Computer Science 146
Computer Architecture

Fall 2019

Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 16: Even more on Caches

Computer Science 146
David Brooks

Lecture Outline

* How to improve cache performance?
— Reducing Cache Miss Penalty
— Reducing Miss Rate
— Reducing Hit Time
— Reducing Miss Penalty/Rate via parallelism

Computer Science 146
David Brooks

Where to misses come from?

* Classifying Misses: 3 Cs

— COn’lpulSO?j/—First access to a block. Also called cold start misses or
first reference misses. (Misses in even an Infinite Cache)

— Capacity—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved. (Misses in Fully Associative Cache)

-C Ol’lﬂ Ict—If block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity misses) will
occur because a block can be discarded and later retrieved if too many
blocks map to its set. Also called collision misses or interference misses.
(Remaining Misses)

« 4th «“C”: Coherence - Misses caused by cache coherence.

Computer Science 146
David Brooks

3Cs Absolute Miss Rate
(SPEC92)

.14
0 1-way

0.12
2way " Conflict

4-way

0.1

0.08
8-way
0.06
Capacity
0.04

0.02

= 2
—
Cache Size (KB) Compulsory

Computer Science 146
David Brooks

Cache Size

0.14 Old rule of thumb: 2x size =>
0.12 25% cut in miss rate
.1 .

0 * What does it reduce?
0.08
0.06

Capacity
0.04
0.02
0

Cache Size (KB) Compulsory

Computer Science 146
David Brooks

Huge Caches => Working Sets

Miss Rate (%)

o
&=
|
s First working set
©
]
(including conflicts
14 Second working set
—+— 4-node
12 4 8-node ;\\ ‘ - —
—+— 16-node e |
10 4 32-node Inherent communication|
Cold-start (compulsory) traffi
81 Replication capacity (cache size)
61
4] Py
Example LU Decomposition
2 from NAS Parallel Benchmarks
0

- a8 T ® e A T o® e .
- . @ & wn =
- & @

1024
2048
4096

Per Processor Cache Size (KB)

Computer Science 146
David Brooks

Cache Organization?

* Assume total cache size not changed:
* What happens if:

1) Change Block Size:
2) Change Associativity:
3) Change Compiler:

Which of 3Cs is obviously affected?

Computer Science 146
David Brooks

Larger Block Size
(fixed size&assoc)

25% 1

—— 4K
Miss
Rate

" 16K
10%
7 64K

Reduced 5% | 256K
compulsory e S —
misses 0% + i ' ' " | Increased
© Q 3 ® 2| Conflict
— |l Misses
Block Size (bytes)

What else drives up block size?

Computer Science 146
David Brooks

Associativity

0.14
1-
0.12 vy \Conﬂict 2:1 Rule of Thumb
0.1
0.08
8-way
0.06
Capacity
0.04
0.02
0
o
=
Cache Size (KB) Compulsory
Computer Science 146
David Brooks

3Cs Relative Miss Rate

80% _
Conflict
60%
40%

20%

0%

Y— (o] < =]

16
32
64

7

128

Flaws: for fixed block size

Good: insight => invention Cache Size (KB) Compulsory

Computer Science 146
David Brooks

Associativity vs Cycle Time

» Beware: Execution time is only final measure!

* Why is cycle time tied to hit time?

» Will Clock Cycle time increase?

— Hill [1988] suggested hit time for 2-way vs. 1-way
external cache +10%,

internal + 2%

— suggested big and dumb caches

Computer Science 146
David Brooks

Example: Avg. Memory Access
Time vs. Miss Rate

» Example: assume Cache Cycle Time = 1.10 for 2-way,
1.12 for 4-way, 1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
(KB) l-way 2-way 4-way _&-way

1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T.
not improved by more
associativity)

Computer Science 146
David Brooks

Way Prediction

» Maintain hit-speed of a direct-mapped cache, get
conflict miss reduction of associative cache

 Extra bits are used to predict the way of the next
cache access

» Alpha 21264 uses 2-way set-associative [-Cache
— If predictor is correct, 1-cycle I-cache latency

— If incorrect, 3-cycle latency
— SPEC95 => Prediction accuracy ~85%

Computer Science 146
David Brooks

Reducing Misses by Compiler
Optimizations

* McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

* Instructions
— Reorder procedures in memory so as to reduce conflict misses
— Profiling to look at conflicts(using tools they developed)
* Data
— Merging Arrays: improve spatial locality by single array of compound
elements vs. 2 arrays

— Loop Interchange: change nesting of loops to access data in order stored in
memory

— Loop Fusion: Combine 2 independent loops that have same looping and
some variables overlap

— Blocking: Improve temporal locality by accessing “blocks” of data
repeatedly vs. going down whole columns or rows

Computer Science 146
David Brooks

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val: before I
: I
int key;

}; after I

struct merge merged array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

Computer Science 146
David Brooks

Padding and Offset Changes

* (Cache size of 8KB

Before: After:

int a[2048]; int a[2050];

int b[2048]; int b[2050];

int c[2048]; int c[2050];

for (i=0;1<2048;i++) for (i=0;1<2048;i++)
C[i]=A[i]+B[1i] C[i]=A[i]+BI[1i]

Computer Science 146
David Brooks

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1

)
£ j = 0; 3 < 100; 3 = J+1)
L i ’)= i)= C: Row-Major Order

for (1 = 0; 1 < 5000; i+1)
x[i109] = 2 * x[1][3]; X[0][0]
/* After */ X[0][1]
for (k = 0; k < 100; k = k+1) X[1][0]
for (1 = 0; i < 5000; i = i+1) :X[IHI]

'_for | = 0; 3§ < 100; j = j+1)

x[i] [3] =2 * x[i][3];
Sequential accesses in blocks instead of striding through
memory every 100 words; improved spatial locality

Computer Science 146
David Brooks

Loop Fusion Example

/* Before */

for (i = 0; 1 < N; 1 = 1i+1)
for (3 = 0; J < N; j = j+1)
alil[3] = 1/b[i1[3] * cl[il[j]~
for (i = 0; 1 < N; i = i+1) 2 misses per access
for (3 = 0; § < N; j = j+1) to a & c vs. one
d[i][j] = alil[j] + c[i]l[3]; mMmISS per access;
/* After */ improves spatial
for (i = 0; i < N; 1 = i+1) locahty
for (3 = 0; jJ < N; j = j+1)
{ alillj] = 1/bl[i1[3] * c[il[]];
dfi][J] = alil[3j] + cli][J1:}

Computer Science 146
David Brooks

Blocking Example

/* Before */ —
for (1 = 0; 1 < N; 1 = i+1)
for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1) {
r =1 + ylil[kl*z[k][J]:};
x[1103] = s
bi
* Two Inner Loops:
— Read all NxN elements of z[]
— Read N elements of 1 row of y[] repeatedly
— Write N elements of 1 row of x[] l

» Capacity Misses a function of N & Cache Size:

— 2N3+ N? => (assuming no conflict; otherwise ...)
* Idea: compute on BxB submatrix that fits in cache

Blocking: Before

0 1 2 3 4 5 o 1 2 3 4 5 o 1 2
0 0 o
1 1 1
2 2 2
i k
3 3 3
4 4 4
5 5 5

Computer Science 146
David Brooks

Blocking Example

/* After */

for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; 1 < N; 1 = 1i+1)

for (3 = JJj; 7 < min(33+B-1,N); J = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {

r=r + y[il[kl*z[k][]j]l;};
x[1]103] = x[1]1[3] + =; };
* B called Blocking Factor
* Capacity Misses from 2N3 + N2 to N3/B+2N?
* Conflict Misses Too?

Computer Science 146
David Brooks

Blocking: After

o 1 2 3 4 5 0o 1 2 3 4 5 0
0 0
1 1
2 2
i k
3 3
4 4
5 5

Computer Science 146
David Brooks

Summary of Compiler Optimizations
to Reduce Cache Misses (by hand)

vpenta (nasa7)

gmty (nasa7)
tomcatv

btrix (nasa7)

mxm (nasa?7)

spice

cholesky
(nasa?7)
compress

1 1.5 2 2.5 3
Performance Improvement
110 merged [| loop [| loop fusion OJ blocking —
arrays interchange

Summary: Miss Rate Reduction

Memory accesses

CPUtime=IC x| CPI__,_ + :
k Instruction

x Missrate x Miss penalty)] x Clock cycle time

* 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Way-Prediction
5. Reducing Misses by Compiler Optimization

Computer Science 146
David Brooks

Review: Improving Cache
Performance

* How to improve cache performance?
— Reducing Cache Miss Penalty
— Reducing Miss Rate
— Reducing Miss Penalty/Rate via parallelism
— Reducing Hit Time

Computer Science 146
David Brooks

Non-blocking Caches to reduce stalls
On Mmisses

* Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss
— requires out-of-order execution
— requires multi-bank memories

* “hit under miss” reduces the effective miss penalty by
working during miss vs. ignoring CPU requests

* “hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple
misses

— Significantly increases the complexity of the cache controller as there
can be multiple outstanding memory accesses

— Requires multiple memory banks (otherwise cannot support)
— Penium Pro allows 4 outstanding memory misses

Computer Science 146
David Brooks

Value of Hit Under Miss for SPEC

100%

90%
iy Hit under 1 miss

70% [

Percentage

of the average 60% [
memory

stall time 50% I

40%

ﬁrﬁij@q&ﬁ,@; &\ &be\g.é: QSQ.Q ‘:\(‘(‘@Cg)d- \&6{;&&;’(‘\\6&
Benchmarks
* FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

* Int programs on average: AMAT=0.24 ->0.20 -> 0.19 > 0.19
+ 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Reducing Misses by Hardware
Prefetching of Instructions & Data

* Instruction Prefetching

Alpha 21064 fetches 2 blocks on a miss

Extra block placed in “stream buffer” not the cache

— On Access: check both cache and stream buffer

On SB Hit: move line into cache

— On SB Miss: Clear and refill SB with successive lines

* Works with data blocks too:
— Jouppi [1990] 1 data stream buffer got 25% misses from 4KB cache; 4
streams got 43%

— Palacharla & Kessler [1994] for scientific programs for 8 streams got
50% to 70% of misses from
2 64KB, 4-way set associative caches

 Prefetching relies on having extra memory bandwidth that can
be used without penalty

Computer Science 146
David Brooks

Hardware Prefetching

» What to prefetch?

— One block ahead (spatially)
* What will this work well for?

— Address prediction for non-sequential data
* Correlated predictors (store miss, next miss pairs in table)
» Jump-pointers (augment data structures with prefetch pointers)

* When to prefetch?
— On every reference
— On a miss (basically doubles block size!)

— When resident data becomes “dead” -- how do we know?
» No one will use it anymore, so it can be kicked out

Computer Science 146
David Brooks

Reducing Misses by
Software Prefetching Data

» Data Prefetch
— Load data into register (HP PA-RISC loads)
— Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
— Special prefetching instructions cannot cause faults; a form of speculative
execution
* Prefetching comes in two flavors:
— Binding prefetch: Requests load directly into register.
* Must be correct address and register!
— Non-Binding prefetch: Load into cache.
+ Can be incorrect. Faults?
* Issuing Prefetch Instructions takes time
— Is cost of prefetch issues < savings in reduced misses?
— Higher superscalar reduces difficulty of issue bandwidth

Computer Science 146
David Brooks

Reducing Hit Times

* Some common techniques/trends

— Small and simple caches
* Pentium III - 16KB L1
* Pentium 4 — 8KB L1
— Pipelined Caches (actually bandwidth increase)
* Pentium — 1 clock cycle I-Cache
» Pentium III — 2 clock cycle I-Cache
* Pentium 4 — 4 clock cycle [-Cache
— Trace Caches
» Beyond spatial locality
* Dynamic sequences of instruction (including taken branches)

Computer Science 146
David Brooks

Hit Time Reduction

 Translation of Virtual (programmer) to Physical
(memory) Addresses is a bottleneck on hit time

 Defer this topic to next time

Computer Science 146
David Brooks

Cache Optimization Summary

miss rate

Technique MR MP HT Complexity

Larger Block Size

Higher Associativity/Larger Cache
Victim Caches

Way-Predicting Caches

HW Prefetching of Instr/Data
Compiler Controlled Prefetching
Compiler Reduce Misses

+

+ o+ o+ o+ A+
+

Miss
penalt

> Priority to Read Misses

Early Restart & Critical Word 1st
Non-Blocking Caches

Second Level Caches

+ 4+ +

Hit

Pipelined Cache +
Trace Cache +

W =N W =IO WD —O

o
£

Computer Science 146
David Brooks

Cache Bandwidth

Superscalars need multiple memory access per cycle

Parallel cache access: more difficult than parallel ALUs
— Caches have state so multiple accesses will affect each other

“True Multiporting”

— Multiple decoders, read/write wordlines per SRAM cell

— Pipeline a single port by “double pumping” Alpha 21264

— Multiple cache copies (like clustered register file) POWER4
Interleaved Multiporting

— Cache divides into banks — two accesses to same bank =>
conflict

Computer Science 146
David Brooks

Next Time

* Virtual Memory
* Main Memory

Computer Science 146
David Brooks

