
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Fall 2019
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 16: Even more on Caches

Computer Science 146
David Brooks

Lecture Outline

• How to improve cache performance?
– Reducing Cache Miss Penalty
– Reducing Miss Rate
– Reducing Hit Time
– Reducing Miss Penalty/Rate via parallelism

2

Computer Science 146
David Brooks

Where to misses come from?

• Classifying Misses: 3 Cs
– Compulsory—First access to a block. Also called cold start misses or

first reference misses. (Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved. (Misses in Fully Associative Cache)

– Conflict—If block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity misses) will
occur because a block can be discarded and later retrieved if too many
blocks map to its set. Also called collision misses or interference misses.
(Remaining Misses)

• 4th “C”: Coherence - Misses caused by cache coherence.

Computer Science 146
David Brooks

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate
(SPEC92)

Conflict

3

Computer Science 146
David Brooks

Cache Size

• Old rule of thumb: 2x size =>
25% cut in miss rate

• What does it reduce?

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Computer Science 146
David Brooks

Huge Caches => Working Sets

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Per Processor Cache Size (KB)

M
iss

 R
at

e
(%

)

4-node
8-node
16-node
32-node

First working set

Capacity-generated traffic
(including conflicts)

Second working set

D
at

a
tra

ffi
c

Other capacity-independent communication

Cold-start (compulsory) traffic

Replication capacity (cache size)

Inherent communication

Example LU Decomposition
from NAS Parallel Benchmarks

4

Computer Science 146
David Brooks

Cache Organization?
• Assume total cache size not changed:
• What happens if:

1) Change Block Size:

2) Change Associativity:

3) Change Compiler:

Which of 3Cs is obviously affected?

Computer Science 146
David Brooks

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

Larger Block Size
(fixed size&assoc)

Reduced
compulsory

misses Increased
Conflict
Misses

What else drives up block size?

5

Computer Science 146
David Brooks

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Associativity

Conflict 2:1 Rule of Thumb

Computer Science 146
David Brooks

3Cs Relative Miss Rate

Cache Size (KB)

0%

20%

40%

60%

80%

100%

1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size
Good: insight => invention

6

Computer Science 146
David Brooks

Associativity vs Cycle Time

• Beware: Execution time is only final measure!
• Why is cycle time tied to hit time?

• Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way

external cache +10%,
internal + 2%

– suggested big and dumb caches

Computer Science 146
David Brooks

Example: Avg. Memory Access
Time vs. Miss Rate

• Example: assume Cache Cycle Time = 1.10 for 2-way,
1.12 for 4-way, 1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way

1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T.
not improved by more
associativity)

7

Computer Science 146
David Brooks

Way Prediction

• Maintain hit-speed of a direct-mapped cache, get
conflict miss reduction of associative cache

• Extra bits are used to predict the way of the next
cache access

• Alpha 21264 uses 2-way set-associative I-Cache
– If predictor is correct, 1-cycle I-cache latency
– If incorrect, 3-cycle latency
– SPEC95 => Prediction accuracy ~85%

Computer Science 146
David Brooks

Reducing Misses by Compiler
Optimizations

• McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order stored in

memory
– Loop Fusion: Combine 2 independent loops that have same looping and

some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down whole columns or rows

8

Computer Science 146
David Brooks

Merging Arrays Example
/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {
int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

before

after

Computer Science 146
David Brooks

Padding and Offset Changes

• Cache size of 8KB

Before:
int a[2048];
int b[2048];
int c[2048];

for(i=0;i<2048;i++)
C[i]=A[i]+B[i]

After:
int a[2050];
int b[2050];
int c[2050];

for(i=0;i<2048;i++)
C[i]=A[i]+B[i]

9

Computer Science 146
David Brooks

Loop Interchange Example
/* Before */
for (k = 0; k < 100; k = k+1)
for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

Sequential accesses in blocks instead of striding through
memory every 100 words; improved spatial locality

X[0][0]
X[0][1]
X[1][0]

C: Row-Major Order

X[1][1]

Computer Science 146
David Brooks

Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access
to a & c vs. one
miss per access;
improves spatial
locality

10

Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits in cache

Computer Science 146
David Brooks

Blocking: Before

11

Computer Science 146
David Brooks

Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r; };
• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to N3/B+2N2

• Conflict Misses Too?

Computer Science 146
David Brooks

Blocking: After

12

Computer Science 146
David Brooks

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations
to Reduce Cache Misses (by hand)

Computer Science 146
David Brooks

Summary: Miss Rate Reduction

• 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Way-Prediction
5. Reducing Misses by Compiler Optimization

CPUtime = IC × CPI
Execution

+
Memory accesses

Instruction
× Miss rate × Miss penalty

 × Clock cycle time

13

Computer Science 146
David Brooks

Review: Improving Cache
Performance

• How to improve cache performance?
– Reducing Cache Miss Penalty
– Reducing Miss Rate
– Reducing Miss Penalty/Rate via parallelism
– Reducing Hit Time

Computer Science 146
David Brooks

Non-blocking Caches to reduce stalls
on misses

• Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss
– requires out-of-order execution
– requires multi-bank memories

• “hit under miss” reduces the effective miss penalty by
working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple
misses
– Significantly increases the complexity of the cache controller as there

can be multiple outstanding memory accesses
– Requires multiple memory banks (otherwise cannot support)
– Penium Pro allows 4 outstanding memory misses

14

Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Computer Science 146
David Brooks

Reducing Misses by Hardware
Prefetching of Instructions & Data

• Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer” not the cache
– On Access: check both cache and stream buffer
– On SB Hit: move line into cache
– On SB Miss: Clear and refill SB with successive lines

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB cache; 4

streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 streams got

50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory bandwidth that can
be used without penalty

15

Computer Science 146
David Brooks

Hardware Prefetching
• What to prefetch?

– One block ahead (spatially)
• What will this work well for?

– Address prediction for non-sequential data
• Correlated predictors (store miss, next_miss pairs in table)
• Jump-pointers (augment data structures with prefetch pointers)

• When to prefetch?
– On every reference
– On a miss (basically doubles block size!)
– When resident data becomes “dead” -- how do we know?

• No one will use it anymore, so it can be kicked out

Computer Science 146
David Brooks

Reducing Misses by
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults; a form of speculative

execution
• Prefetching comes in two flavors:

– Binding prefetch: Requests load directly into register.
• Must be correct address and register!

– Non-Binding prefetch: Load into cache.
• Can be incorrect. Faults?

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

16

Computer Science 146
David Brooks

Reducing Hit Times
• Some common techniques/trends

– Small and simple caches
• Pentium III – 16KB L1
• Pentium 4 – 8KB L1

– Pipelined Caches (actually bandwidth increase)
• Pentium – 1 clock cycle I-Cache
• Pentium III – 2 clock cycle I-Cache
• Pentium 4 – 4 clock cycle I-Cache

– Trace Caches
• Beyond spatial locality
• Dynamic sequences of instruction (including taken branches)

Computer Science 146
David Brooks

Hit Time Reduction

• Translation of Virtual (programmer) to Physical
(memory) Addresses is a bottleneck on hit time

• Defer this topic to next time

17

Computer Science 146
David Brooks

Cache Optimization Summary
Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity/Larger Cache + – 1
Victim Caches + 2
Way-Predicting Caches + 2
HW Prefetching of Instr/Data + + 2
Compiler Controlled Prefetching + + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2
Pipelined Cache + 1
Trace Cache + 3

m
is

s
ra

te
M

is
s

pe
na

lty
H

it
tim

e

Computer Science 146
David Brooks

Cache Bandwidth

• Superscalars need multiple memory access per cycle
• Parallel cache access: more difficult than parallel ALUs

– Caches have state so multiple accesses will affect each other
• “True Multiporting”

– Multiple decoders, read/write wordlines per SRAM cell
– Pipeline a single port by “double pumping” Alpha 21264
– Multiple cache copies (like clustered register file) POWER4

• Interleaved Multiporting
– Cache divides into banks – two accesses to same bank =>

conflict

18

Computer Science 146
David Brooks

Next Time

• Virtual Memory
• Main Memory

