Computer Science 146 Computer Architecture

Fall 2019 Harvard University

Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu

Lecture 14: Introduction to Caches

Computer Science 146 David Brooks

David Brooks

Туре	Capacity	Latency	Bandwidth	
Register	<2KB	1ns	150GB/s	
L1 Cache	<64KB	4ns	50GB/s	
L2 Cache	<8MB	10ns	25GB/s	
L3 Cache	<64MB	20ns	10GB/s	
Memory	<4GB	50ns	4GB/s	
Disk	>1GB	10ms	10MB/s	

Computer Science 146 David Brooks

- Block placement policy?
 - Where does a block go when it is fetched?
- Block identification policy?
 - How do we find a block in the cache?
- Block replacement policy?
 - When fetching a block into a full cache, how do we decide what other block gets kicked out?
- Write strategy?
 - Does any of this differ for reads vs. writes?

Computer Science 146 David Brooks

omputer Science 14 David Brooks

8 locations in our cache	Lower order bits	
Block Size = 1 byte	0	0000
	1	0001
Data reference stream:	2	0010
• References to memory locations:	3	0011
- 0,1,2,3,4,5,6,7,8,9,0,0,0,2,2,2,4,9,1,9,1	4	0100
$Entry = address \mod cache size$	5	0101
	6	0110
	7	0111
	8	1000
	9	1001

