Computer Science 146 Computer Architecture

Fall 2019 Harvard University

Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu

Lecture 22: More I/O

Bus Issues	
• <i>Clocking</i> : is bus clocked?	
 Synchronous: clocked, short bus or slow clock => fast 	
 Asynchronous: no clock, use "handshaking" instead => slow 	
- Isochronous: high-bandwidth, packet-based system (uniform in time)	
• <i>Switching</i> : When control of bus is acquired and released	
 Atomic: bus held until request complete => slow 	
 Split-transaction: bus free between request and reply => fast 	
• <i>Arbitration</i> : deciding who gets the bus next	
 Overlap arbitration for next master with current transfer 	
 Daisy Chain: closer devices have priority => slow 	
 Distributed: wired-OR, low-priority back-off => medium 	
• Other issues	
– Split data/address lines, width, burst transfer	
Computer Science 146 David Brooks	-

	I/O a	and	Men	lory]	Buses
		Bits	MHz	Peak MB/s	Special Features
	Summit	128	60	960	
Memory Buses	Challenge	256	48	1200	
Duses	XDBus	144	66	1056	
	ISA	16	8	16	Original PC Bus
	IDE/ATA	16	8-100	16-200	Disk, Tape, CD-ROM
1/0	PCI	32 (64)	33 (66)	133-533	"Plug + Play"
I/O Buses	SCSI	8/16	5-160	10-320	High-level interface
Duses	PCMCIA	8/16	8	16	Modems, "hot-swap"
	USB	Serial	A/Isoch.	1.5/60	Power line, packetized
	FireWire	serial	A/Isoch.	50/100	Fast USB

Assist the Main CPU

• I/O Processor (IOP or channel processor)

- (special or general) processor dedicated to I/O operations
- + Fast
- May be overkill, cache coherency problems
 - I/O sees stale data on output (memory not up to date)
 - CPU sees stale data in cache on input (I/O system only updates memory)
- *DMAC* (direct memory access controller)
 - Can transfer data to/from memory given start address (but that's all)
 - + Fast, usually simple
 - Still may be coherence problems, must be on memory bus

		Number o mber of S	Ŭ	
	IBM 3390K	IBM 3.5" 0061	x70	
Capacity	20 GBytes	320 MBytes	23 GBytes	
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.	9X
Power	3 KW	11 W	1 KW	3X
Data Rate	15 MB/s	1.5 MB/s	120 MB/s	8X
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s	6X
MTTF	250 KHrs	50 KHrs	??? Hrs	
Cost	\$250K	\$2K	\$150K	
	1988	Disk Drives v	s. Disk Arra	у
		tial for large h MB per KV		

David Brooks

Redundant Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- Redundancy yields high data availability
 - <u>Availability</u>: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - \Rightarrow Capacity penalty to store redundant info
 - \Rightarrow Bandwidth penalty to update redundant info

Inspiration for RAID 5

- RAID 4 works well for small reads
- Small writes (write to one disk):
 - RAID 3: read other data disks, create new sum and write to Parity Disk
 - RAID 4/5: since P has old sum, compare old data to new data, add the difference to P
- Small writes are limited by Parity Disk: Write to D0, D5 both also write to P disk (Parity Disk Bottleneck)

Berkeley History: RAID-I

• RAID-I (1989)

- Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25-inch SCSI disks and specialized disk striping software
- Today RAID is \$19 billion dollar industry, 80% of non-PC disks sold in RAIDs

RAID in Industry

RAID Level	Name	Minimum Number of Disk Faults Survived	Example Data Disks	Corresponding Check Disks	Industry Use
0	Nonredundant Striped	0	8	0	Widely Used
1	Mirrored	1	8	8	EMC, IBM Compaq
2	Memory-style ECC	1	8	4	
3	Bit-interleaved Parity	1	8	1	Storage Concepts
4	Block-interleaved Parity	1	8	1	Network Appliance
5	Block-interleaved distributed parity	1	8	1	Widely Used
6	P+Q redundancy	2	8	2	

Next Lecture

- Wednesday:
 - Google Cluster

Reading:

L. Barroso, J. Dean, and U. Holzle, "Web search for a planet: The Google Cluster Architecture," IEEE Micro, 23, 2, March-April 2003, pp. 22-28

- Course Summary and Wrapup
- Schedule a time for the Final Review