
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Fall 2019
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 19: Multiprocessors

Computer Science 146
David Brooks

Lecture Outline

• Multiprocessors
– Computation taxonomy
– Interconnection overview
– Shared Memory design criteria

• Cache coherence

• Very broad overview
• H&P: Chapter 6, mostly 6.1-6.9, 8.5
• Next time: More Multiprocessors +Multithreading

2

Computer Science 146
David Brooks

Parallel Processing

• Multiple processors working cooperatively on
problems: not the same as multiprogramming

• Goals/Motivation
– Performance: limits of uniprocessors

• ILP (branch prediction, RAW dependencies, memory)
– Cost Efficiency: build big systems with commodity parts

(uniprocessors)
– Scalability: just add more processors to get more

performance
– Fault tolerance: One processor fails you still can continue

processing

Computer Science 146
David Brooks

Parallel Processing

• Sounds great, but…
• As usual, software is the bottleneck

– Difficult to parallelize applications
• Compiler parallelization is hard (huge research efforts in 80s/90s)
• By-hand parallelization is harder/expensive/error-prone

– Difficult to make parallel applications run fast
• Communication is expensive
• Makes first task even harder

• Inherent problems
– Insufficient parallelism in some apps
– Long-latency remote communication

3

Computer Science 146
David Brooks

Recall Amdahl’s Law

SpeedupOverall = 1

• Example: Achieve speedup of 80x using 100 processors
– 80 = 1/[Fracparallel/100+1-Fracparallel]
– Fracparallel=0.9975 => only .25% of the work can be serial!

• Assumes linear speedup
– Superlinear speedup is possible in some cases
– Increased memory + cache with increased processor count

((1 - Fractionenhanced) +)Fractionenhanced

Speedupenhanced

Computer Science 146
David Brooks

Parallel Application Domains
• Traditional Parallel Programs
• True parallelism in one job

– Regular loop structures
– Data usually tightly shared
– Automatic parallelization
– Called “data-level parallelism”
– Can often exploit vectors as well

• Workloads
– Scientific simulation codes (FFT, weather, fluid dynamics)
– Dominant market segment in the 1980s

4

Computer Science 146
David Brooks

Parallel Program Example:
Matrix Multiply

• Parameters
– Size of matrix: (N*N)
– P processors: N/P1/2 * N/P1/2 blocks
– Cij needs Aik, Bkj k=0 to n-1

• Growth Functions
– Computation grows as f(N3)
– Computation per processor: f(N3/P)
– Data size: f(N2)
– Data size per processor: f(N2/P)
– Communication: f(N2/P1/2)
– Computation/Communication: f(N/P1/2)

N

for i = 1 to n
for j = 1 to n
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

P

Computer Science 146
David Brooks

Application Domains

• Parallel independent but similar tasks
– Irregular control structures
– Loosely shared data locked at different granularities
– Programmer defines and fine tunes parallelism
– Cannot exploit vectors
– “Thread-level Parallelism” (throughput is important)

• Workloads
– Transaction Processing, databases, web-servers
– Dominant MP market segment today

5

Computer Science 146
David Brooks

Database Application Example
• Bank Database
• Parameters:

– D = number of accounts
– P = number of processors in server
– N = number of ATMs (parallel transactions)

• Growth Functions
– Computation: f(N)
– Computation per processor: F(N/P)
– Communication? Lock records while changing them
– Communication: f(N)
– Computation/communication: f(1)
– No serial computation

Computer Science 146
David Brooks

Computation Taxonomy

• Proposed by Flynn (1966)
• Dimensions:

– Instruction streams: single (SI) or multiple (MI)
– Data streams: single (SD) or multiple (MD)

• Cross-product:
– SISD: uniprocessors (chapters 3-4)
– SIMD: multimedia/vector processors (MMX, HP-MAX)
– MISD: no real examples
– MIMD: multiprocessors + multicomputers (ch. 6)

6

Computer Science 146
David Brooks

SIMD vs. MIMD

• Can you think of a commercial SIMD system?
• MP vs. SIMD

– Programming model flexibility
• Could simulate vectors with MIMD but not the other way
• Dominant market segment cannot use vectors

– Cost effectiveness
• Commodity Parts: high volume (cheap) components
• MPs can be made up of many uniprocessors
• Allows easy scalability from small to large

– Vectors making some noise lately (Berkeley, NEC)

Computer Science 146
David Brooks

Taxonomy of Parallel (MIMD)
Processors

• Center on organization of main memory
– Shared vs. Distributed

• Appearance of memory to hardware
– Q1: Memory access latency uniform?
– Shared (UMA): yes, doesn’t matter where data goes
– Distributed (NUMA): no, makes a big difference

• Appearance of memory to software
– Q2: Can processors communicate directly via memory?
– Shared (shared memory): yes, communicate via load/store
– Distributed (message passing): no, communicate via messages

• Dimensions are orthogonal
– e.g. DSM: (physically) distributed, (logically) shared memory

7

Computer Science 146
David Brooks

UMA vs. NUMA: Why it matters

• Ideal model:
– Perfect (single-cycle) memory latency
– Perfect (infinite) memory bandwidth

• Real systems:
– Latencies are long and grow with system size
– Bandwidth is limited

• Add memory banks, interconnect to hook up (latency goes up)

Memory

p0 p1 p2 p3
Low latency

Computer Science 146
David Brooks

UMA vs. NUMA: Why it matters

• UMA: uniform memory access
– From p0 same latency to m0-m3
– Data placement doesn’t matter
– Latency worse as system scales
– Interconnect contention restricts bandwidth
– Small multiprocessors only

• NUMA: non-uniform memory access
– From p0 faster to m0 than m1-m3
– Low latency to local memory helps

performance
– Data placement important (software!)
– Less contention => more scalable
– Large multiprocessor systems

Interconnect

p0 p1 p2 p3

m0 m1 m2 m3

Interconnect

p0 p1 p2 p3

m0 m1 m2 m3

long
latency

long
latency

short
latency

8

Computer Science 146
David Brooks

Interconnection Networks

• Need something to connect those processors/memories
– Direct: endpoints connect directly
– Indirect: endpoints connect via switches/routers

• Interconnect issues
– Latency: average latency more important than max
– Bandwidth: per processor
– Cost: #wires, #switches, #ports per switch
– Scalability: how latency, bandwidth, cost grow with processors

• Interconnect topology primarily concerns architects

Computer Science 146
David Brooks

Interconnect 1: Bus

• Direct Interconnect Style

+ Cost: f(1) wires
+ Latency: f(1)
- Bandwidth: Not Scalable, f(1/P)

Only works in small systems (<=4)

+ Only performs ordered broadcast
No other protocols work

p0 p1 p2 p3

m0 m1 m2 m3

p0 p1 p2 p3

m0 m1 m2 m3

9

Computer Science 146
David Brooks

Interconnect 2: Crossbar Switch

• Indirect Interconnect
– Switch implemented as big

MUXes

+ Latency: f(1)
+ Bandwidth: f(1)
- Cost:

f(2P) wires
F(P2) switches
4 wires per switch

p0

p1

p2

p3

m0 m1 m2 m3

Computer Science 146
David Brooks

Interconnect 3: Multistage Network

• Indirect Interconnect
– Routing done by address decoding
– k: switch arity (#inputs/#outputs per switch)
– d: number of network stages = logk P

+ Cost
f(d*P/k) switches
f(P*d) wires
f(k) wires per switch

+ Latency: f(d)
+ Bandwidth: f(1)
• Commonly used in large UMA systems

p0 p1 p2 p3

m0 m1 m2 m3

10

Computer Science 146
David Brooks

Interconnect 4: 2D Torus

• Direct Interconnect
+ Cost

f(2P) wires
4 wires per switch

+ Latency: f(P1/2)
+ Bandwidth: f(1)
• Good scalability (widely used)

– Variants: 1D (ring), 3D, mesh
(no wraparound)

p/m p/m p/m p/m

p/m p/m p/m p/m

p/m p/m p/m p/m

p/m p/m p/m p/m

Computer Science 146
David Brooks

p/m

Interconnect 5: Hypercube
• Direct Interconnect

– K: arity (#nodes per dimension)
– D: dimension =logk P

+ Latency: f(d)
+ Bandwidth: f(k*d)
- Cost

F(k*d*P) wires
F(k*d) wires per switch

• Good scalability, expensive
switches
– new design needed for more nodes

p/m

p/mp/m

p/mp/m

p/mp/m

p/mp/m

p/mp/m

p/mp/m

p/mp/m

11

Computer Science 146
David Brooks

Interconnect Routing

• Store-and-Forward Routing
– Switch buffers entire message before passing it on
– Latency = [(message length / bandwidth) + fixed switch overhead] * #hops

• Wormhole Routing
– Pipeline message through interconnect
– Switch passes message on before completely arrives
– Latency = (message length / bandwidth) + (fixed switch overhead * #hops)
– No buffering needed at switch
– Latency (relative) independent of number of intermediate hops

Computer Science 146
David Brooks

Shared Memory vs. Message Passing

• MIMD (appearance of memory to software)
• Message Passing (multicomputers)

– Each processor has its own address space
– Processors send and receive messages to and from each

other
– Communication patterns explicit and precise
– Explicit messaging forces programmer to optimize this
– Used for scientific codes (explicit communication)
– Message passing systems: PVM, MPI, OpenMP
– Simple Hardware
– Difficult programming Model

12

Computer Science 146
David Brooks

Shared Memory vs. Message Passing

• Shared Memory (multiprocessors)
– One shared address space
– Processors use conventional load/stores to access shared data
– Communication can be complex/dynamic
– Simpler programming model (compatible with

uniprocessors)
– Hardware controlled caching is useful to reduce latency +

contention
– Has drawbacks

• Synchronization (discussed later)
• More complex hardware needed

Computer Science 146
David Brooks

Parallel Systems (80s and 90s)

• Trend towards shared memory systems

30-10032-256MultistageMessagesIBM SP-2
10-3032-20482D meshMessagesIntel Paragon
1064-1024Fat treeMessagesTMC CM-5
2-632Bus/ringShared memoryKSR-1
28-64X-bar/ringShared memoryConvex SPP
164-10243D TorusShared memoryCRAY T3D
1<=32BusShared memorySGI Challenge
1<=20BusShared memorySPARCcenter
Remote latency (us)#cpusInterconnectCommunicationMachine

13

Computer Science 146
David Brooks

Multiprocessor Trends
• Shared Memory

– Easier, more dynamic programming model
– Can do more to optimize the hardware

• Small-to-medium size UMA systems (2-8 processors)
– Processor + memory + switch on single board (4x pentium)
– Single-chip multiprocessors (POWER4)
– Commodity parts soon – glueless MP systems

• Larger NUMAs built from smaller UMAs
– Use commodity small UMAs with commodity

interconnects (ethernet, myrinet)
– NUMA clusters

Computer Science 146
David Brooks

Major issues for Shared Memory
• Cache coherence

– “Common Sense”
• P1 Read[X] => P1 Write[X] => P1 Read[X] will return X
• P1 Write[X] => P2 Read[X] => will return value written by P1
• P1 Write[X] => P2 Write[X] => Serialized (all processor see the

writes in the same order)

• Synchronization
– Atomic read/write operations

• Memory consistency Model
– When will a written value be seen?
– P1 Write[X] (10ps later) P2 Read[X] what happens?

• These are not issues for message passing systems
– Why?

14

Computer Science 146
David Brooks

Cache Coherence
• Benefits of coherent caches in parallel systems?

– Migration and Replication of shared data
– Migration: data moved locally lowers latency + main memory bandwidth
– Replication: data being simultaneously read can be replicated to reduce

latency + contention
• Problem: sharing of writeable data

P1 gets stale value on hitRead A
P0 cache, memory (if write-through)Write A
Memory, p0 cache, p1 cacheRead a
Memory, p0 cacheRead A
Memory
Correct value of A in:Processor 1Processor 0

Computer Science 146
David Brooks

Solutions to Cache Coherence

• No caches
– Not likely :)

• Make shared data non-cacheable
– Simple software solution
– low performance if lots of shared data

• Software flush at strategic times
– Relatively simple, but could be costly (frequent syncs)

• Hardware cache coherence
– Make memory and caches coherent/consistent with

each other

15

Computer Science 146
David Brooks

HW Coherence Protocols
• Absolute coherence

– All copies of each block have same data at all times
– A little bit overkill…

• Need appearance of absolute coherence
– Temporary incoherence is ok

• Similar to write-back cache
• As long as all loads get their correct value

• Coherence protocol: FSM that runs at every cache
– Invalidate protocols: invalidate copies in other caches
– Update protocols: update copies in other caches
– Snooping vs. Directory based protocols (HW implementation)
– Memory is always updated

Computer Science 146
David Brooks

Write Invalidate

• Much more common for most systems
• Mechanics

– Broadcast address of cache line to invalidate
– All processor snoop until they see it, then invalidate if in local cache
– Same policy can be used to service cache misses in write-back caches

111Cache miss for XCPU B reads X

01Invalidation miss for XCPU A writes 1 to X

000Cache miss for XCPU B reads X

00Cache miss for XCPU A reads X

0

Contents of Memory
Location X

Contents of
CPU B’s cache

Contents of
CPU A’s cache

Bus ActivityProcessor Activity

16

Computer Science 146
David Brooks

Write Update (Broadcast)

• Bandwidth requirements are excessive
– Can reduce by checking if word is shared (also can reduce write-invalidate traffic)

• Comparison with Write invalidate
– Multiple writes, no interveaning reads require multiple broadcasts
– Multiple broadcasts needed for multiple word cache line writes (only 1 invalidate)
– Advantage: other processors can get the data faster

111CPU B reads X

111Write Broadcast for XCPU A writes 1 to X

000Cache miss for XCPU B reads X

00Cache miss for XCPU A reads X

0

Contents of Memory
Location X

Contents of
CPU B’s cache

Contents of
CPU A’s cache

Bus ActivityProcessor Activity

Computer Science 146
David Brooks

Bus-based protocols (Snooping)

• Snooping
– All caches see and react to all bus events
– Protocol relies on global visibility of events (ordered

broadcast)

• Events:
– Processor (events from own processor)

• Read (R), Write (W), Writeback (WB)

– Bus Events (events from other processors)
• Bus Read (BR), Bus Write (BW)

17

Computer Science 146
David Brooks

Three-State Invalidate Protocol

exclusive

invalid shared
Put read miss on bus

CPU Read

CPU
Write

Pu
t w

rit
e

m
is

s o
n

bu
s

CPU Rd M
iss,

WB,Rd miss
on bus

CPU W
rite

, W
rite

 miss
on bus

CPU
Read/
Write Hit

CPU Write Miss
WB, write miss on bus

CPU read hit

CPU read miss

Put read
miss on

bus

Write miss for block

Read
 miss

for block, W
B blockWrite miss for block

WB block

•Three states
–Invalid: don’t have block
–Exclusive: have block and wrote it
–Shared: have block but only read it

–CPU activity
–Bus activity

Computer Science 146
David Brooks

Three State Invalidate Problems

• Real implementations are much more complicated
– Assumed all operations are atomic

• Multiphase operation can be done with no intervening ops
• E.g. write miss detected, acquire bus, receive response
• Even read misses are non-atomic with split transaction busses
• Deadlock is a possibility, see Appendix I

– Other Simplifications
• Write hits/misses treated same
• Don’t distinguish between true sharing and clean in one cache
• Other caches could supply data on misses to shared block

18

Computer Science 146
David Brooks

Next Lecture

• More multiprocessors
– Example of FSM
– Directory based systems
– Synchronization
– Consistency

• Multithreading
– In Extra Readings – Intel’s paper “Hyper-threading

Technology Architecture and Microarchitecture”

