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Intro to caches review
Write Policies and Write Buffers
Cache Performance

How to improve cache performance?
— Reducing Cache Miss Penalty
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What is a cache?

» Small, fast storage used to improve average access time
to slow memory

* Hold subset of the instructions and data used by program
» Exploits spacial and temporal locality

Proc/Regs
L1-Cache

Bigger | L2-Cache | Faster

| Memory |

| Disk, Tape, etc. |
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Program locality 1s why caches
work

* Memory hierarchy exploit program locality:

— Programs tend to reference parts of their address space
that are local in time and space

— Temporal locality: recently referenced addresses are
likely to be referenced again (reuse)

— Spatial locality: If an address is referenced, nearby
addresses are likely to be referenced soon

» Programs that don’t exploit locality won’t benefit
from caches
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Where do misses come from?

* Classifying Misses: 3 Cs

- Compulsory—The first access to a block is not in the cache, so the
block must be brought into the cache. Also called cold start misses or first
reference misses. (Misses in even an Infinite Cache)

— Capacity—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved. (Misses in Fully Associative Size X Cache)

— Conf lict—i1f block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity misses)
will occur because a block can be discarded and later retrieved if too many
blocks map to its set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)
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Cache Examples: Cycles 1 — 5
Spatial Locality!

0,1,2,3,4,5,6,7,8,9,0,0,0,2,2,2,4,9,1,9,1

Miss Hit (1) Miss Hit (3) Miss
0 1 0 1 0 1 0 1 0 1
2 3 2 3 2 3

4 5
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General View of Caches

» Cache is made of frames
— Frame = data + tag + state bits
— State bits: Valid (tag/data there), Dirty (wrote into data)

» Cache Algorithm
— Find frame(s)

— If incoming tag != stored tag then Miss
 Evict block currently in frame

* Replace with block from memory (or L2 cache)
— Return appropriate word within block
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Basic Cache Organization

Memory Address state\ﬂ ‘ Tag‘ Data ‘

P —

—C T ]
— 1
— | |
— | |
Decoder  _ '
3 Compare Tags/Select Data Word

Block Frames organized into sets LData Word
Number of Frames (ways) in each set is associativity
*One Frame per set (1 column) = Direct Mapped

Hit/Miss
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Mapping Addresses to Frames

Divide Address into offset, index, tag
— Offset: finds word within a cache block
*+ O-bit offset <> 2°-byte block size

— Index: Finds set containing block frame
» N-bit offset <> 2N sets in cache
 Direct Mapped Cache: Index finds frame directly
— Tag: Remaining bits not implied by block frame, must
match
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Direct Mapped Caches

 Partition Memory Address into three regions
— C = Cache Size
— M = Numbers of bits in memory address
— B =Block Size
M-logC log C/B log B

Tag Memory

— Hit/Miss Dita
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Set Associative Caches

* Partition Memory Address into three regions
— C = Cache Size, B=Block Size, A=number of members per set

M-log C/A  log C/(B*A) logB

Tag Memory

—

A4

L[]

vV
OR —Hit/Miss ' Data

A4
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Cache Example

e 32-bit machine

» 4KB, 16B Blocks, direct-mapped cache
— 16B Blocks => 4 Offset Bits
— 4KB / 16B Blocks => 256 Frames
— 256 Frames / 1 —way (DM) => 256 Sets => 8 index bits
— 32-bit address — 4 offset bits — § offset bits => 20 tag bits
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Another Example

* 32-bit machine
» 64KB, 32B Block, 2-Way Set Associative

* Compute Total Size of Tag Array
— 64KB/ 32B blocks => 2K Blocks
— 2K Blocks / 2-way set-associative => 1K Sets
— 32B Blocks => 5 Offset Bits
— 1K Sets => 10 index bits
— 32-bit address — 5 offset bits — 10 index bits = 17 tag bits
— 17 tag bits * 2K Blocks => 34Kb => 4.25KB
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Summary of Set Associativity

» Direct Mapped

— One place in cache, One Comparator, No Muxes

» Set Associative Caches
— Restricted set of places
— N-way set associativity
— Number of comparators = number of blocks per set
— N:1 mux
» Fully Associative
— Anywhere in cache
— Number of comparators = number of blocks in cache
— N:1 mux needed
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More Detailed Questions

Block placement policy?
— Where does a block go when it is fetched?

Block identification policy?

— How do we find a block in the cache?

Block replacement policy?

— When fetching a block into a full cache, how do we
decide what other block gets kicked out?

Write strategy?
— Does any of this differ for reads vs. writes?
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Block Placement + ID

* Placement
— Invariant: block always goes in exactly one set

— Fully-Associative: Cache is one set, block goes
anywhere

— Direct-Mapped: Block goes in exactly one frame

— Set-Associative: Block goes in one of a few frames

» Identification
— Find Set

— Search ways in parallel (compare tags, check valid bits)
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Block Replacement

Cache miss requires a replacement
No decision needed in direct mapped cache

More than one place for memory blocks in set-
associative

Replacement Strategies
— Optimal
» Replace Block used furthest ahead in time (oracle)

— Least Recently Used (LRU)

* Optimized for temporal locality

— (Pseudo) Random
* Nearly as good as LRU, simpler
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Write Policies

Writes are only about 21% of data cache traffic

b

Optimize cache for reads, do writes “on the side
— Reads can do tag check/data read in parallel

— Writes must be sure we are updating the correct data
and the correct amount of data (1-8 byte writes)

— Serial process => slow
What to do on a write hit?

What to do on a write miss?
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Write Hit Policies

* QI: When to propagate new values to memory?

» Write back — Information is only written to the cache.

— Next lower level only updated when it is evicted (dirty bits
say when data has been modified)

— Can write at speed of cache

— Caches become temporarily inconsistent with lower-levels of
hierarchy.

— Uses less memory bandwidth/power (multiple consecutive
writes may require only 1 final write)

— Multiple writes within a block can be merged into one write
— Evictions are longer latency now (must write back)
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Write Hit Policies

* QI1: When to propagate new values to memory?

» Write through — Information is written to cache
and to the lower-level memory
— Main memory is always “consistent/coherent”
— Easier to implement — no dirty bits
— Reads never result in writes to lower levels (cheaper)
— Higher bandwidth needed
— Write buffers used to avoid write stalls
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Write buffers

@ « Small chunks of memory to

buffer outgoing writes

* Processor can continue
when data written to buffer

Write Buffer

» Allows overlap of
processor execution with
memory update

Lower Levels of Memory

» Write buffers are essential for write-through caches
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Write buffers

» Writes can now be pipelined (rather than serial)
* Check tag + Write store data into Write Buffer
» Write data from Write buffer to L2 cache (tags ok)

» Loads must check write buffer for Store Op
pending stores to same address — Address| Data
. Loads.Check: Write Buffer], rdeee D
» Write Buffer Entry
e Cache

» Subsequent Levels of Memory
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Write Merging

. Write address ~ V v v v
Non-merging Buffer
100 1 |Mem[100]| 0 0 0
L[] ‘_
Except fgr multi 108 ) FP— o o
word write
. 116 1 |Mem[116] | 0 o 0
operations, extra
124 1 |Mem[124] | o 0 0

slots are unused

Write address  V \ v v

Merging Write Buffer

8

Mem([100] | 1 | Mem[108]| 1 |Mem[116]| 1 | Mem[124]

* More efficient writes
* Reduces buffer-full
stalls
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Write buffer policies:
Performance/Complexity Tradeoffs

Stores L2 Cache
_ —
Loads

<«

» Allow merging of multiple stores? (“coalescing”)
* “Flush Policy” — How to do flushing of entries?

* “Load Servicing Policy” — What happens when a
load occurs to data currently in write buffer?
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Write Buffer Flush Policies

* When to flush?

— Aggressive flushing => Reduce chance of stall cycles
due to full write buffer

— Conservative flushing => Write Merging more likely
(entries stay around longer) => reduces memory traffic

— On-chip L2’s => More aggressive flushing
* What to flush?

— Selective flushing of particular entries?
— Flush everything below a particular entry
— Flush everything
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Write Buffer Load Service Policies

* Load op’s address matches something in write buffer

 Possible policies:
— Flush entire write buffer, service load from L2

— Flush write buffer up to and including relevant address,
service from L2

— Flush only the relevant address from write buffer, service
from L2

— Service load from write buffer, don’t flush
 What if a Read miss doesn’t hit in the Write buffer?

— Give priority for the Read L2 accesses over the Write L2
Accesses
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Write misses?

» Write Allocate
— Block is allocated on a write miss
— Standard write hit actions follow the block allocation
— Write misses = Read Misses
— Goes well with write-back

» No-write Allocate
— Write misses do not allocate a block
— Only update lower-level memory
— Blocks only allocate on Read misses!
— Goes well with write-through
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Summary of Write Policies

Write Policy Hit/Miss | Writes to
WriteBack/Allocate Both L1 Cache
WriteBack/NoAllocate Hit L1 Cache

WriteBack/NoAllocate Miss L2 Cache

WriteThrough/Allocate Both Both

WriteThrough/NoAllocate | Hit Both

WriteThrough/NoAllocate | Miss L2 Cache
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Cache Performance

CPU time = (CPU execution cycles + Memory Stall
Cycles)*Clock Cycle Time

AMAT = Hit Time + Miss Rate * Miss Penalty

» Reducing these three parameters can have a big
impact on performance

 Out-of-order processors can hide some of the miss
penalty
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Reducing Miss Penalty

» Have already seen two examples of techniques to

reduce miss penalty

— Write buffers give priority to read misses over writes

— Merging write buffers

* Multiword writes are faster than many single word writes

» Now we consider several more

— Victim Caches

— Critical Word First/Early Restart

— Multilevel caches
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Reducing Miss Penalty:
Victim Caches

Direct mapped caches => many conflict misses
Solution 1: More associativity (expensive)
Solution 2: Victim Cache

Victim Cache

— Small (4 to 8-entry), fully-associative cache between L1
cache and refill path

— Holds blocks discarded from cache because of evictions
— Checked on a miss before going to L2 cache

— Hit in victim cache => swap victim block with cache block
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Reducing Miss Penalty:
Victim Caches

CPU

address
Data Data
*v | ™ in out
™ Tag |
[ ]
Data
* Even one entry helps
some benchmarks!
* Helps more for smaller Ny
caches, larger block

SiZCS Lower-level memory i
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Reducing Miss Penalty:
Critical Word First/Early Restart

* CPU normally just needs one word at a time
» Large cache blocks have long transfer times

* Don’t wait for the full block to be loaded before
sending requested data word to the CPU
e Critical Word First

— Request the missed word first from memory and send it
to the CPU and continue execution

» Early Restart

— Fetch in order, but as soon as the requested block
arrives send it to the CPU and continue execution

Computer Science 146
David Brooks

Reducing Miss Penalty:
Multilevel Caches

* Should the L1 cache be faster to keep up with the CPU
or larger to overcome processor-memory gap?

* Both
— L1 cache is small and fast
— L2 cache is large to capture many main memory accesses

AMAT = Hit Time, , + Miss Rate; ; * Miss Penalty, ,
MissPenalty, , = Hit Time, , + Miss Rate,; , + Miss Penalty, ,

AMAT = Hit Time, ; + Miss Rate, ; *(Hit Time, , + Miss Rate,,
+ Miss Penalty ,,
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.2 Cache Performance

* Local miss rate = # misses / #refs to cache
* Global miss rate = #misses / #refs of CPU

» Local miss rate of L2 cache is usually not very
good because most locality has been filtered out
by the L1 Cache
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Multilevel Caches

* For L2 Caches
— Low latency, high bandwidth is less important
— Low miss rate is very important
— Why?
» L2 Caches design for
— Unified (I+D)
— Larger Size (4-8MB) at the expense of latency
— Larger block sizes (128Byte lines!)
— High associativity: 4, 8, 16 at the expense of latency
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Multilevel Inclusion

Inclusion is said to hold between level 1 and level
1+1 if all data in level 1 1s also in level i+1

Desirable because for I/O and multiprocessors
only have to keep 2" level consistent

Inclusion must be maintained by flushing blocks
in 15t level that are mapped to a particular 24 level
line when it is replaced

Difficult when different block sizes at various
levels
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Next Time

More Cache Performance

Reducing Miss Rate

Reducing Hit Time

Reducing Miss Penalty/Rate via parallelism
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