
CS146: Computer Architecture
Fall 2019

Homework #4
Due Friday November 1, 2019

__

1. Simple Caches

(a) Here is a string of address references given as word addresses: 1, 4, 8, 5, 20,
17, 19, 56, 9, 11, 4, 43, 5, 6, 9, 17. Assume a direct mapped cache with 16
one-word blocks that is initially empty, label each reference in the list as a hit
or miss and show the final contents of the cache.

(b) Using the same reference string, show the hits and misses and final cache
contents for a direct mapped cache with four-word blocks and a total size of
16 words.

(c) Using the same reference string, show the hits and misses and final cache
contents for a two-way set associative cache with one-word blocks and a total
size of 16 words. Assume LRU replacement.

(d) Using the same reference string, show the hits and misses and final cache
contents for a fully associative cache with one-word blocks and a total size of
16 words. Assume LRU replacement.

2. H&P 5.3

Make sure that you understand the basic concepts of the program in Exercise 5.2,
although you do not have to implement and run the program for Exercise 5.3.

3. Cache Design Experiments

This problem gives you a feel for how quantitative evaluations and resource constraints
can guide implementation choices in computer systems. In this problem, we will use
SimpleScalar’s “sim-cache” simulator that allows the user to model a cache memory
system. Use the same benchmarks and script as for HW2 – choose 3 of the benchmarks.
Hopefully you will only need to make very minor changes to the script to get things
running with sim-cache. If you’d like, you can also use “sim-cheetah” which performs
multiple cache simulations in parallel.

The quality of our cache organization will be determined by the average access time for
that cache:

Average Access Time = Hit Time + Miss Rate * Miss Penalty

Where Miss Penalty = ((Block size in words)/2 + 10) * Hit Time

We will use a hit time of 1ns for a direct-mapped cache and 1.5ns for a set-associative
cache.

You are given 80 4Kx8bit static RAMs for the cache, as well as a selection of
miscellaneous logic parts. From this “inventory” you must be able to build up the entire
cache, including the tags, data, and three control bits per cache line. The address
supplied to the cache is 32-bits.

Your goal is to find the best cache organization for each of the benchmarks given. You
should explore several different block sizes and several different degrees of associativity.
(Reasonable degrees of associativity are from direct-mapped through 8-way set
associative. Don’t explore higher degrees than 8-way). Also, you can leave the TLB
parameters unchanged – only look at L1 Dcache and L1 Icache.

Assume the caches are write-through and ignore all write stalls.

What to hand in:

You should create a summary of benchmark behavior on each cache configuration. The
summary should include:

1) A cache description. This includes the size of the cache, the block size, the
associativity. (The “cache size” is its true data capacity, NOT the amount of
RAM that was used to build it including tags, etc).

2) A RAM accounting breakdown: This includes the amount of RAM used for the
tags, data, and control bits of this organization.

3) The total miss rate, and the read and write miss rates for the benchmarks.
4) The average access time (as given by the formula above) per reference.

Also include an overall summary that gives your conclusions about the applications and
cache behavior. Here, you should combine your observations about the different
applications to make a recommendation about which cache structure would be best to
build, given that the system obviously can’t have a different cache for each application.

