
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Fall 2019
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 15: More on Caches

Computer Science 146
David Brooks

Lecture Outline

• Intro to caches review
• Write Policies and Write Buffers
• Cache Performance
• How to improve cache performance?

– Reducing Cache Miss Penalty

2

Computer Science 146
David Brooks

• Small, fast storage used to improve average access time
to slow memory

• Hold subset of the instructions and data used by program
• Exploits spacial and temporal locality

Proc/Regs

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

Bigger Faster

What is a cache?

Computer Science 146
David Brooks

Program locality is why caches
work

• Memory hierarchy exploit program locality:
– Programs tend to reference parts of their address space

that are local in time and space
– Temporal locality: recently referenced addresses are

likely to be referenced again (reuse)
– Spatial locality: If an address is referenced, nearby

addresses are likely to be referenced soon

• Programs that don’t exploit locality won’t benefit
from caches

3

Computer Science 146
David Brooks

Where do misses come from?

• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache, so the
block must be brought into the cache. Also called cold start misses or first
reference misses. (Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved. (Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity misses)
will occur because a block can be discarded and later retrieved if too many
blocks map to its set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

Computer Science 146
David Brooks

Cache Examples: Cycles 1 – 5
Spatial Locality!

0 1

0,1,2,3,4,5,6,7,8,9,0,0,0,2,2,2,4,9,1,9,1

0 1
2 3
0 1

2 3
0 1

4 5
2 3
0 1

Miss Hit (1) Miss Hit (3) Miss

4

Computer Science 146
David Brooks

General View of Caches

• Cache is made of frames
– Frame = data + tag + state bits
– State bits: Valid (tag/data there), Dirty (wrote into data)

• Cache Algorithm
– Find frame(s)
– If incoming tag != stored tag then Miss

• Evict block currently in frame
• Replace with block from memory (or L2 cache)

– Return appropriate word within block

Computer Science 146
David Brooks

Block Frames organized into sets
Number of Frames (ways) in each set is associativity

•One Frame per set (1 column) = Direct Mapped

Basic Cache Organization
Memory Address
Tag index offset

Compare Tags/Select Data Word

Data Word Hit/Miss

Decoder

Tag Datastate

5

Computer Science 146
David Brooks

Mapping Addresses to Frames

Divide Address into offset, index, tag
– Offset: finds word within a cache block

• O-bit offset 2O-byte block size

– Index: Finds set containing block frame
• N-bit offset 2N sets in cache
• Direct Mapped Cache: Index finds frame directly

– Tag: Remaining bits not implied by block frame, must
match

Tag(T) index(N) offset (O)

Computer Science 146
David Brooks

Direct Mapped Caches

• Partition Memory Address into three regions
– C = Cache Size
– M = Numbers of bits in memory address
– B = Block Size

Tag Index Block Offset
M-log C log C/B log B

Data Memory

Tag Memory

= Hit/Miss Data

6

Computer Science 146
David Brooks

Set Associative Caches

• Partition Memory Address into three regions
– C = Cache Size, B=Block Size, A=number of members per set

Tag Index Block Offset
M-log C/A log C/(B*A) log B

Data Memory

Tag Memory

=
Hit/Miss

=

OR

way0 way1

Data

Computer Science 146
David Brooks

Cache Example

• 32-bit machine
• 4KB, 16B Blocks, direct-mapped cache

– 16B Blocks => 4 Offset Bits
– 4KB / 16B Blocks => 256 Frames
– 256 Frames / 1 –way (DM) => 256 Sets => 8 index bits
– 32-bit address – 4 offset bits – 8 offset bits => 20 tag bits

7

Computer Science 146
David Brooks

Another Example

• 32-bit machine
• 64KB, 32B Block, 2-Way Set Associative
• Compute Total Size of Tag Array

– 64KB/ 32B blocks => 2K Blocks
– 2K Blocks / 2-way set-associative => 1K Sets
– 32B Blocks => 5 Offset Bits
– 1K Sets => 10 index bits
– 32-bit address – 5 offset bits – 10 index bits = 17 tag bits
– 17 tag bits * 2K Blocks => 34Kb => 4.25KB

Computer Science 146
David Brooks

Summary of Set Associativity
• Direct Mapped

– One place in cache, One Comparator, No Muxes
• Set Associative Caches

– Restricted set of places
– N-way set associativity
– Number of comparators = number of blocks per set
– N:1 mux

• Fully Associative
– Anywhere in cache
– Number of comparators = number of blocks in cache
– N:1 mux needed

8

Computer Science 146
David Brooks

More Detailed Questions

• Block placement policy?
– Where does a block go when it is fetched?

• Block identification policy?
– How do we find a block in the cache?

• Block replacement policy?
– When fetching a block into a full cache, how do we

decide what other block gets kicked out?

• Write strategy?
– Does any of this differ for reads vs. writes?

Computer Science 146
David Brooks

Block Placement + ID

• Placement
– Invariant: block always goes in exactly one set
– Fully-Associative: Cache is one set, block goes

anywhere
– Direct-Mapped: Block goes in exactly one frame
– Set-Associative: Block goes in one of a few frames

• Identification
– Find Set
– Search ways in parallel (compare tags, check valid bits)

9

Computer Science 146
David Brooks

Block Replacement

• Cache miss requires a replacement
• No decision needed in direct mapped cache
• More than one place for memory blocks in set-

associative
• Replacement Strategies

– Optimal
• Replace Block used furthest ahead in time (oracle)

– Least Recently Used (LRU)
• Optimized for temporal locality

– (Pseudo) Random
• Nearly as good as LRU, simpler

Computer Science 146
David Brooks

Write Policies

• Writes are only about 21% of data cache traffic
• Optimize cache for reads, do writes “on the side”

– Reads can do tag check/data read in parallel
– Writes must be sure we are updating the correct data

and the correct amount of data (1-8 byte writes)
– Serial process => slow

• What to do on a write hit?
• What to do on a write miss?

10

Computer Science 146
David Brooks

Write Hit Policies
• Q1: When to propagate new values to memory?
• Write back – Information is only written to the cache.

– Next lower level only updated when it is evicted (dirty bits
say when data has been modified)

– Can write at speed of cache
– Caches become temporarily inconsistent with lower-levels of

hierarchy.
– Uses less memory bandwidth/power (multiple consecutive

writes may require only 1 final write)
– Multiple writes within a block can be merged into one write
– Evictions are longer latency now (must write back)

Computer Science 146
David Brooks

Write Hit Policies

• Q1: When to propagate new values to memory?
• Write through – Information is written to cache

and to the lower-level memory
– Main memory is always “consistent/coherent”
– Easier to implement – no dirty bits
– Reads never result in writes to lower levels (cheaper)
– Higher bandwidth needed
– Write buffers used to avoid write stalls

11

Computer Science 146
David Brooks

Write buffers

• Write buffers are essential for write-through caches

CPU

Cache Write Buffer

Lower Levels of Memory

• Small chunks of memory to
buffer outgoing writes

• Processor can continue
when data written to buffer

• Allows overlap of
processor execution with
memory update

Computer Science 146
David Brooks

Write buffers
• Writes can now be pipelined (rather than serial)

• Check tag + Write store data into Write Buffer
• Write data from Write buffer to L2 cache (tags ok)

Address| Data

Address| Data

• Loads must check write buffer for
pending stores to same address

• Loads Check:
• Write Buffer
• Cache
• Subsequent Levels of Memory Tag

Store Op

Data

Data Cache

Write Buffer
Entry

12

Computer Science 146
David Brooks

Write Merging

Non-merging Buffer

Merging Write Buffer

• More efficient writes
• Reduces buffer-full

stalls

• Except for multi-
word write
operations, extra
slots are unused

Computer Science 146
David Brooks

Write buffer policies:
Performance/Complexity Tradeoffs

• Allow merging of multiple stores? (“coalescing”)
• “Flush Policy” – How to do flushing of entries?
• “Load Servicing Policy” – What happens when a

load occurs to data currently in write buffer?

Stores L2 Cache

Loads

13

Computer Science 146
David Brooks

Write Buffer Flush Policies

• When to flush?
– Aggressive flushing => Reduce chance of stall cycles

due to full write buffer
– Conservative flushing => Write Merging more likely

(entries stay around longer) => reduces memory traffic
– On-chip L2’s => More aggressive flushing

• What to flush?
– Selective flushing of particular entries?
– Flush everything below a particular entry
– Flush everything

Computer Science 146
David Brooks

Write Buffer Load Service Policies

• Load op’s address matches something in write buffer
• Possible policies:

– Flush entire write buffer, service load from L2
– Flush write buffer up to and including relevant address,

service from L2
– Flush only the relevant address from write buffer, service

from L2
– Service load from write buffer, don’t flush

• What if a Read miss doesn’t hit in the Write buffer?
– Give priority for the Read L2 accesses over the Write L2

Accesses

14

Computer Science 146
David Brooks

Write misses?
• Write Allocate

– Block is allocated on a write miss
– Standard write hit actions follow the block allocation
– Write misses = Read Misses
– Goes well with write-back

• No-write Allocate
– Write misses do not allocate a block
– Only update lower-level memory
– Blocks only allocate on Read misses!
– Goes well with write-through

Computer Science 146
David Brooks

Summary of Write Policies

L2 CacheMissWriteThrough/NoAllocate

BothHitWriteThrough/NoAllocate

BothBothWriteThrough/Allocate

L2 CacheMissWriteBack/NoAllocate

L1 CacheHitWriteBack/NoAllocate

L1 CacheBothWriteBack/Allocate

Writes toHit/MissWrite Policy

15

Computer Science 146
David Brooks

Cache Performance

CPU time = (CPU execution cycles + Memory Stall
Cycles)*Clock Cycle Time

AMAT = Hit Time + Miss Rate * Miss Penalty

• Reducing these three parameters can have a big
impact on performance

• Out-of-order processors can hide some of the miss
penalty

Computer Science 146
David Brooks

Reducing Miss Penalty

• Have already seen two examples of techniques to
reduce miss penalty
– Write buffers give priority to read misses over writes
– Merging write buffers

• Multiword writes are faster than many single word writes

• Now we consider several more
– Victim Caches
– Critical Word First/Early Restart
– Multilevel caches

16

Computer Science 146
David Brooks

Reducing Miss Penalty:
Victim Caches

• Direct mapped caches => many conflict misses
• Solution 1: More associativity (expensive)
• Solution 2: Victim Cache
• Victim Cache

– Small (4 to 8-entry), fully-associative cache between L1
cache and refill path

– Holds blocks discarded from cache because of evictions
– Checked on a miss before going to L2 cache
– Hit in victim cache => swap victim block with cache block

Computer Science 146
David Brooks

Reducing Miss Penalty:
Victim Caches

• Even one entry helps
some benchmarks!

• Helps more for smaller
caches, larger block
sizes

17

Computer Science 146
David Brooks

Reducing Miss Penalty:
Critical Word First/Early Restart

• CPU normally just needs one word at a time
• Large cache blocks have long transfer times
• Don’t wait for the full block to be loaded before

sending requested data word to the CPU
• Critical Word First

– Request the missed word first from memory and send it
to the CPU and continue execution

• Early Restart
– Fetch in order, but as soon as the requested block

arrives send it to the CPU and continue execution

Computer Science 146
David Brooks

Reducing Miss Penalty:
Multilevel Caches

• Should the L1 cache be faster to keep up with the CPU
or larger to overcome processor-memory gap?

• Both
– L1 cache is small and fast
– L2 cache is large to capture many main memory accesses

AMAT = Hit TimeL1 + Miss RateL1 * Miss PenaltyL1
MissPenaltyL1 = Hit TimeL2 + Miss RateL2 + Miss PenaltyL2
AMAT = Hit TimeL1 + Miss RateL1 *(Hit TimeL2 + Miss RateL2

+ Miss PenaltyL2)

18

Computer Science 146
David Brooks

L2 Cache Performance

• Local miss rate = # misses / #refs to cache
• Global miss rate = #misses / #refs of CPU
• Local miss rate of L2 cache is usually not very

good because most locality has been filtered out
by the L1 Cache

Computer Science 146
David Brooks

Multilevel Caches

• For L2 Caches
– Low latency, high bandwidth is less important
– Low miss rate is very important
– Why?

• L2 Caches design for
– Unified (I+D)
– Larger Size (4-8MB) at the expense of latency
– Larger block sizes (128Byte lines!)
– High associativity: 4, 8, 16 at the expense of latency

19

Computer Science 146
David Brooks

Multilevel Inclusion

• Inclusion is said to hold between level i and level
i+1 if all data in level i is also in level i+1

• Desirable because for I/O and multiprocessors
only have to keep 2nd level consistent

• Inclusion must be maintained by flushing blocks
in 1st level that are mapped to a particular 2nd level
line when it is replaced

• Difficult when different block sizes at various
levels

Computer Science 146
David Brooks

Next Time

• More Cache Performance
• Reducing Miss Rate
• Reducing Hit Time
• Reducing Miss Penalty/Rate via parallelism

