Computer Science 146
Computer Architecture

Fall 2019

Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 15: More on Caches

Computer Science 146
David Brooks

Lecture Outline

Intro to caches review
Write Policies and Write Buffers
Cache Performance

How to improve cache performance?
— Reducing Cache Miss Penalty

Computer Science 146
David Brooks

What is a cache?

» Small, fast storage used to improve average access time
to slow memory

* Hold subset of the instructions and data used by program
» Exploits spacial and temporal locality

Proc/Regs
L1-Cache

Bigger | L2-Cache | Faster

| Memory |

| Disk, Tape, etc. |

Computer Science 146
David Brooks

Program locality 1s why caches
work

* Memory hierarchy exploit program locality:

— Programs tend to reference parts of their address space
that are local in time and space

— Temporal locality: recently referenced addresses are
likely to be referenced again (reuse)

— Spatial locality: If an address is referenced, nearby
addresses are likely to be referenced soon

» Programs that don’t exploit locality won’t benefit
from caches

Computer Science 146
David Brooks

Where do misses come from?

* Classifying Misses: 3 Cs

- Compulsory—The first access to a block is not in the cache, so the
block must be brought into the cache. Also called cold start misses or first
reference misses. (Misses in even an Infinite Cache)

— Capacity—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved. (Misses in Fully Associative Size X Cache)

— Conf lict—i1f block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity misses)
will occur because a block can be discarded and later retrieved if too many
blocks map to its set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

Computer Science 146
David Brooks

Cache Examples: Cycles 1 — 5
Spatial Locality!

0,1,2,3,4,5,6,7,8,9,0,0,0,2,2,2,4,9,1,9,1

Miss Hit (1) Miss Hit (3) Miss
0 1 0 1 0 1 0 1 0 1
2 3 2 3 2 3

4 5

Computer Science 146
David Brooks

General View of Caches

» Cache is made of frames
— Frame = data + tag + state bits
— State bits: Valid (tag/data there), Dirty (wrote into data)

» Cache Algorithm
— Find frame(s)

— If incoming tag != stored tag then Miss
 Evict block currently in frame

* Replace with block from memory (or L2 cache)
— Return appropriate word within block

Computer Science 146
David Brooks

Basic Cache Organization

Memory Address state\ﬂ ‘ Tag‘ Data ‘

P —

—C T]
— 1
— | |
— | |
Decoder _ '
3 Compare Tags/Select Data Word

Block Frames organized into sets LData Word
Number of Frames (ways) in each set is associativity
*One Frame per set (1 column) = Direct Mapped

Hit/Miss

Computer Science 146
David Brooks

Mapping Addresses to Frames

Divide Address into offset, index, tag
— Offset: finds word within a cache block
*+ O-bit offset <> 2°-byte block size

— Index: Finds set containing block frame
» N-bit offset <> 2N sets in cache
 Direct Mapped Cache: Index finds frame directly
— Tag: Remaining bits not implied by block frame, must
match

Computer Science 146
David Brooks

Direct Mapped Caches

 Partition Memory Address into three regions
— C = Cache Size
— M = Numbers of bits in memory address
— B =Block Size
M-logC log C/B log B

Tag Memory

— Hit/Miss Dita

Computer Science 146
David Brooks

Set Associative Caches

* Partition Memory Address into three regions
— C = Cache Size, B=Block Size, A=number of members per set

M-log C/A log C/(B*A) logB

Tag Memory

—

A4

L[]

vV
OR —Hit/Miss ' Data

A4

Computer Science 146
David Brooks

Cache Example

e 32-bit machine

» 4KB, 16B Blocks, direct-mapped cache
— 16B Blocks => 4 Offset Bits
— 4KB / 16B Blocks => 256 Frames
— 256 Frames / 1 —way (DM) => 256 Sets => 8 index bits
— 32-bit address — 4 offset bits — § offset bits => 20 tag bits

Computer Science 146
David Brooks

Another Example

* 32-bit machine
» 64KB, 32B Block, 2-Way Set Associative

* Compute Total Size of Tag Array
— 64KB/ 32B blocks => 2K Blocks
— 2K Blocks / 2-way set-associative => 1K Sets
— 32B Blocks => 5 Offset Bits
— 1K Sets => 10 index bits
— 32-bit address — 5 offset bits — 10 index bits = 17 tag bits
— 17 tag bits * 2K Blocks => 34Kb => 4.25KB

Computer Science 146
David Brooks

Summary of Set Associativity

» Direct Mapped

— One place in cache, One Comparator, No Muxes

» Set Associative Caches
— Restricted set of places
— N-way set associativity
— Number of comparators = number of blocks per set
— N:1 mux
» Fully Associative
— Anywhere in cache
— Number of comparators = number of blocks in cache
— N:1 mux needed

Computer Science 146
David Brooks

More Detailed Questions

Block placement policy?
— Where does a block go when it is fetched?

Block identification policy?

— How do we find a block in the cache?

Block replacement policy?

— When fetching a block into a full cache, how do we
decide what other block gets kicked out?

Write strategy?
— Does any of this differ for reads vs. writes?

Computer Science 146
David Brooks

Block Placement + ID

* Placement
— Invariant: block always goes in exactly one set

— Fully-Associative: Cache is one set, block goes
anywhere

— Direct-Mapped: Block goes in exactly one frame

— Set-Associative: Block goes in one of a few frames

» Identification
— Find Set

— Search ways in parallel (compare tags, check valid bits)

Computer Science 146
David Brooks

Block Replacement

Cache miss requires a replacement
No decision needed in direct mapped cache

More than one place for memory blocks in set-
associative

Replacement Strategies
— Optimal
» Replace Block used furthest ahead in time (oracle)

— Least Recently Used (LRU)

* Optimized for temporal locality

— (Pseudo) Random
* Nearly as good as LRU, simpler

Computer Science 146
David Brooks

Write Policies

Writes are only about 21% of data cache traffic

b

Optimize cache for reads, do writes “on the side
— Reads can do tag check/data read in parallel

— Writes must be sure we are updating the correct data
and the correct amount of data (1-8 byte writes)

— Serial process => slow
What to do on a write hit?

What to do on a write miss?

Computer Science 146
David Brooks

Write Hit Policies

* QI: When to propagate new values to memory?

» Write back — Information is only written to the cache.

— Next lower level only updated when it is evicted (dirty bits
say when data has been modified)

— Can write at speed of cache

— Caches become temporarily inconsistent with lower-levels of
hierarchy.

— Uses less memory bandwidth/power (multiple consecutive
writes may require only 1 final write)

— Multiple writes within a block can be merged into one write
— Evictions are longer latency now (must write back)

Computer Science 146
David Brooks

Write Hit Policies

* QI1: When to propagate new values to memory?

» Write through — Information is written to cache
and to the lower-level memory
— Main memory is always “consistent/coherent”
— Easier to implement — no dirty bits
— Reads never result in writes to lower levels (cheaper)
— Higher bandwidth needed
— Write buffers used to avoid write stalls

Computer Science 146
David Brooks

Write buffers

@ « Small chunks of memory to

buffer outgoing writes

* Processor can continue
when data written to buffer

Write Buffer

» Allows overlap of
processor execution with
memory update

Lower Levels of Memory

» Write buffers are essential for write-through caches

Computer Science 146
David Brooks

Write buffers

» Writes can now be pipelined (rather than serial)
* Check tag + Write store data into Write Buffer
» Write data from Write buffer to L2 cache (tags ok)

» Loads must check write buffer for Store Op
pending stores to same address — Address| Data
. Loads.Check: Write Buffer], rdeee D
» Write Buffer Entry
e Cache

» Subsequent Levels of Memory

Computer Science 146 Data CaChe
David Brooks

Write Merging

. Write address ~ V v v v
Non-merging Buffer
100 1 |Mem[100]| 0 0 0
L[] ‘_
Except fgr multi 108) FP— o o
word write
. 116 1 |Mem[116] | 0 o 0
operations, extra
124 1 |Mem[124] | o 0 0

slots are unused

Write address V \ v v

Merging Write Buffer

8

Mem([100] | 1 | Mem[108]| 1 |Mem[116]| 1 | Mem[124]

* More efficient writes
* Reduces buffer-full
stalls

Computer Science 146
David Brooks

Write buffer policies:
Performance/Complexity Tradeoffs

Stores L2 Cache
_ —
Loads

<«

» Allow merging of multiple stores? (“coalescing”)
* “Flush Policy” — How to do flushing of entries?

* “Load Servicing Policy” — What happens when a
load occurs to data currently in write buffer?

Computer Science 146
David Brooks

Write Buffer Flush Policies

* When to flush?

— Aggressive flushing => Reduce chance of stall cycles
due to full write buffer

— Conservative flushing => Write Merging more likely
(entries stay around longer) => reduces memory traffic

— On-chip L2’s => More aggressive flushing
* What to flush?

— Selective flushing of particular entries?
— Flush everything below a particular entry
— Flush everything

Computer Science 146
David Brooks

Write Buffer Load Service Policies

* Load op’s address matches something in write buffer

 Possible policies:
— Flush entire write buffer, service load from L2

— Flush write buffer up to and including relevant address,
service from L2

— Flush only the relevant address from write buffer, service
from L2

— Service load from write buffer, don’t flush
 What if a Read miss doesn’t hit in the Write buffer?

— Give priority for the Read L2 accesses over the Write L2
Accesses

Computer Science 146
David Brooks

Write misses?

» Write Allocate
— Block is allocated on a write miss
— Standard write hit actions follow the block allocation
— Write misses = Read Misses
— Goes well with write-back

» No-write Allocate
— Write misses do not allocate a block
— Only update lower-level memory
— Blocks only allocate on Read misses!
— Goes well with write-through

Computer Science 146
David Brooks

Summary of Write Policies

Write Policy Hit/Miss | Writes to
WriteBack/Allocate Both L1 Cache
WriteBack/NoAllocate Hit L1 Cache

WriteBack/NoAllocate Miss L2 Cache

WriteThrough/Allocate Both Both

WriteThrough/NoAllocate | Hit Both

WriteThrough/NoAllocate | Miss L2 Cache

Computer Science 146
David Brooks

Cache Performance

CPU time = (CPU execution cycles + Memory Stall
Cycles)*Clock Cycle Time

AMAT = Hit Time + Miss Rate * Miss Penalty

» Reducing these three parameters can have a big
impact on performance

 Out-of-order processors can hide some of the miss
penalty

Computer Science 146
David Brooks

Reducing Miss Penalty

» Have already seen two examples of techniques to

reduce miss penalty

— Write buffers give priority to read misses over writes

— Merging write buffers

* Multiword writes are faster than many single word writes

» Now we consider several more

— Victim Caches

— Critical Word First/Early Restart

— Multilevel caches

Computer Science 146
David Brooks

Reducing Miss Penalty:
Victim Caches

Direct mapped caches => many conflict misses
Solution 1: More associativity (expensive)
Solution 2: Victim Cache

Victim Cache

— Small (4 to 8-entry), fully-associative cache between L1
cache and refill path

— Holds blocks discarded from cache because of evictions
— Checked on a miss before going to L2 cache

— Hit in victim cache => swap victim block with cache block

Computer Science 146
David Brooks

Reducing Miss Penalty:
Victim Caches

CPU

address
Data Data
*v | ™ in out
™ Tag |
[]
Data
* Even one entry helps
some benchmarks!
* Helps more for smaller Ny
caches, larger block

SiZCS Lower-level memory i

Computer Science 146
David Brooks

Reducing Miss Penalty:
Critical Word First/Early Restart

* CPU normally just needs one word at a time
» Large cache blocks have long transfer times

* Don’t wait for the full block to be loaded before
sending requested data word to the CPU
e Critical Word First

— Request the missed word first from memory and send it
to the CPU and continue execution

» Early Restart

— Fetch in order, but as soon as the requested block
arrives send it to the CPU and continue execution

Computer Science 146
David Brooks

Reducing Miss Penalty:
Multilevel Caches

* Should the L1 cache be faster to keep up with the CPU
or larger to overcome processor-memory gap?

* Both
— L1 cache is small and fast
— L2 cache is large to capture many main memory accesses

AMAT = Hit Time, , + Miss Rate; ; * Miss Penalty, ,
MissPenalty, , = Hit Time, , + Miss Rate,; , + Miss Penalty, ,

AMAT = Hit Time, ; + Miss Rate, ; *(Hit Time, , + Miss Rate,,
+ Miss Penalty ,,

Computer Science 146
David Brooks

.2 Cache Performance

* Local miss rate = # misses / #refs to cache
* Global miss rate = #misses / #refs of CPU

» Local miss rate of L2 cache is usually not very
good because most locality has been filtered out
by the L1 Cache

Computer Science 146
David Brooks

Multilevel Caches

* For L2 Caches
— Low latency, high bandwidth is less important
— Low miss rate is very important
— Why?
» L2 Caches design for
— Unified (I+D)
— Larger Size (4-8MB) at the expense of latency
— Larger block sizes (128Byte lines!)
— High associativity: 4, 8, 16 at the expense of latency

Computer Science 146
David Brooks

Multilevel Inclusion

Inclusion is said to hold between level 1 and level
1+1 if all data in level 1 1s also in level i+1

Desirable because for I/O and multiprocessors
only have to keep 2" level consistent

Inclusion must be maintained by flushing blocks
in 15t level that are mapped to a particular 24 level
line when it is replaced

Difficult when different block sizes at various
levels

Computer Science 146
David Brooks

Next Time

More Cache Performance

Reducing Miss Rate

Reducing Hit Time

Reducing Miss Penalty/Rate via parallelism

Computer Science 146
David Brooks

