 ID RF EX1 EX2 M1 M2 WB      
 IF1 IF2 ID RF EX1 EX2 M1 M2 WB     
  IF1 IF2 ID RF EX1 EX2 M1 M2 WB    
   IF1 IF2 ID RF EX1 EX2 M1 M2 WB   
    IF1 IF2 ID RF EX1 EX2 M1 M2 WB  
     IF1 IF2 ID RF EX1 EX2 M1 M2 WB
 
IF1:  Begin Instruction Fetch 
IF2:  Complete Instruction Fetch 
ID:  Instruction Decode 
RF:  Register Fetch 
EX1:  ALU operation execution begins.  Branch target calculation finishes.  Memory address 
calculation.  Branch condition resolution calculation begins. 
EX2:  Branch condition resolution finishes.  Finish ALU ops.  (But branch and memory 
address calculations finish in a single cycle). 
M1:  First part of memory access, TLB access. 
M2:  Second part of memory access, Data sent to memory for stores OR returned from 
memory for loads. 
WB:  Write back results to register file 
 



3. Multimedia ISAs and Conditional MOVs (10 Points) 
 
Absolute value is expressed as A = abs(B).  In high-level code: 
 

If (B<0) {A=-B;} else {A=B;) 
 
In MIPS-style code this would look something like the following (R2 = B, R1 = A): 
 
  BLTZ R2,THEN: ; Check if R2 < 0, Jump to Then 

ADDI R1,R2,0 ;  R1 = R2 + 0; Else Clause 
  JUMP END:  ; Skip over Then Clause 
THEN: SUBI R1,0,R2 ;  R1 = 0 – R2; Then Clause 
END: 
 
In class, we have seen that conditional branches are detrimental to performance and we have 
seen two methods to remove conditional branches.  

 
a. (5 points) Using the saturating arithmetic features of a multimedia ISA code the absolute 

value function without using any branch or jump instructions.  You can perform the 
computation with the following six instructions (you may not need all of them). You can 
perform the absolute value operation on subwords (ie. don’t worry about shifting or 
extracting). 

 
HADD, HADD,us, HADD,ss, HSUB, HSUB,us, HSUB,ss 

 
Here HADD,us uses unsigned saturating arithmetic and HADD,ss uses saturating 
arithmetic. 

 
 



 
b. (5 points) Using Conditional Move operations code the absolute value function without 

using any branch or jump instructions.  In this problem just perform the absolute value 
operation on a 64-bit integer value.  You may use CMOV’s of the form: 

 
 

CMOVGTZ R1, R2, R3 // if (R1 > 0) R2 = R3 
CMOVLTZ R1, R2, R3 // if (R1 < 0) R2 = R3 
CMOVEQZ R1, R2, R3 // if (R1 ==0) R2 = R3 



4. Branch Prediction (12 Points) 
 
The following series of branch outcomes occurs for a single branch in a program.  (T means the 
branch is taken, N means the branch is not taken). 
 
T T T N T N T T T N T N T  
 

a. (4 points) Assume that we are trying to predict this sequence with a BHT using a 1-bit 
counter.  The counters of the BHT are initialized to the N state.  Which of the branches 
would be mispredicted? Use the following table.  You may assume that this is the only 
branch in the program. 

 
Predictor State Before Prediction Branch 

Outcome
Mis-Prediction? 

N T  
   
   
   
   
   
   
   
   
   
   
   
   

 
 



b.  (8 points) Draw the state-transition diagram for a BHT scheme using 2-bit saturating 
counters.  Repeat this exercise with a 2-bit saturating counter initialized to Weakly-Not-Taken.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Predictor State Before Prediction Branch 
Outcome

Mis-Prediction? 

W-N T  
   
   
   
   
   
   
   
   
   
   
   
   



5. Tomasulo’s Algorithm (12 pts) 
 
The drawing below depicts the basic structure of Tomasulo’s algorithm as described in the 
textbook and during class.  This is the version without a reorder buffer – all renaming occurs 
in the reservation stations. 
 
a.  Where indicated by the letters A,B,C, and D determine the width of the fields in the 
reservation stations, the width of the buses, etc.  Please write your answers in the box below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  A        B 
Op Tag  Tag   Op Tag  Tag  
           
 
 
 
 
 
 
 

A=  C=  
B=  D=  

 
b. Now consider the three reservation stations associated with the FP adder.  How many 

(and what size) comparators are needed in order to determine when relevant values are 
being broadcast on the Common Data Bus?  Why? 

 

FP Adder 
Reservation 
Stations (3) 

Load 
Buffers (6)

C 
Floating 

Point 
Operation 

Queue 

FP 
Registers 

FP Adder FP Multiplier 

Common Data Bus (D)

 

Memory 

FP Mul
RS (3) 



6. SuperScalar Microarchitectures (10 Points) 

 
The Alpha 21264 processor is designed to issue 4 integer (2 of which may be load/store) and 2 
FP instructions per cycle, and its pipeline diagram is shown above.  (The shaded region indicates 
where instruction queueing/reordering may occur).  All instructions execute in the first four 
stages, and then the pipeline is different for integer ops (top row), memory ops (second row), or 
floating point opts (third row). 
 

a. (5 points) Since the Alpha instruction set is similar to MIPS (RISC, load/store, etc), how 
many register read and write ports would one expect to need, to avoid structural hazards, 
in a straightforward implementation of the integer register file? 

 
 
 
 
 
 
 
 

b. (5 points)  Since that number of ports is too difficult to implement, the chip designers 
used a trick instead.  They divided the physical registers of the machine into two clusters.  
A group of functional units are associated with each clusters.  Values written to registers 
in one cluster will eventually propagate to the other cluster, but there will be extra delay.  
In words explain how this implementation choice affects both the machine’s instruction 
dispatch/issue unit as well as compiler strategies for this chip. 

 
 

     Register Execute Write    
Fetch Transit Map Queue  Register Address Cache1 Cache2 Write  
     Register FP1 FP2 FP3 FP4 Write


