Computer Science 146
Computer Architecture

Fall 2019

Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 22: More /O

Computer Science 146
David Brooks

Lecture Outline

 HWS5 and Project Questions?

 Storage and I/O
— I/O Busses (7.3)
— RAID (H&P 7.4-7.5)

Computer Science 146
David Brooks

I/O System Architecture

* Buses

— Memory bus
— I/O Bus
 I/O processing
— Program controlled
- DMA
— I/O processors (IOPs)

Computer Science 146
David Brooks

Bus Issues

Clocking: is bus clocked?

— Synchronous: clocked, short bus or slow clock => fast

— Asynchronous: no clock, use “handshaking” instead => slow

— Isochronous: high-bandwidth, packet-based system (uniform in time)
Switching: When control of bus is acquired and released

— Atomic: bus held until request complete => slow

— Split-transaction: bus free between request and reply => fast
Arbitration: deciding who gets the bus next

— Opverlap arbitration for next master with current transfer

— Daisy Chain: closer devices have priority => slow

— Distributed: wired-OR, low-priority back-off => medium
Other issues

— Split data/address lines, width, burst transfer

Computer Science 146
David Brooks

Synchronous Data Transfer:
Read Operation

Clock | |

Address

<
Send the /}<
Address Dpaa ><

Send Raad_/' / N

Signal == 7 CPU Reads Data

/ L

Device Starts Device Says
Sending Data Data is Ready

Wait

Computer Science 146
David Brooks

Asynchronous Data Transfer:

Write Operation

Address D< Master asserls address >< Next address
Data X Master asserts data ><

Read

Request \ _,,.«" -
'

dgment

10 t 12 13

14
t2: Device asserts Ack (data recvd)
t3: Master releases Req (Handshake)
t4: Device releases Ack

Computer Science 146
David Brooks

t0: Master asserts lines
t1: Master waits and asserts Req

When to use?

* When to use asynchronous vs. synchronous bus?
— Mixed I/O speeds?

— Bus length?

* Split transaction vs. atomic transaction?

Computer Science 146
David Brooks

I/O and Memory Buses

Bits MHz Peak Special Features
MB/s
Summit 128 60 960
Memory
Challenge | 256 48 1200
Buses
XDBus 144 66 1056
ISA 16 8 16 Original PC Bus
IDE/ATA | 16 8-100 16-200 Disk, Tape, CD-ROM
o PCI 32 (64) |33(66) |133-533 | “Plug+ Play”
B SCSI 8/16 5-160 10-320 High-level interface
uses
PCMCIA | 8/16 8 16 Modems, “hot-swap”
USB Serial | A/Isoch. | 1.5/60 Power line, packetized
FireWire | serial A/lIsoch. | 50/100 Fast USB

* Memory buses:

speed (usually custom)

* I/O buses: compatibility (usually industry standard) + cost

Typical PC System Architecture
| e]

Cache Bus Bus
adapter adapter Main
memony
CPU .

o Vo
controller controller
D

Who Does I/0O?

e Main CPU

+ Explicitly executes all I/O operations

* Memory Mapped 1/O
* Special ISA 1/0 Operations (x86, IBM 370)

* Interrupt Driven, Polling Based, or Hybrid (realtime)
— High overhead, potential cache pollution
+ But no coherence problems

Assist the Main CPU

* 1/O Processor (IOP or channel processor)
* (special or general) processor dedicated to I/O operations
+ Fast
— May be overkill, cache coherency problems
* I/O sees stale data on output (memory not up to date)

* CPU sees stale data in cache on input (I/O system only updates
memory)

* DMAC (direct memory access controller)

+ Can transfer data to/from memory given start address (but that’s
all)

+ Fast, usually simple
— Still may be coherence problems, must be on memory bus

Computer Science 146
David Brooks

Communicating with I/O Processors

* Not issue if main CPU performs I/O by itself

1/O Control: how to initialize DMAC/IOP?
— Memory mapped: 1d/st to preset, VM-protected address

— Privileged I/O instructions
1/O Completion: how does CPU know DMAC/IOP finished?

— Polling: periodically check status bit => slow

— Interrupt: I/O completion interrupts CPU => fast
Q: do DMAC/IOP use physical or virtual addresses?

— Physical: simpler, but can only transfer 1 page at a time

* Pages in buffer may not be sequential pages in physical memory
— Virtual: More powerful, but DMAC/IOP needs address translation info

Computer Science 146
David Brooks

Use Arrays of Small Disks?

*Katz and Patterson asked in 1987:
*Can smaller disks be used to close gap in performance

between disks and CPUs? -
Conventional:
4 disk designs = = ﬁ ‘
3.5” 5.25” 10” e v

‘ Low End = High End

Disk Array:
1 disk design
35 > EEES D)

Advantages of Small Form
Factor Disk Drives

& 100 10,000
0
LN F\\M'ms" S
w 'l 10 e 1,000
H \ x B0 W
o 34 i»
: \ Yolume 170 Ptwet! B
4 5.25° cukl -)
35"
1 04 38W
198z w4 S B8 W0 a2
0.1 10
003 W
Low cost/MB
High MB/volume
High MB/watt b0z
Low cost/Actuator I e Tus | & |52 | 25 ||
B TEU0F|1,320F| 1,000 | 765 | 20
bBlwalt | 454 20 588 20013 200
Cost and Environmental Efficiencies giun| 515 | 3% | 2500 | 8500 | 10,000

Replace Small Number of Large Disks
with Large Number of Small Disks!

IBM 3390K IBM 3.5" 0061 x70

Capacity | 20 GBytes 320 MBytes 23 GBytes
Volume 97 cu. ft. 0.1cu. ft. 11cu ft. 9X
Power 3 KW 11w 1Kw 3X
Data Rate| 15 MB/s 1.5MB/s 120 MB/s 8X
[/ORate | 6001/Os/s 551/Os/s 3900 IOs/s 6X
MTTF 250 KHrs 50 KHrs 222 Hrs

Cost $250K $2K $150K

1988 Disk Drives vs. Disk Array

Disk Arrays have potential for large data and 1/O rates,
high MB per cu. ft., high MB per KW, but what about

reliability?

Array Reliability

* Reliability of N disks = Reliability of 1 Disk + N
50,000 Hours =+ 70 disks = 700 hours
Disk system MTTF: Drops from 6 years to 1 month!

* Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with
access: very high media availability can be achieved

Computer Science 146
David Brooks

Redundant Arrays of (Inexpensive)
Disks

* Files are "striped" across multiple disks

» Redundancy yields high data availability

— Availability: service still provided to user, even if some
components failed

* Disks will still fail

* Contents reconstructed from data redundantly stored in
the array

= Capacity penalty to store redundant info
= Bandwidth penalty to update redundant info

Computer Science 146
David Brooks

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

recovery
S NE
e o o

* Each disk is fully duplicated onto its “mirror”
Very high availability can be achieved
* Bandwidth sacrifice on write:
Logical write = two physical writes
* Reads may be optimized
* Most expensive solution: 100% capacity overhead
*Seek times can be optimized (choose disk with shortest seek)

b
Computer Science 146
David Brooks

Redundant Array of Inexpensive
Disks RAID 3' Parity Disk

10010011
11001101
10010011

logical record 1 \1/
: : 0
Striped physical |
records 1 !

P contains sum of
other disks per stripe
mod 2 (“parity”)

If disk fails, subtract 0
P from sum of other 1
disks to find missing information

RFRL,OOO
R, OOO|IkIoRr

RAID 3

* Sum computed across recovery group to protect against hard
disk failures, stored in P disk

* Logically, a single high capacity, high transfer rate disk:
good for large transfers

* Wider arrays reduce capacity costs, but decreases availability
* 33% capacity cost for parity in this configuration

Computer Science 146
David Brooks

Inspiration for RAID 4

* RAID 3 relies on parity disk to discover errors on Read

— Every access goes to all disks

— Some apps want to do smaller accesses, allowing independent
accesses to occur in parallel

— Independent small reads are ok because disk can detect errors

+ Every sector has an error detection field

— Independent small writes are trickier — don’t we have to update

parity?

Computer Science 146
David Brooks

Problems of Disk Arrays:
Small Writes on RAID3

RAID-3: Small Write Algorithm
1 Logical Write = 3 Physical Reads + 2 Physical Writes

Do’ Do D1 D2 D3 P

(1. Read) (2. Read) (3. Read)
new
data

XOR

(4. Write)

(5. Write)

Do | | D1 D2 D3 P’

Problems of Disk Arrays:
Small Writes on RAID4/5

RAID-5: Small Write Algorithm
1 Logical Write = 2 Physical Reads + 2 Physical Writes

DO’ DO D1 D2 D3 P
new old old
data <-|/data (1. Read) parity (2. Read)
(3. Write) (4. Write)
D1 D2 D3 P

RAID 4: High I/0 Rate Parity

/ Increasing
‘ AL Logical
N po || | b1 D2 D3 P Disk
....... Insides of Address
|5 disks DA1NPs | [Pe] [P7] [P
llllllll D8 D9 D10 D11 P l
Example: D12| |D13[[p14| [p1s| | P N~ .
small read Stripe
DO & D5’ D16 D17 D18 D19 P
large write
D12-D15 D20| |D21| |D22| (D23 P
....... Disk Columns

Inspiration for RAID 5

 RAID 4 works well for small reads
* Small writes (write to one disk):

— RAID 3: read other data disks, create new sum and write to
Parity Disk

— RAID 4/5: since P has old sum, compare old data to new data,
add the difference to P

* Small writes are limited by Parity Disk: Write to D0, D5
both also write to P disk (Parity Disk Bottleneck)

Y COC D YOO
N—] N— [N~—

m D1 D2 D3 P
D5 I D6 D7 P
> N G /?\

S’ N’ Ne”

RAID 5: High I/0 Rate Interleaved

i 2
. Increasing
Independent J|L2°] [P 2] [3] LP Logical
. Dis
writes Addresses
possible D4 | D5 || | D6 P D7
because of
interleaved pg | | D9 | P = |DI0O| [Di1
arit
p y D12 P D13 D14 D15
Example:
write to p | |pie| [p17| |pis| |p19
DO, D5

uses disks p20| |p21| |p22| |D23 P
0,1,3,4 .

Disk Columns

Berkeley History: RAID-I

* RAID-I (1989)

—Consisted of a Sun 4/280
workstation with 128 MB of
DRAM, four dual-string SCSI
controllers, 28 5.25-inch SCSI
disks and specialized disk
striping software

» Today RAID is $19 billion
dollar industry, 80% of non-
PC disks sold in RAIDs

RAID in Industry

RAID | Name Minimum Example | Corresponding | Industry
Level Number of Disk | pata Check Disks Use
Faults Survived | pjsks
0 Nonredundant 0 8 0 Widely
Striped Used
1 Mirrored 1 8 8 EMC, IBM
Compaq
2 Memory-style ECC 1 8 4
3 Bit-interleaved Parity 1 8 1 Storage
Concepts
4 Block-interleaved 1 8 1 Network
Parity Appliance
5 Block-interleaved 1 8 1 Widely
distributed parity Used
6 P+Q redundancy 2 8 2

Computer Science 146
David Brooks

Summary: RAID Techniques

Goal: Performance, popularity due to reliability of storage

* Disk Mirroring, Shadowing (RAID 1)

Each disk is fully duplicated onto its "shadow"
Logical write = two physical writes
100% capacity overhead

* Parity Data Bandwidth Array (RAID 3)
Parity computed horizontally
Logically a single high data bw disk

* High I/O Rate Parity Array (RAID 5)
Interleaved parity blocks
Independent reads and writes

Logical write = 2 reads + 2 writes

G0
(30 O-F
)

[/O System Example

* @Given

. Q:

500 MIPS CPU

16B wide, 100 ns memory system

10000 instrs per I/O

16KB per 1/0

200 MB/s I/0 bus, with room for 20 SCSI-2 controllers
SCSI-2 strings (buses) — 20MB/s with 15 disks per bus
SCSI-2 1ms overhead per I/O

7200 RPM (120 RPS), 8ms avg seek, 6MB/s transfer disks
200 GB total storage

Choose 2GB or 8GB disks for maximum IOPS?

How to arrange disks and controllers?

Computer Science 146
David Brooks

I/O System Example (cont’d)

Step 1: Calculate CPU, memory, I/O bus peak IOPS
— CPU: 500 MIPS/(10000 instructions/IO) = 50000 IOPS
— Memory: (16-bytes / 100ns) / 16KB = 10000 IOPS
— /O bus: (200 MB/s) 16KB = 12500 IOPS
— Memory bus (10000 IOPS) is the bottleneck

Step 2: Calculate Disk IOPS
— T4 = 8ms +0.5/120 RPS + 16KB/(6MB/s) = 15 ms

Disk: 1/ 15ms =67 IOPS

8GB Disks =>need 25 => 25 * 67 IOPS = /675 IOPS

— 2GB Disks => need 100 => 100 * 67 IOPS = 6700 IOPS

100 2GB disks (6700 IOPS) are new bottleneck

Answer: 100 2GB disks!

Computer Science 146
David Brooks

I/O System Example (cont’d)

Step 3: Calculate SCSI-2 controller peak IOPS
— Tgesro = Ims + 16KB/(20MB/s) = 1.8ms
— SCSI-2: 1/1.8ms = 556 IOPS

Step 4: How many disks per controller?
— 556 IOPS/ 67 IOPS = & disks per controller

Step 5: How many controllers?
— 100 disks/ 8 disks/controller = 13 controllers

Answer: 13 controllers, 8-disks each

Computer Science 146
David Brooks

Next Lecture

* Wednesday:
— Google Cluster
Reading:
L. Barroso, J. Dean, and U. Holzle, "Web search for a

planet: The Google Cluster Architecture," IEEE Micro,
23, 2, March-April 2003, pp. 22-28

— Course Summary and Wrapup
— Schedule a time for the Final Review

Computer Science 146
David Brooks

