
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Fall 2019
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 11: Software Pipelining and
Global Scheduling

Computer Science 146
David Brooks

Lecture Outline
• Review of Loop Unrolling
• Software Pipelining
• Global Scheduling

– Trace Scheduling, Superblocks

• Next Time
– Hardware-Assisted, Software ILP

• Conditional, Predicated Instructions
• Compiler Speculation with Hardware Support

– Hardware vs. Software comparison
– Itanium Implementation

2

Computer Science 146
David Brooks

Compiler Loop Unrolling
1. Check OK to move the S.D after DSUBUI and BNEZ, and find amount to

adjust S.D offset
2. Determine unrolling the loop would be useful by finding that the loop

iterations were independent
3. Rename registers to avoid name dependencies
4. Eliminate extra test and branch instructions and adjust the loop

termination and iteration code
5. Determine loads and stores in unrolled loop can be interchanged by

observing that the loads and stores from different iterations are
independent
– requires analyzing memory addresses and finding that they do not refer to the

same address.
6. Schedule the code, preserving any dependences needed to yield same

result as the original code

Computer Science 146
David Brooks

Loop Unrolling Limitations

• Decrease in amount of overhead amortized per
unroll
– Diminishing returns in reducing loop overheads

• Growth in code size
– Can hurt instruction-fetch performance

• Register Pressure
– Aggressive unrolling/scheduling can exhaust 32 register

machines

3

Computer Science 146
David Brooks

Loop Unrolling Problem
• Every loop unrolling iteration requires pipeline to fill and

drain
• Occurs every m/n times if loop has m iterations and is

unrolled n times

Time

ov
er

la
pp

ed
 o

ps

Proportional to
Number of Unrolls

Overlap between
Unrolled iterations

Computer Science 146
David Brooks

More advanced Technique:
Software Pipelining

• Observation: if iterations from loops are independent, then can get
more ILP by taking instructions from different iterations

• Software pipelining: reorganizes loops so that each iteration is
made from instructions chosen from different iterations of the
original loop (~ Tomasulo in SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

4

Computer Science 146
David Brooks

Software Pipelining

for(j = 0; j < MAX; j++)
C[j] += A * B[j];

load B[j] A

load C[j] *

+

Dataflow graph:

• Now must optimize
inner loop

• Want to do as much
work as possible in
each iteration

• Keep all of the
functional units busy in
the processor

store C[j]

Fi
ll

St
ea

dy
 S

ta
te

D
ra

in

Not pipelined:

for(j = 0; j < MAX; j++)
C[j] += A * B[j]; Pipelined:

Software Pipelining Example

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

load B[j] A

load C[j] *

+

store C[j]

5

Software Pipelining Example
Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12
10 DSUBUI R1,R1,#24
11 BNEZ R1,LOOP

After: Software Pipelined
1 S.D 0(R1),F4 ; Stores M[i]
2 ADD.D F4,F0,F2 ; Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DSUBUI R1,R1,#8
5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance
– Less code space than unrolling
– Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled

ov
er

la
pp

ed
 o

ps

Time

Time

5 cycles per iteration

Computer Science 146
David Brooks

Software Pipelining vs. Loop
Unrolling

• Software pipelining is symbolic loop unrolling
– Consumes less code space

• Actually they are targeting different things
– Both provide a better scheduled inner loop
– Loop Unrolling

• Targets loop overhead code (branch/counter update code)

– Software Pipelining
• Targets time when pipelining is filling and draining

– Best performance can come from doing both

6

Computer Science 146
David Brooks

When Safe to Unroll Loop?

• Example: Where are data dependencies?
(A,B,C distinct & nonoverlapping)

for (i=0; i<100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}
1. S2 uses the value, A[i+1], computed by S1 in the same iteration.
2. S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1] which is read in iteration i+1. The same is true of S2 for B[i]
and B[i+1].
This is a “loop-carried dependence”: between iterations

• For our prior example, each iteration was distinct
• Implies that iterations can’t be executed in parallel?

Computer Science 146
David Brooks

VLIW vs. SuperScalar

• Superscalar processors decide on the fly how
many instructions to issue
– HW complexity of Number of instructions to issue

O(n2)

• Proposal: Allow compiler to schedule instruction
level parallelism explicitly

• Format the instructions in a potential issue packet
so that HW need not check explicitly for
dependences

7

Computer Science 146
David Brooks

VLIW: Very Large Instruction
Word

• Each “instruction” has explicit coding for multiple
operations
– In IA-64, grouping called a “packet”

• Tradeoff instruction space for simple decoding
– Slots are available for many ops in the instruction word
– By definition, all the operations the compiler puts in the long

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

• 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several

branches (Discussed next time)

Computer Science 146
David Brooks

Recall: Unrolled Loop that
Minimizes Stalls for Scalar
1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

8

Loop Unrolling in VLIW
Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)

Software Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,-48(R1) ST 0(R1),F4 ADD.D F4,F0,F2 1
L.D F6,-56(R1) ST -8(R1),F8 ADD.D F8,F6,F2 DSUBUI R1,R1,#24 2
L.D F10,-40(R1) ST 8(R1),F12 ADD.D F12,F10,F2 BNEZ R1,LOOP 3

• Software pipelined across 9 iterations of original loop
– In each iteration of above loop, we:

• Store to m,m-8,m-16 (iterations I-3,I-2,I-1)
• Compute for m-24,m-32,m-40 (iterations I,I+1,I+2)
• Load from m-48,m-56,m-64 (iterations I+3,I+4,I+5)

• 9 results in 9 cycles, or 1 clock per iteration
• Average: 3.3 ops per clock, 66% efficiency
Note: Need fewer registers for software pipelining

(only using 7 registers here, was using 15)

9

Computer Science 146
David Brooks

Global Scheduling

• Previously we focused on loop-level parallelism
– Unrolling, Software Pipelining + scheduling work well
– These work best on single basic blocks (repeatable

schedules)
• Basic Block – Single Entry/Single Exit Instruction Sequence

– What about internal control flow?
– What about if-branches instead of loop-branches?

Computer Science 146
David Brooks

Global Scheduling

• How to move computation and
assignment of B[i]?
– Relative execution frequency?
– How cheap to execute B[i] above

the branch?
– How much benefit to executing B[i]

early? (critical path?)
– What is the cost of compensation

code for the “else” case?

• What about moving C[i]?

10

Computer Science 146
David Brooks

Static Branch Prediction
• Simplest: Predict taken

– Misprediction rate = untaken branch frequency => for SPEC
programs is 34%.

– Range is quite large though (from not very accurate (59%) to highly
accurate (9%))

• Predict on the basis of branch direction? (P6 on BTB miss)
– choosing backward-going branches to be taken (loop)
– forward-going branches to be not taken (if)
– SPEC programs, however, most forward-going branches are taken

=> predict taken is better
• Predict branches on the basis of profile information

collected from earlier runs
– Misprediction varies from 5% to 22%

Computer Science 146
David Brooks

Trace Scheduling
• Parallelism across IF branches vs. LOOP branches?
• Two steps:

– Trace Selection
• Find likely sequence of basic blocks (trace)

of (statically predicted or profile predicted)
long sequence of straight-line code

– Trace Compaction
• Squeeze trace into few VLIW instructions
• Need bookkeeping code in case prediction is wrong

• This is a form of compiler-generated speculation
– Compiler must generate “fixup” code to handle cases in which trace is

not the taken branch
– Needs extra registers: undoes bad guess by discarding

11

Computer Science 146
David Brooks

Trace Scheduling

• Use loop unrolling, static
branch prediction to
generate long traces

• Trace scheduling:
– Bookkeeping code is

needed when code is
moved across trace entry
and exit points

Computer Science 146
David Brooks

Superblocks

• Fixes a major drawback of trace scheduling
– Entries and exits in the middle of the trace are complicated

• Superblocks
– Use a similar process as trace generation, but superblocks

are restriced to a single entry point with multiple exit points
– Scheduling (compaction) is simpler

• Only code motion across exits must be considered
• Only one entrance?

– Tail duplication is used to create a separate block that
corresponds to the portion of the trace after entry

12

Superblocks

Computer Science 146
David Brooks

What if branches are not
statically predictable?

• Loop Unrolling, Trace scheduling work great
when branches are fairly predictable statically

• Same thing with memory reference dependencies
• Compiler Speculation is needed to solve this

– Conditional/Predicated instructions “if-conversion”
– Hardware support for exception/memory-dependence

checks

13

Computer Science 146
David Brooks

Hardware Support for Exposing
More Parallelism at Compile-Time

• Conditional or Predicated Instructions
– Conditional instruction execution

• Full predication – every instruction has predicate tag
(IA64)

• Conditional Moves (Alpha, IA32, etc)
if(r3==0)r1=r2

BNEZ R3, L cmoveqz r1, r2, r3
ADDU R1, R2, R0

L:

Computer Science 146
David Brooks

Schedule for next few lectures

• Next Time (Mar. 17th) – HW#3 Due Friday
– Hardware support for software-ILP
– Itanium (IA64) case study

• Review for midterm (Mar 22nd)
• Midterm March 24th

