Computer Science 146 Computer Architecture

Fall 2019 Harvard University

Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu

Lecture 16: Even more on Caches

David Brooks

Cache Organization?

- Assume total cache size not changed:
- What happens if:
- 1) Change Block Size:
- 2) Change Associativity:
- 3) Change Compiler:

Which of 3Cs is obviously affected?

Merging Arrays Example

Loop Interchange Example

Blocking Example

```
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)
   for (j = jj; j < min(jj+B-1,N); j = j+1)
      {r = 0;
      for (k = kk; k < min(kk+B-1,N); k = k+1) {
        r = r + y[i][k]*z[k][j];};
      x[i][j] = x[i][j] + r; };
• B called Blocking Factor</pre>
```

- Capacity Misses from $2N^3 + N^2$ to $N^3/B+2N^2$
- Conflict Misses Too?

Performance How to improve cache performance? Reducing Cache Miss Penalty Reducing Miss Rate Reducing Miss Penalty/Rate via parallelism Reducing Hit Time

Hardware Prefetching

- What to prefetch?
 - One block ahead (spatially)
 - What will this work well for?
 - Address prediction for non-sequential data
 - Correlated predictors (store miss, next_miss pairs in table)
 - Jump-pointers (augment data structures with prefetch pointers)
- When to prefetch?
 - On every reference
 - On a miss (basically doubles block size!)
 - When resident data becomes "dead" -- how do we know?
 - No one will use it anymore, so it can be kicked out

Computer Science 146 David Brooks

Reducing Misses by Software Prefetching Data

- Data Prefetch
 - Load data into register (HP PA-RISC loads)
 - Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
 - Special prefetching instructions cannot cause faults; a form of speculative execution
- Prefetching comes in two flavors:
 - Binding prefetch: Requests load directly into register.
 - Must be correct address and register!
 - Non-Binding prefetch: Load into cache.
 - Can be incorrect. Faults?
- Issuing Prefetch Instructions takes time
 - Is cost of prefetch issues < savings in reduced misses?
 - Higher superscalar reduces difficulty of issue bandwidth

Reducing Hit Times

- Some common techniques/trends
 - Small and simple caches
 - Pentium III 16KB L1
 - Pentium 4 8KB L1
 - Pipelined Caches (actually bandwidth increase)
 - Pentium 1 clock cycle I-Cache
 - Pentium III 2 clock cycle I-Cache
 - Pentium 4 4 clock cycle I-Cache
 - Trace Caches
 - · Beyond spatial locality
 - Dynamic sequences of instruction (including taken branches)

Cache Optimization Summary

	Technique	MR	MP HT	Complexity
miss rate	Larger Block Size	+	_	0
	Higher Associativity/Larger Cache	+	_	1
	Victim Caches	+		2
	Way-Predicting Caches	+		2
	HW Prefetching of Instr/Data	+	+	2
	Compiler Controlled Prefetching	+	+	3
	Compiler Reduce Misses	+		0
Miss penalty	Priority to Read Misses		+	1
	Early Restart & Critical Word 1st		+	2
	Non-Blocking Caches		+	3
	Second Level Caches		+	2
Hit time	Pipelined Cache		+	1
	Trace Cache		+	3
	Computer Scier David Bro			

