Computer Science 146 Computer Architecture

Fall 2019 Harvard University

Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu

Lecture 21: Multithreading and I/O

X86 Core sizes are ~10x larger					
Processors	Total Cache (KB)	Die Size (mm ²)	Est Core Size (mm ²)	Core Size Ratio	Typical Speed (MHz)
Intel ULV PIII-M	544	80	~34	~13	>1000
AMD Duron	192	55	~37	~14	>1000
Transmeta 5800	640	55	~25	~10	>800
VIA C3	192	52	~31	~12	>800
ARM 1026EJ-S	32	4.6	2.6	1	>400

Multi-fetch Using 3 Identical Fetch Units

- Each fetch unit
 - Operates independently
 - Holds four 8-byte blocks
 - Prefetches up to 3 blocks from sequential path
 - Prefetches 2 blocks from target path as condition is evaluated
- Cache-location aware logic
 - Determines cache location of the next sequential 64B line
 - Remembers cache location of two previous 64B lines

Motivation: Who Cares About I/O?

- CPU Performance: 57% per year
- I/O system performance limited by *mechanical* delays (disk I/O):
 < 10% increase per year (IO per sec)
- Amdahl's Law: system speed-up limited by the slowest part!
 - -10% IO & 10x CPU => 5x Performance (lose 50%)
 - 10% IO & 100x CPU => 10x Performance (lose 90%)
 - Need fast disk accesses (VM swaps, file reading, networks, etc)
- I/O bottleneck:
 - Increasing fraction of time in I/O (relative to CPU)
 - Similar to Memory Wall problem
- Why not context switch on I/O operation?
 - Must find threads to context switch to
 - Context-switching requires more memory

Data Rate: Inner vs. Outer Tracks

- To keep things simple, orginally kept same number of sectors per track
 - Since outer track longer, lower bits per inch
- Competition ⇒ decided to keep BPI the same for all tracks ("constant bit density")
 - \Rightarrow More capacity per disk
 - \Rightarrow More of sectors per track towards edge
 - ⇒ Since disk spins at constant speed, outer tracks have faster data rate
- Bandwidth outer track 1.7X inner track!
 - Inner track highest density, outer track lowest, so not really constant
 - 2.1X length of track outer / inner, 1.7X bits outer / inner

- 1956 IBM Ramac early 1970s Winchester
 - Developed for mainframe computers, proprietary interfaces
 Steady shrink in form factor: 27 in. to 14 in
- Form factor and capacity drives market, more than performance
- 1970s: Mainframes \Rightarrow 14 inch diameter disks
- 1980s: Minicomputers, Servers \Rightarrow 8", 5 1/4" diameter
- PCs, workstations Late 1980s/Early 1990s:
 - Mass market disk drives become a reality
 - Pizzabox PCs \Rightarrow 3.5 inch diameter disks
 - Laptops, notebooks \Rightarrow 2.5 inch disks
- 2000s:
 - 1 inch for cameras, cell phones?

What about FLASH

- Compact Flash Cards
 - Intel Strata Flash (16 Mb in 1 square cm.)
 - 100,000 write/erase cycles.
 - Standby current = 100uA, write = 45mA
 - Transfer @ 3.5MB/s, read access times in 65-150ns range
 - Compact Flash (2002) 256MB=\$73 512MB=\$170, 1GB=\$560
 - Compact Flash (2004) 256MB=\$39 512MB=\$80 1GB=\$146 2GB=\$315 4GB=\$800
- IBM/Hitachi Microdrive 4GB=\$370
 - Standby current = 20mA, write = 250mA
 - Efficiency advertised in watts/MB
- · Flash vs. Disks
 - Nearly instant standby wake-up time
 - Random access to data stored
 - Tolerant to shock and vibration (1000G of operating shock)

Next two lectures

- Monday:
 - Finish up with I/O Monday
 - I/O Buses
 - RAID Systems
 - Course Evaluations (need a volunteer to return them)
- Next Wednesday:
 - Google Cluster
 - Course Summary and Wrapup
 - Final Review (may schedule another review before final)
- Final Exam: Tue 05/25 (Boylston 105)