
CS146: Computer Architecture
Fall 2019

Homework #2
Due October 2, 2019 (Wednesday) Evening

__

1. Pipelining

Consider the code segment below. Assume that full bypassing/forwarding has been
implemented. Assume that the initial value of register R23 is much bigger than the initial value
of register R20. Assume that all memory references take a single cycle. Assume that both
load-use hazards and branch delay slots are hidden using delay slots. You may- not reorder
instructions to fill such slots, but if a subsequent instruction is independent and is properly
positioned, you may assume that it fills the slot. Otherwise, fill slots with additional no-ops as
needed.

LOOP: lw R10, X(R20)
lw R11, Y(R20)
subu R10, R10, R11
sw Z(R20), R10
addiu R20, R20, 4
subu R5, R23, R20
bnez R5, LOOP
nop ; 1 delay slot

a. (5 points) Draw a pipeline diagram of 2 iterations of its execution on a standard 5-stage
MIPS pipeline (for clarity, use graph paper or a computer). Assume that the branch is
resolved using an ID control point. In the box below, write the total number of cycles
required to complete 2 iterations of the loop.

Cycles =

b. (15 points) On the second grid page that follows, draw a pipeline diagram of 2
iterations of the loop on the pipeline below. Note that the loop has a single
branch delay slot nop included – you may need to add more. You cannot assume
anything about the program’s register usage before or after this code segment.
Fill in the boxes below.

Pipeline Branch Delay =

Pipeline Load Delay =

Cycles =

Pipeline:

IF1 IF2 ID RF EX1 EX2 M1 M2 WB
 IF1 IF2 ID RF EX1 EX2 M1 M2 WB
 IF1 IF2 ID RF EX1 EX2 M1 M2 WB
 IF1 IF2 ID RF EX1 EX2 M1 M2 WB
 IF1 IF2 ID RF EX1 EX2 M1 M2 WB
 IF1 IF2 ID RF EX1 EX2 M1 M2 WB

IF1: Begin Instruction Fetch
IF2: Complete Instruction Fetch
ID: Instruction Decode
RF: Register Fetch
EX1: ALU operation execution begins. Branch target calculation finishes. Memory
address calculation. Branch condition resolution calculation begins.
EX2: Branch condition resolution finishes. Finish ALU ops. (But branch and
memory address calculations finish in a single cycle).
M1: First part of memory access, TLB access.
M2: Second part of memory access, Data sent to memory for stores OR returned
from memory for loads.
WB: Write back results to register file

2. Scoreboarding

For the code sequence shown below, draw a pipeline diagram of how instructions would
issue in a machine using scoreboarding as discussed in class. Use the execution mix and
scoreboard structure as given in the class example. Assume that the FP Add unit has 4
EX phases, the FP Multiply unit has 7 EX phases, and divide has 24 EX phases. FP
Adds, Subtracts, and Multiplies are fully-pipelined, while divide operations are NOT
pipelined.

 LD F6, 12(R2)
 LD F2, 16(R3)
 ADDD F0, F2, F4
 DIVD F10, F0, F6
 SUBD F8, F6, F2
 ADDI R2, R2, 8
 ADDI R3, R3, 16
 ADDD F6, F8, F2

3. Scoreboarding vs. Tomasulo’s Algorithm

A shortcoming of the scoreboard approach occurs when multiple functional units that
share input buses are waiting for a single result. The units cannot start simultaneously,
but must serialize. This is not true in Tomasulo’s algorithm. Give a code sequence that
uses no more than 10 instructions and shows this problem. Assume the hardware
configuration from Figure A.51, for the scoreboard, and Figure 3.2 for Tomasulo’s
scheme. Indicate where Tomasulo’s algorithm can continue, but the scoreboard approach
must stall. Assume the following latencies.

Instruction Producing Result Instruction Using Result Latency in Clock Cycles
FP ALU op Another FP Alu Op 3
FP ALU op Store double 2
Load Double FP ALU Op 1
Load Double Store Double 1

4. SimpleScalar Problem

In this problem, we will begin to use the “sim-bpred” simulator that allows the user to
explore various branch prediction algorithms via functional simulation. This simulator
can study basic branch predictors like the ones that we studied in class: “predict
nottaken”, “predict taken”, “bimodal” (2-bit counters), “two-level”, or a combination of
“bimodal” and “two-level.”

Here is the list of SPEC2000 benchmarks that we will run for this assignment. Pick at
least three to report your results for.

Benchmark Instructions Sim-bpred Time
(sec)

perlbmk 205927571 80

ammp 45838888 21

gcc 96761516 39

mcf 187806891 91

parser 269103374 108

a) How to run the benchmarks?

I have made a few scripts that will help you with this assignment. These are
~cs146/run_scripts/ on the FAS system. There are two scripts that you will fine here
– “run_spec2k.pl” and “extract_results.pl”. These two perl scripts have all of the
information that you will need to run the benchmarks. You will just need to setup
your account and configure the script for this assignment.

Steps
1) Go to your home directory and make two directories “run_scripts” and “results”
(ie. mkdir run_scripts). This can be in the root of your home directory or somewhere
else. For example you may have a subdirectory cs146 where you will put all of your
cs146 coursework. You should also have your “simplesim-3.0” directory in here.
2) Copy the scripts from ~cs146/run_scripts to this directory.
3) First edit “run_spec2k.pl”. There are a few things to note in this script. First, the
third definition of @BENCH_LIST lists the benchmarks that the script will run. Edit
this to add or subtract benchmarks that you would like to run. Now skip all the way
to near the end of the script where it says $HOME_DIR = “…”. Change this
directory to where you did “mkdir run_scripts” above. You can also change the
binary that you are simulating with by changing the $SIM_BIN variable – in the base
script it is set for “sim-fast” – you will want to change this to “sim-bpred” for this
assignment. Now you can just execute “./run_spec2k.pl” to run the simulations for
this assignment. All of the results will be stored in your “results” directory with the
subdirectory of the benchmark names.
4) Make similar changes to the “extract_spec2k.pl” file. This file will help you
automatically extract the result data from your results directory. Change
“@STAT_LIST” to print out additional stats (for example the branch predictor hit
rates, etc). Just enter the new simplescalar stat name into the list.

b) Problem Statement.

This problem involves a design space exploration study. Recall that 2-bit saturating
counters are preferable to 1-bit counters because they provide some hysteresis for the
branch decisions. However, using 2-bit counters requires more space thus leaving
less room for entries in the predictor. In this problem, we want to explore varying the
number of bits in these counters (1-bit or 2-bits) vs. the number of entries in the
branch predictor. The point of this assignment is to determine whether the extra
storage space is better spent on more entries or more and if there is a “crossover
point” where one option becomes more efficient than the other.

This will require some minor changes to the bpred.c code to support the 1-bit counter
option. The 2-bit counter is the default so this will run “out-of-the-box”. The
changes are pretty minimal after you find where to make them.

Choose three of the benchmarks to run with sim-bpred and then simulate with various
values of “-bpred” (this can be changed by adding parameters to the $CONFIG
variable in the script – better yet use a foreach statement to cycle through all of your
combinations – make sure that you generate different result files as well -for each
configuration). Use the Table on the previous page to make sure that you are
correctly running the benchmarks. Try at least the bimodal predictor and at least two
2-level predictors (say, GAp and PAg).

c) What to report?

The above will require a fair amount of simulations, with about 1-2 minutes required
per simulation. You will have three benchmarks, three base predictor configurations
(bimodal and two 2-level predictors), and the 1-bit vs. 2-bit counter simulations.
Then you will have to perform enough sizing analysis to determine what decision
makes the most sense.

After you have finished debugging, you may want to “make clean” and then change
the compiler optimization level to “-O3” to help speed up your simulations.

Even though each simulation only takes a couple of minutes, you will obviously want
to automate this process with provided scripts. Let me or Kim know if you need any
help with the perl scripts – again, the changes required should be minimal.

Generate charts that graphically depict which configuration gives the best predictor
accuracy for the least amount of hardware and comment on your results. Clearly state
which predictors you used (you may want to draw the diagrams) and how many bits
are used in the various places.

