Computer Science 146 Computer Architecture

Fall 2019 Harvard University

Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu

Lecture 18: Virtual Memory

Simple Interleaving

Cycle	Addr	Bank0	Bank1	Bank2	Bank3	steady
1	12	А	A	Α	A	
2		А	А	А	А	
3		T/B	В	В	В	*
4		В	T/B	В	В	*
5				Т		*
6					Т	*

- 4-word access = 6-cycles
- 4-word cycle = 4-cycles
 - Can start a new access in cycle 5
 - Overlap access with transfer (and still use a 32-bit bus!)

Virtual Memory: Cache Analogy

Parameter	First-Level Cache	Virtual Memory	
Block (page) Size	16-128 Bytes	4KB – 64KB	
Hit Time	1-3 clock cycles	50-150 clock cycles	
Miss Penalty	8-150 clock cycles	1M-10M clock cycles	
(access time)	(6-130 clock cycles)	(.8M – 8M clock cycles)	
(transfer time)	(2-20 clock cycles)	(.2M – 2M clock cycles)	
Miss Rate	0.1-10%	0.00001 -0.001%	
Address Mapping	25-45bit PA to 14-20bit CacheAd	32-64 bit VA to 25-45 bit PA	
Replacement Policy	Hardware Replacement	Software Replacement	
Total Size	Independent of Address Space	Processor Address Space	
Backing Store	Level 2 Cache	Physical Disk	

Computer Science 146 David Brooks

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

David Brooks

- Same four questions as caches
 - Page Placement: fully associative
 - Why?
 - Page Identification: address translation
 - Indirection through one or two page tables
 - Page Replacement: Sophisticated LRU + Working set
 - Why?
 - Write Strategy: Always write-back + write allocate
 - Why?

Selecting Page Size

- Larger Page Size
 - Page table is smaller (inversely proportional to page size)
 - Larger page size may allow larger caches with virtually indexed, physically tagged caches (larger page offset)
 - Page transfers can be more efficient
 - More efficient TLB => reduces number of TLB misses
- Smaller Page Size
 - Internal fragmentation: contiguous region of virtual memory not a multiple of the page size
 - Process startup time (load in large pages for small processes)
- Multiple Page Sizes
 - Some processors support multiple choices => larger pages are powers of 2 times the smaller page sizes

Memory Summary

- Main Memory
 - DRAM is slow but dense
 - Interleaving/banking for high bandwidth
- Virtual Memory, Address Translation, Protection
 - Larger memory, protection, relocation, multiprogramming
 - Page tables
 - TLB: cache translations for speed
 - Access in parallel with cache tags