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Lecture Outline

• How to improve cache performance?
– Reducing Cache Miss Penalty
– Reducing Miss Rate
– Reducing Hit Time
– Reducing Miss Penalty/Rate via parallelism
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Where to misses come from?

• Classifying Misses: 3 Cs
– Compulsory—First access to a block. Also called cold start misses or 

first reference misses. (Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed during 
execution of a program, capacity misses will occur due to blocks being 
discarded and later retrieved. (Misses in Fully Associative Cache)

– Conflict—If block-placement strategy is set associative or direct 
mapped, conflict misses (in addition to compulsory & capacity misses) will 
occur because a block can be discarded and later retrieved if too many 
blocks map to its set. Also called collision misses or interference misses.
(Remaining Misses)

• 4th “C”: Coherence - Misses caused by cache coherence.
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Cache Size

• Old rule of thumb: 2x size => 
25% cut in miss rate

• What does it reduce?
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Huge Caches => Working Sets

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Per Processor Cache Size (KB)

M
iss

 R
at

e 
(%

)

4-node
8-node
16-node
32-node

First working set

Capacity-generated traffic
(including conflicts)

Second working set

D
at

a 
tra

ffi
c

Other capacity-independent communication

Cold-start (compulsory) traffic

Replication capacity (cache size)

Inherent communication

Example LU Decomposition
from NAS Parallel Benchmarks



4

Computer Science 146
David Brooks

Cache Organization?
• Assume total cache size not changed:
• What happens if:

1) Change Block Size: 

2) Change Associativity: 

3) Change Compiler: 

Which of 3Cs is obviously affected?
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3Cs Relative Miss Rate
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Associativity vs Cycle Time

• Beware: Execution time is only final measure!
• Why is cycle time tied to hit time?

• Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way 

external cache +10%, 
internal + 2% 

– suggested big and dumb caches
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Example: Avg. Memory Access 
Time vs. Miss Rate

• Example: assume Cache Cycle Time = 1.10 for 2-way, 
1.12 for 4-way, 1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way

1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. 
not improved by more
associativity)
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Way Prediction

• Maintain hit-speed of a direct-mapped cache, get 
conflict miss reduction of associative cache

• Extra bits are used to predict the way of the next
cache access

• Alpha 21264 uses 2-way set-associative I-Cache
– If predictor is correct, 1-cycle I-cache latency
– If incorrect, 3-cycle latency
– SPEC95 => Prediction accuracy ~85%
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Reducing Misses by Compiler 
Optimizations

• McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound 

elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order stored in 

memory
– Loop Fusion: Combine 2 independent loops that have same looping and 

some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows
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Merging Arrays Example
/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {
int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

before

after
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Padding and Offset Changes

• Cache size of 8KB

Before:
int a[2048];
int b[2048];
int c[2048];

for(i=0;i<2048;i++)
C[i]=A[i]+B[i]

After:
int a[2050];
int b[2050];
int c[2050];

for(i=0;i<2048;i++)
C[i]=A[i]+B[i]
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Loop Interchange Example
/* Before */
for (k = 0; k < 100; k = k+1)
for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

Sequential accesses in blocks instead of striding through 
memory every 100 words; improved spatial locality

X[0][0]
X[0][1]
X[1][0]

C: Row-Major Order

X[1][1]
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Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access 
to a & c vs. one 
miss per access; 
improves spatial 
locality



10

Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits in cache
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Blocking: Before
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Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r; };
• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to N3/B+2N2

• Conflict Misses Too? 
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Blocking: After
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Performance Improvement           

1 1.5 2 2.5 3
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loop
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Summary of Compiler Optimizations 
to Reduce Cache Misses (by hand)
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Summary: Miss Rate Reduction

• 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Way-Prediction
5. Reducing Misses by Compiler Optimization

CPUtime = IC × CPI
Execution

+
Memory  accesses

Instruction
× Miss rate × Miss  penalty

 
 

 
 × Clock  cycle  time
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Review: Improving Cache 
Performance

• How to improve cache performance?
– Reducing Cache Miss Penalty
– Reducing Miss Rate
– Reducing Miss Penalty/Rate via parallelism
– Reducing Hit Time
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Non-blocking Caches to reduce stalls 
on misses

• Non-blocking cache or  lockup-free cache allow data cache to 
continue to supply cache hits during a miss
– requires out-of-order execution
– requires multi-bank memories

• “hit under miss”  reduces the effective miss penalty by 
working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss”  may further 
lower the effective miss penalty by overlapping multiple 
misses
– Significantly increases the complexity of the cache controller as there 

can be multiple outstanding memory accesses
– Requires multiple memory banks (otherwise cannot support)
– Penium Pro allows 4 outstanding memory misses
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Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss
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Reducing Misses by Hardware
Prefetching of Instructions & Data 

• Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer” not the cache
– On Access: check both cache and stream buffer
– On SB Hit: move line into cache
– On SB Miss: Clear and refill SB with successive lines

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB cache; 4 

streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 streams got 

50% to 70% of misses from 
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory bandwidth that can 
be used without penalty
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Hardware Prefetching
• What to prefetch?

– One block ahead (spatially)
• What will this work well for?

– Address prediction for non-sequential data
• Correlated predictors (store miss, next_miss pairs in table)
• Jump-pointers (augment data structures with prefetch pointers)

• When to prefetch?
– On every reference
– On a miss (basically doubles block size!)
– When resident data becomes “dead” -- how do we know?

• No one will use it anymore, so it can be kicked out
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Reducing Misses by 
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults; a form of speculative 

execution
• Prefetching comes in two flavors:

– Binding prefetch: Requests load directly into register.
• Must be correct address and register!

– Non-Binding prefetch: Load into cache.  
• Can be incorrect. Faults?

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth
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Reducing Hit Times
• Some common techniques/trends

– Small and simple caches
• Pentium III – 16KB L1
• Pentium 4 – 8KB L1

– Pipelined Caches (actually bandwidth increase)
• Pentium – 1 clock cycle I-Cache
• Pentium III – 2 clock cycle I-Cache
• Pentium 4 – 4 clock cycle I-Cache

– Trace Caches
• Beyond spatial locality
• Dynamic sequences of instruction (including taken branches)
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Hit Time Reduction

• Translation of Virtual (programmer) to Physical 
(memory) Addresses is a bottleneck on hit time

• Defer this topic to next time
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Cache Optimization Summary
Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity/Larger Cache + – 1
Victim Caches + 2
Way-Predicting Caches + 2
HW Prefetching of Instr/Data + + 2
Compiler Controlled Prefetching + + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2
Pipelined Cache + 1
Trace Cache + 3
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Cache Bandwidth

• Superscalars need multiple memory access per cycle 
• Parallel cache access: more difficult than parallel ALUs

– Caches have state so multiple accesses will affect each other
• “True Multiporting”

– Multiple decoders, read/write wordlines per SRAM cell
– Pipeline a single port by “double pumping” Alpha 21264
– Multiple cache copies (like clustered register file) POWER4 

• Interleaved Multiporting
– Cache divides into banks – two accesses to same bank => 

conflict
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Next Time

• Virtual Memory
• Main Memory


