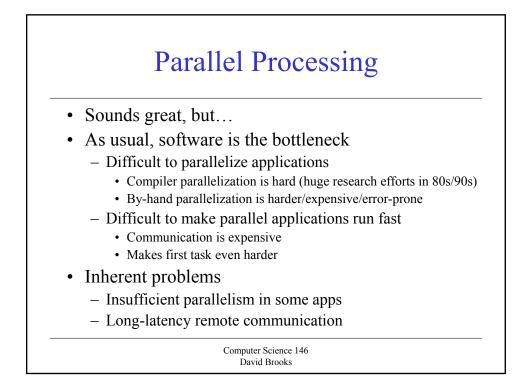
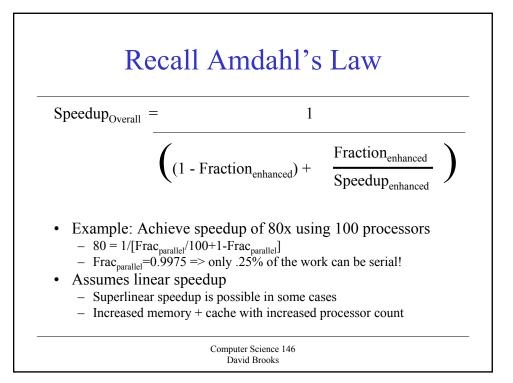
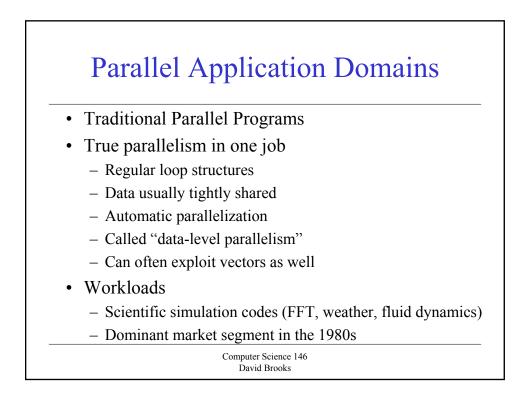
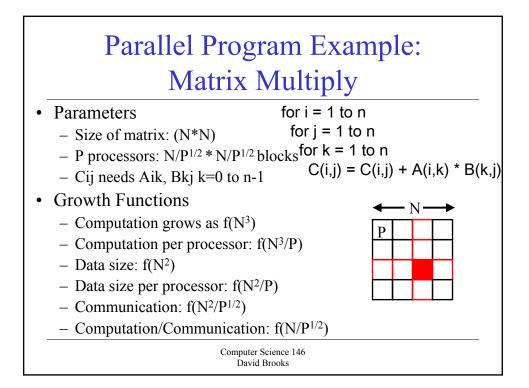
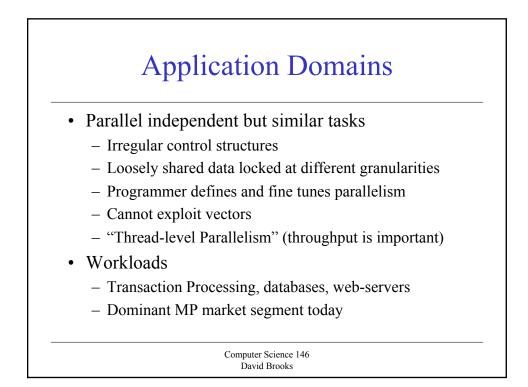

Computer Science 146 Computer Architecture

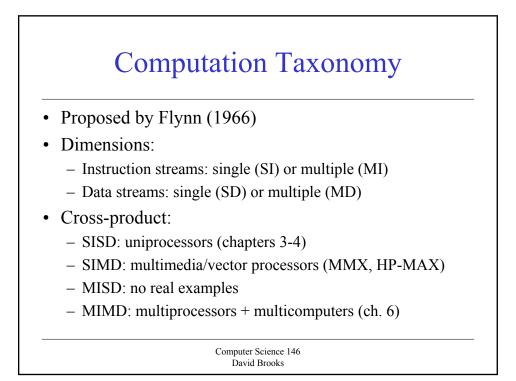

Fall 2019 Harvard University


Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu


Lecture 19: Multiprocessors

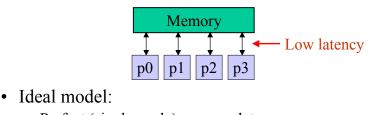




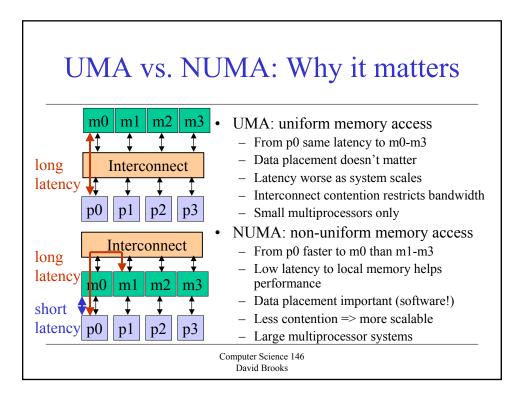


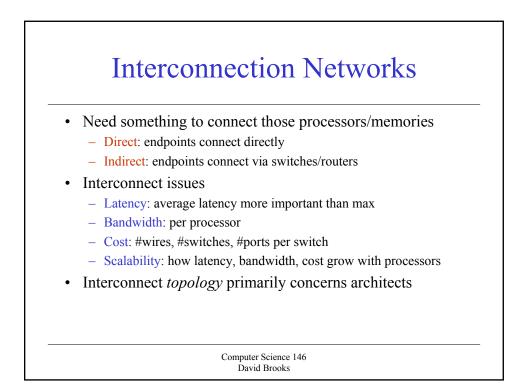
Database Application Example

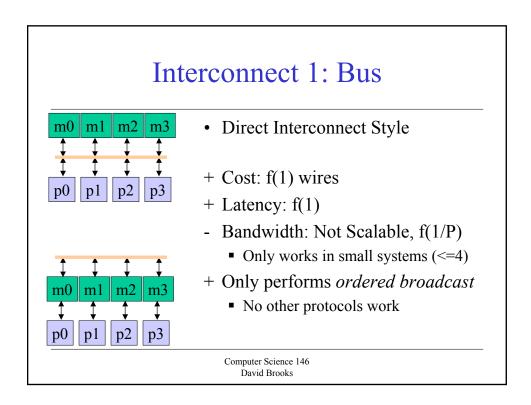
- Bank Database
- Parameters:
 - D = number of accounts
 - P = number of processors in server
 - N = number of ATMs (parallel transactions)
- Growth Functions
 - Computation: f(N)
 - Computation per processor: F(N/P)
 - Communication? Lock records while changing them
 - Communication: f(N)
 - Computation/communication: f(1)
 - No serial computation

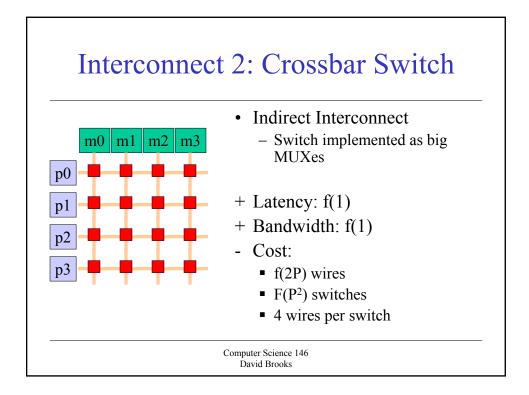

SIMD vs. MIMD

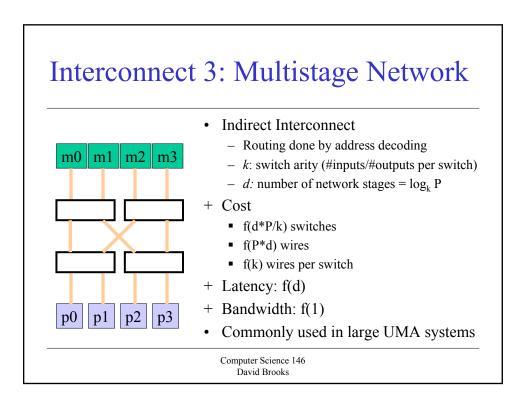
- Can you think of a commercial SIMD system?
- MP vs. SIMD
 - Programming model flexibility
 - Could simulate vectors with MIMD but not the other way
 - · Dominant market segment cannot use vectors
 - Cost effectiveness
 - Commodity Parts: high volume (cheap) components
 - MPs can be made up of many uniprocessors
 - Allows easy scalability from small to large
 - Vectors making some noise lately (Berkeley, NEC)

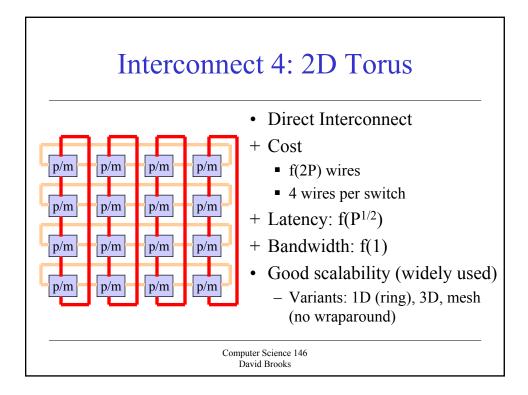

Computer Science 146 David Brooks

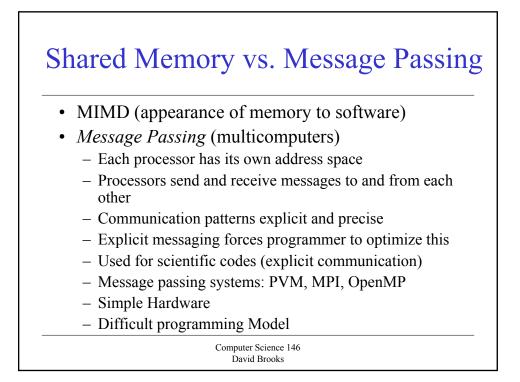

Taxonomy of Parallel (MIMD) **Processors** Center on organization of main memory - Shared vs. Distributed Appearance of memory to hardware - Q1: Memory access latency uniform? - Shared (UMA): yes, doesn't matter where data goes - Distributed (NUMA): no, makes a big difference Appearance of memory to *software* - Q2: Can processors communicate directly via memory? - Shared (shared memory): yes, communicate via load/store Distributed (message passing): no, communicate via messages • Dimensions are orthogonal - e.g. DSM: (physically) distributed, (logically) shared memory Computer Science 146 David Brooks






- Perfect (single-cycle) memory latency
- Perfect (infinite) memory bandwidth
- Real systems:
 - Latencies are long and grow with system size
 - Bandwidth is limited
 - Add memory banks, interconnect to hook up (latency goes up)





Interconnect Routing

- Store-and-Forward Routing
 - Switch buffers entire message before passing it on
 - Latency = [(message length / bandwidth) + fixed switch overhead] * #hops
- Wormhole Routing
 - Pipeline message through interconnect
 - Switch passes message on before completely arrives
 - Latency = (message length / bandwidth) + (fixed switch overhead * #hops)
 - No buffering needed at switch
 - Latency (relative) independent of number of intermediate hops

Shared Memory vs. Message Passing

- *Shared Memory* (multiprocessors)
 - One shared address space
 - Processors use conventional load/stores to access shared data
 - Communication can be complex/dynamic
 - Simpler programming model (compatible with uniprocessors)
 - Hardware controlled caching is useful to reduce latency + contention
 - Has drawbacks
 - Synchronization (discussed later)
 - More complex hardware needed

Computer Science 146 David Brooks

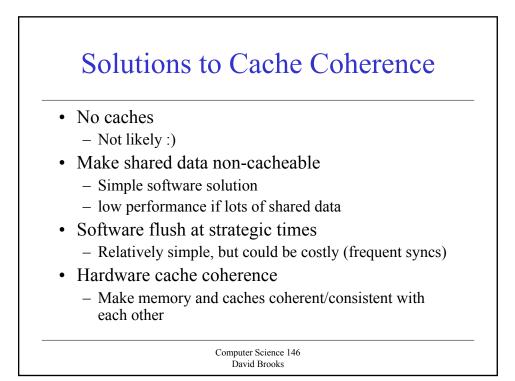
Parallel Systems (80s and 90s) Machine Communication Interconnect #cpus Remote latency (us) SPARCcenter Shared memory Bus <=20</td> 1

Machine	Communication	Interconnect	#cpus	Remote latency (us)
SPARCcenter	Shared memory	Bus	<=20	1
SGI Challenge	Shared memory	Bus	<=32	1
CRAY T3D	Shared memory	3D Torus	64-1024	1
Convex SPP	Shared memory	X-bar/ring	8-64	2
KSR-1	Shared memory	Bus/ring	32	2-6
TMC CM-5	Messages	Fat tree	64-1024	10
Intel Paragon	Messages	2D mesh	32-2048	10-30
IBM SP-2	Messages	Multistage	32-256	30-100

• Trend towards shared memory systems

Multiprocessor Trends

- Shared Memory
 - Easier, more dynamic programming model
 - Can do more to optimize the hardware
- Small-to-medium size UMA systems (2-8 processors)
 - Processor + memory + switch on single board (4x pentium)
 - Single-chip multiprocessors (POWER4)
 - Commodity parts soon glueless MP systems
- Larger NUMAs built from smaller UMAs
 - Use commodity small UMAs with commodity interconnects (ethernet, myrinet)
 - NUMA clusters


Computer Science 146 David Brooks

Major issues for Shared Memory Cache coherence "Common Sense" • P1 Read[X] => P1 Write[X] => P1 Read[X] will return X • P1 Write[X] => P2 Read[X] => will return value written by P1 • P1 Write[X] => P2 Write[X] => Serialized (all processor see the writes in the same order) Synchronization - Atomic read/write operations Memory consistency Model - When will a written value be seen? - P1 Write[X] (10ps later) P2 Read[X] what happens? These are not issues for message passing systems - Why? Computer Science 146 David Brooks

Cache Coherence

- Benefits of coherent caches in parallel systems?
 - Migration and Replication of shared data
 - Migration: data moved locally lowers latency + main memory bandwidth
 - Replication: data being simultaneously read can be replicated to reduce latency + contention
- Problem: sharing of writeable data

Processor 0	Processor 1	Correct value of A in:		
		Memory		
Read A		Memory, p0 cache		
	Read a	Memory, p0 cache, p1 cache		
Write A		P0 cache, memory (if write-through)		
	Read A	P1 gets stale value on hit		

HW Coherence Protocols

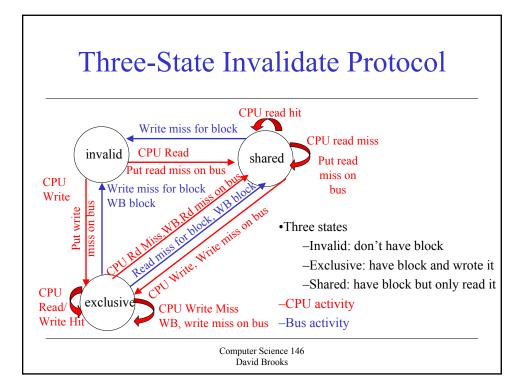
• Absolute coherence

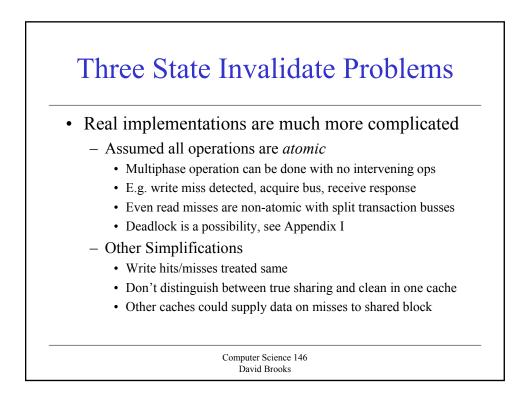
٠

- All copies of each block have same data at all times
- A little bit overkill...
- Need *appearance* of absolute coherence
 - Temporary incoherence is ok
 - Similar to write-back cache
 - As long as all loads get their correct value
- Coherence protocol: FSM that runs at every cache
 - Invalidate protocols: invalidate copies in other caches
 - Update protocols: update copies in other caches
 - Snooping vs. Directory based protocols (HW implementation)
 - Memory is always updated

Computer Science 146 David Brooks

Write Invalidate • Much more common for most systems Mechanics - Broadcast address of cache line to invalidate - All processor snoop until they see it, then invalidate if in local cache - Same policy can be used to service cache misses in write-back caches Processor Activity Bus Activity Contents of Memory Contents of Contents of CPU A's cache CPU B's cache Location X 0 CPU A reads X Cache miss for X 0 0 CPU B reads X Cache miss for X 0 0 0 CPU A writes 1 to X Invalidation miss for X 1 0 CPU B reads X 1 Cache miss for X 1 1 Computer Science 146 David Brooks


Write Update (Broadcast)


Processor Activity	Bus Activity	Contents of CPU A's cache	Contents of CPU B's cache	Contents of Memory Location X			
				0			
CPU A reads X	Cache miss for X	0		0			
CPU B reads X	Cache miss for X	0	0	0			
CPU A writes 1 to X	Write Broadcast for X	1	1	1			
CPU B reads X		1	1	1			

- · Bandwidth requirements are excessive
 - Can reduce by checking if word is shared (also can reduce write-invalidate traffic)
- Comparison with Write invalidate
 - Multiple writes, no interveaning reads require multiple broadcasts
 - Multiple broadcasts needed for multiple word cache line writes (only 1 invalidate)
 - Advantage: other processors can get the data faster

Computer Science 146 David Brooks

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Next Lecture

- More multiprocessors
 - Example of FSM
 - Directory based systems
 - Synchronization
 - Consistency
- Multithreading
 - In Extra Readings Intel's paper "Hyper-threading Technology Architecture and Microarchitecture"