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Lecture Outline
• Review of Loop Unrolling
• Software Pipelining
• Global Scheduling

– Trace Scheduling, Superblocks

• Next Time
– Hardware-Assisted, Software ILP

• Conditional, Predicated Instructions
• Compiler Speculation with Hardware Support

– Hardware vs. Software comparison
– Itanium Implementation
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Compiler Loop Unrolling
1. Check OK to move the S.D after DSUBUI and BNEZ, and find amount to 

adjust S.D offset
2. Determine unrolling the loop would be useful by finding that the loop 

iterations were independent
3. Rename registers to avoid name dependencies
4. Eliminate extra test and branch instructions and adjust the loop

termination and iteration code
5. Determine loads and stores in unrolled loop can be interchanged by 

observing that the loads and stores from different iterations are 
independent
– requires analyzing memory addresses and finding that they do not refer to the 

same address.
6. Schedule the code, preserving any dependences needed to yield same 

result as the original code
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Loop Unrolling Limitations

• Decrease in amount of overhead amortized per 
unroll
– Diminishing returns in reducing loop overheads

• Growth in code size
– Can hurt instruction-fetch performance

• Register Pressure
– Aggressive unrolling/scheduling can exhaust 32 register 

machines
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Loop Unrolling Problem
• Every loop unrolling iteration requires pipeline to fill and 

drain
• Occurs every m/n times if loop has m iterations and is 

unrolled n times
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More advanced Technique:
Software Pipelining

• Observation: if iterations from loops are independent, then can get 
more ILP by taking instructions from different iterations

• Software pipelining: reorganizes loops so that each iteration is
made from instructions chosen from different iterations of the 
original loop (~ Tomasulo in SW)

Iteration 
0 Iteration 

1 Iteration 
2 Iteration 

3 Iteration 
4

Software- 
pipelined 
iteration
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Software Pipelining

for(j = 0; j < MAX; j++)
C[j] += A * B[j];

load B[j] A

load C[j] *

+

Dataflow graph:

• Now must optimize 
inner loop

• Want to do as much 
work as possible in 
each iteration

• Keep all of the 
functional units busy in 
the processor

store C[j]
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Not pipelined:

for(j = 0; j < MAX; j++)
C[j] += A * B[j]; Pipelined:

Software Pipelining Example

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]
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Software Pipelining Example
Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12
10 DSUBUI R1,R1,#24
11 BNEZ R1,LOOP

After: Software Pipelined
1 S.D 0(R1),F4 ; Stores M[i]
2 ADD.D F4,F0,F2 ; Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DSUBUI R1,R1,#8
5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance 
– Less code space than unrolling
– Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled
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5 cycles per iteration
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Software Pipelining vs. Loop 
Unrolling

• Software pipelining is symbolic loop unrolling
– Consumes less code space

• Actually they are targeting different things
– Both provide a better scheduled inner loop
– Loop Unrolling

• Targets loop overhead code (branch/counter update code)

– Software Pipelining
• Targets time when pipelining is filling and draining

– Best performance can come from doing both
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When Safe to Unroll Loop?

• Example: Where are data dependencies? 
(A,B,C distinct & nonoverlapping)

for (i=0; i<100; i=i+1) {
A[i+1] = A[i] + C[i];    /* S1 */
B[i+1] = B[i] + A[i+1];  /* S2 */

}
1. S2 uses the value, A[i+1], computed by S1 in the same iteration. 
2. S1 uses a value computed by S1 in an earlier iteration, since iteration i 
computes A[i+1] which is read in iteration i+1. The same is true of S2 for B[i] 
and B[i+1]. 
This is a “loop-carried dependence”: between iterations

• For our prior example, each iteration was distinct
• Implies that iterations can’t be executed in parallel?
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VLIW vs. SuperScalar

• Superscalar processors decide on the fly how 
many instructions to issue
– HW complexity of Number of instructions to issue 

O(n2)

• Proposal: Allow compiler to schedule instruction 
level parallelism explicitly

• Format the instructions in a potential issue packet 
so that HW need not check explicitly for 
dependences
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VLIW: Very Large Instruction 
Word

• Each “instruction” has explicit coding for multiple 
operations
– In IA-64, grouping called a “packet”

• Tradeoff instruction space for simple decoding
– Slots are available for many ops in the instruction word
– By definition, all the operations the compiler puts in the long 

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

• 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several 

branches (Discussed next time)
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Recall: Unrolled Loop that 
Minimizes Stalls for Scalar
1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles
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Loop Unrolling in VLIW
Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI  R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)

Software Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/  Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,-48(R1) ST 0(R1),F4 ADD.D F4,F0,F2 1
L.D F6,-56(R1) ST -8(R1),F8 ADD.D F8,F6,F2 DSUBUI R1,R1,#24 2
L.D F10,-40(R1) ST 8(R1),F12 ADD.D F12,F10,F2 BNEZ R1,LOOP 3

• Software pipelined across 9 iterations of original loop
– In each iteration of above loop, we:

• Store to m,m-8,m-16 (iterations I-3,I-2,I-1)
• Compute for m-24,m-32,m-40 (iterations I,I+1,I+2)
• Load from m-48,m-56,m-64 (iterations I+3,I+4,I+5)

• 9 results in 9 cycles, or 1 clock per iteration
• Average: 3.3 ops per clock, 66% efficiency
Note: Need fewer registers for software pipelining

(only using 7 registers here, was using 15)
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Global Scheduling

• Previously we focused on loop-level parallelism
– Unrolling, Software Pipelining + scheduling work well
– These work best on single basic blocks (repeatable 

schedules)
• Basic Block – Single Entry/Single Exit Instruction Sequence

– What about internal control flow?
– What about if-branches instead of loop-branches?
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Global Scheduling

• How to move computation and 
assignment of B[i]?
– Relative execution frequency?
– How cheap to execute B[i] above 

the branch?
– How much benefit to executing B[i] 

early? (critical path?)
– What is the cost of compensation 

code for the “else” case?

• What about moving C[i]?
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Static Branch Prediction
• Simplest: Predict taken

– Misprediction rate = untaken branch frequency => for SPEC 
programs is 34%. 

– Range is quite large though (from not very accurate (59%) to highly 
accurate (9%))

• Predict on the basis of branch direction? (P6 on BTB miss)
– choosing backward-going branches to be taken (loop)
– forward-going branches to be not taken (if)
– SPEC programs, however, most forward-going branches are taken 

=> predict taken is better
• Predict branches on the basis of profile information 

collected from earlier runs
– Misprediction varies from 5% to 22%
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Trace Scheduling
• Parallelism across IF branches vs. LOOP branches?
• Two steps:

– Trace Selection
• Find likely sequence of basic blocks (trace) 

of (statically predicted or profile predicted) 
long sequence of straight-line code

– Trace Compaction
• Squeeze trace into few VLIW instructions
• Need bookkeeping code in case prediction is wrong 

• This is a form of compiler-generated speculation
– Compiler must generate “fixup” code to handle cases in which trace is 

not the taken branch
– Needs extra registers: undoes bad guess by discarding
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Trace Scheduling

• Use loop unrolling, static 
branch prediction to 
generate long traces

• Trace scheduling:
– Bookkeeping code is 

needed when code is 
moved across trace entry 
and exit points
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Superblocks

• Fixes a major drawback of trace scheduling
– Entries and exits in the middle of the trace are complicated

• Superblocks
– Use a similar process as trace generation, but superblocks 

are restriced to a single entry point with multiple exit points
– Scheduling (compaction) is simpler

• Only code motion across exits must be considered
• Only one entrance? 

– Tail duplication is used to create a separate block that 
corresponds to the portion of the trace after entry
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Superblocks
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What if branches are not 
statically predictable?

• Loop Unrolling, Trace scheduling work great 
when branches are fairly predictable statically

• Same thing with memory reference dependencies
• Compiler Speculation is needed to solve this

– Conditional/Predicated instructions “if-conversion”
– Hardware support for exception/memory-dependence 

checks
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Hardware Support for Exposing 
More Parallelism at Compile-Time

• Conditional or Predicated Instructions
– Conditional instruction execution

• Full predication – every instruction has predicate tag 
(IA64)

• Conditional Moves (Alpha, IA32, etc)
if(r3==0)r1=r2

BNEZ R3, L cmoveqz r1, r2, r3 
ADDU R1, R2, R0

L:
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Schedule for next few lectures

• Next Time (Mar. 17th) – HW#3 Due Friday
– Hardware support for software-ILP
– Itanium (IA64) case study

• Review for midterm (Mar 22nd)
• Midterm March 24th


