
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Fall 2019
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 3: CISC/RISC, Multimedia ISA,
Implementation Review

Computer Science 146
David Brooks

Lecture Outline

• CISC vs. RISC
• Multimedia ISAs

– Review of the PA-RISC, MAX-2
– Examples

• Compiler Interactions
• Implementation Review

2

Computer Science 146
David Brooks

Instruction Set Architecture

“Instruction Set Architecture is the structure of a computer
that a machine language programmer (or a compiler) must
understand to write a correct (timing independent) program
for that machine.”

IBM, Introducing the IBM 360 (1964)

• The ISA defines:
– Operations that the processor can execute
– Data Transfer mechanisms + how to access data
– Control Mechanisms (branch, jump, etc)
– “Contract” between programmer/compiler + HW

Computer Science 146
David Brooks

Classifying ISAs

3

Computer Science 146
David Brooks

Stack

• Architectures with implicit “stack”
– Acts as source(s) and/or destination, TOS is implicit
– Push and Pop operations have 1 explicit operand

• Example: C = A + B
– Push A // S[++TOS] = Mem[A]
– Push B // S[++TOS] = Mem[B]
– Add // Tem1 = S[TOS--], Tem2 = S[TOS--] ,

S[++TOS] = Tem1 + Tem2
– Pop C // Mem[C] = S[TOS--]

• x86 FP uses stack (complicates pipelining)

Computer Science 146
David Brooks

Accumulator

• Architectures with one implicit register
– Acts as source and/or destination
– One other source explicit

• Example: C = A + B
– Load A // (Acc)umulator <= A
– Add B // Acc <= Acc + B
– Store C // C <= Acc

• Accumulator implicit, bottleneck?
• x86 uses accumulator concepts for integer

4

Computer Science 146
David Brooks

Register

• Most common approach
– Fast, temporary storage (small)
– Explicit operands (register IDs)

• Example: C = A + B
Register-memory load/store
Load R1, A Load R1, A
Add R3, R1, B Load R2, B
Store R3, C Add R3, R1, R2

Store R3, C

• All RISC ISAs are load/store
• IBM 360, Intel x86, Moto 68K are register-memory

Computer Science 146
David Brooks

Common Addressing Modes

Base/Displacement Load R4, 100(R1)
Register Indirect Load R4, (R1)
Indexed Load R4, (R1+R2)
Direct Load R4, (1001)
Memory Indirect Load R4, @(R3)
Autoincrement Load R4, (R2)+
Scaled Load R4, 100(R2)[R3]

5

Computer Science 146
David Brooks

What leads to a good/bad ISA?

• Ease of Implementation (Job of Architect/Designer)
– Does the ISA lead itself to efficient implementations?

• Ease of Programming (Job of Programmer/Compiler)
– Can the compiler use the ISA effectively?

• Future Compatibility
– ISAs may last 30+yrs
– Special Features, Address range, etc. need to be thought out

Computer Science 146
David Brooks

Implementation Concerns

• Simple Decoding (fixed length)
• Compactness (variable length)
• Simple Instructions (no load/update)

– Things that get microcoded these days
– Deterministic Latencies are key!
– Instructions with multiple exceptions are difficult

• More/Less registers?
– Slower register files, decoding, better compilers

• Condition codes/Flags (scheduling!)

6

Computer Science 146
David Brooks

Programmability

• 1960s, early 70s
– Code was mostly hand-coded

• Late 70s, Early 80s
– Most code was compiled, but hand-coded was better

• Mid-80s to Present
– Most code is compiled and almost as good as assembly

• Why?

Computer Science 146
David Brooks

Programmability: 70s, Early 80s
“Closing the Semantic Gap”

• High-level languages match assembly languages
• Efforts for computers to execute HLL directly

– e.g. LISP Machine
• Hardware Type Checking. Special type bits let the type be

checked efficiently at run-time
• Hardware Garbage Collection
• Fast Function Calls
• Efficient Representation of Lists

• Never worked out…“Semantic Clash”
– Too many HLLs? C was more popular?
– Is this coming back with Java? (Sun’s picoJava)

7

Computer Science 146
David Brooks

Programmability: 1980s … 2000s
“In the Compiler We Trust”

• Wulf: Primitives not Solutions
– Compilers cannot effectively use complex

instructions
– Synthesize programs from primitives

• Regularity: same behavior in all contexts
– No odd cases – things should be intuitive

• Orthogonality:
– Data type independent of addressing mode
– Addressing mode independent of operation performed

Computer Science 146
David Brooks

ISA Compatibility
“In Computer Architecture, no good idea ever goes unpunished.”

Marty Hopkins, IBM Fellow
• Never abandon existing code base
• Extremely difficult to introduce a new ISA

– Alpha failed, IA64 is struggling, best solution may not win
• x86 most popular, is the least liked!
• Hard to think ahead, but…

– ISA tweak may buy 5-10% today
– 10 years later it may buy nothing, but must be implemented

• Register windows, delay branches

8

Computer Science 146
David Brooks

CISC vs. RISC

• Debate raged from early 80s through 90s
• Now it is fairly irrelevant
• Despite this Intel (x86 => Itanium) and

DEC/Compaq (VAX => Alpha) have tried to
switch

• Research in the late 70s/early 80s led to RISC
– IBM 801 -- John Cocke – mid 70s
– Berkeley RISC-1 (Patterson)
– Stanford MIPS (Hennessy)

Computer Science 146
David Brooks

VAX

• 32-bit ISA, instructions could be huge (up to 321
bytes), 16 GPRs

• Operated on data types from 8 to 128-bits,
decimals, strings

• Orthogonal, memory-to-memory, all operand
modes supported

• Hundreds of special instructions
• Simple compiler, hand-coding was common
• CPI was over 10!

9

Computer Science 146
David Brooks

x86

• Variable length ISA (1-16 bytes)
• FP Operand Stack
• 2 operand instructions (extended accumulator)

– Register-register and register-memory support
• Scaled addressing modes

• Has been extended many times (as AMD has
recently done with x86-64)

• Intel, instead (?) went to IA64

Computer Science 146
David Brooks

RISC vs. CISC Arguments

• RISC
– Simple Implementation

• Load/store, fixed-format 32-bit instructions, efficient pipelines

– Lower CPI
– Compilers do a lot of the hard work

• MIPS = Microprocessor without Interlocked Pipelined Stages

• CISC
– Simple Compilers (assists hand-coding, many

addressing modes, many instructions)
– Code Density

10

Computer Science 146
David Brooks

MIPS/VAX Comparison

Computer Science 146
David Brooks

After the dust settled

• Turns out it doesn’t matter much
• Can decode CISC instructions into internal “micro-

ISA”
– This takes a couple of extra cycles (PLA

implementation) and a few hundred thousand transistors
– In 20 stage pipelines, 55M tx processors this is minimal
– Pentium 4 caches these micro-Ops

• Actually may have some advantages
– External ISA for compatibility, internal ISA can be

tweaked each generation (Transmeta)

11

Computer Science 146
David Brooks

Multimedia ISAs

• Motivation
– Human perception does not need 64-bit precision
– Single-instruction, Multiple-data (SIMD) parallelism

• Initially introduced in workstations
– HP MAX-1 (’94), MAX-2 (’96)
– SPARC VIS-1 (’95)

• Quickly migrated to desktops/laptops
– Intel MMX (’97), SSE (’99), SSE2 (’00), SSE3 (’04)

• Future will focus on security ISAs

Computer Science 146
David Brooks

Apps suitable to MM-ISAs

• Tons of parallelism
– Ideally, parallelism exists at many levels

• Frame, color components, blocks, pixels, etc

• Low precision data available
– 8-bits per color component per pixel (RGB)
– Sometimes 12-bits (medical apps)

• Computationally intensive apps
– Lots of adds, subtracts, shift-and-add, etc

• Examples: MPEG encode/decode, jpeg, mp3

12

Computer Science 146
David Brooks

Subword Parallelism Techniques

• Loop vectorization
– Multiple iterations can be performed in parallel

• Parallel accumulation
• Saturating arithmetic

– In-line Conditional Execution!

• Data rearrangment
– Critical for matrix transpose

• Multiplication by constants

Computer Science 146
David Brooks

Types of Ops

• Parallel Add/Subtract
– Modulo Arithmetic, Signed/Unsigned Saturating

• Parallel Shift-and-Add
– Shift Left and Right
– Equivalent to Multiply-by-Constant

• Parallel Average
• Mix, Permute

– Subword Rearrangment

• MADD, Max/Min, SAD

13

Computer Science 146
David Brooks

Simple implementation

Reg File

64-bit Registers

64-bit Adder

Computer Science 146
David Brooks

Simple implementation

• Could also be 8x8-bit, 2x32-bit
• How would we do shift-and-add?

Reg File

A B C D

4- 16-bit Adders
(Partitioned)

A B C D
64-bit Registers

14

Computer Science 146
David Brooks

Overflow?

• Ignore Overflow (Modulo arithmetic)
• Set flags
• Throw an exception
• Clamp results to max/min values (Saturating

arithmetic)
• Some ops never overflow (PAVG)

Computer Science 146
David Brooks

Saturating Arithmetic

• How would this be implemented?

0 (0x0000)

-215-1 (0x8000)

215-1 (0x7FFF)

216-1 (0xFFFF)
Positive Overflow

Positive Overflow

Negative Overflow

Negative Overflow

Signed 16-bit Integer

Unsigned 16-bit Integer

15

Computer Science 146
David Brooks

In-line Conditional Execution

• Saturating arithmetic allows the following:
If cond(Rai,Rbi) Then Rti=Rai else Rti=Rbi

For i=number of subwords in the word

• Takes advantage of the fact that saturating arithmetic is
not commutative
– ie. (+k)-k not same as +k(-k)
– (0 + 20) + (0 – 20) = 0 (Standard Arithmetic)
– (0 + 20) + (0 – 20) = 20 (With Unsigned Saturating Arith.)

Computer Science 146
David Brooks

Finding min(Ra,Rb) with
Saturating Arithmetic

• Example: Finding min(Ra, Rb)
If Rai>Rbi Then Rti=Rbi else Rti=Rai

• max(Ra, Rb), abs(Ra), SAD(Ra,Rb) are easy too
-260-606060HADD,ss Rt, Ra, Rt

-320-3200-200HSUB,ss R0, Rt, Rt

3203200200HSUB,us Ra, Rb, Rt

-260-6026060Rb=

6026060260Ra=

16

Computer Science 146
David Brooks

Speedups on Kernels on PA-8000
(with and without MAX2)

4.144.242.632.66Speedup

2.20 (2.20)2.02 (2.29)2.00 (2.00)2.63 (3.07)Instructions/Cycle

2.70 (11.18)2.80 (11.86)0.25 (0.66)0.63 (1.66)Cycles/Element

17 (20)15 (18)18 (22)14 (12)Registers

173 (716)548 (2234)16 (42)160 (426)Cycles

380 (1574)1107 (5320)32 (84)420 (1307)Instructions

8x8
IDCT

3x3 Box
Filter

8x8 Matrix
Transpose

16x16
Block Match

Programs
vs. Metrics

Computer Science 146
David Brooks

What is Intel’s SSE?

• An extension of Intel’s MMX (similar to MAX)
• Streaming SIMD Extensions

– 8 new 128-bit SIMD Floating Point registers
– PIII: SSE -> 50 new ops

• ADD, SUB, MUL, DIV, SQRT, MAX, MIN

– P4: SSE2 -> MMX -> 128bits, SSE-> 64-bit FP
– Prescott New Instructions: SSE3 -> 13 new instructions

(data movement, conversion, “horizontal addition”)

17

Computer Science 146
David Brooks

Packed vs. Scalar

SSE Packed SSE Scalar

Computer Science 146
David Brooks

SSE3: Horizontal Add

• HADDPS OpA OpB
– OpA (128bits, 4 elements): 3a, 2a, 1a, 0a

– OpB (128bits, 4 elements): 3b, 2b, 1b, 0b

– Result (in OpA): 3b+ 2b, 1b+ 0b ,3a+ 2a, 1a+ 0a

18

Computer Science 146
David Brooks

Compilers 101

Computer Science 146
David Brooks

Compiler Optimizations

• High-level optimizations
– Done on source, may be source-to-source conversions
– Examples – map data for cache efficiency, remove

conditions, etc.
• Local Optimizations

– Optimize code in small straight-line sections
• Global Optimizations

– Extend local opts across branches and do loop
optimizations (loop unrolling)

• Register Allocation
– Assign temporary values to registers, insert spill code

19

Computer Science 146
David Brooks

Compiler support for MM ISAs

• Actually there is very little
• Surprising because vector-computers have good

compiler support
• Problems

– Short, architecture-limited vectors
– Few registers and simple addressing modes
– Most programming languages don’t support subwords
– Kernels tend to be handcoded

Computer Science 146
David Brooks

Implementation Review

• First, let’s think about how different instructions
get executed

Instruction
Fetch

Instruction
Decode

Register
Fetch

Execute
Write
Result

All Instructions

ALU Ops

Memory Ops

Control Ops

Calculate
Eff. Addr

Memory
Access

Write
Result

Calculate
Eff. Addr

Branch
Complete

20

Computer Science 146
David Brooks

Instruction Fetch

• Send the Program Counter (PC) to memory
• Fetch the current instruction from memory

– IR <= Mem[PC]

• Update the PC to the next sequential
– PC <= PC + 4 (4-bytes per instruction)

• Optimizations
– Instruction Caches, Instruction Prefetch

• Performance Affected by
– Code density, Instruction size variability (CISC/RISC)

Computer Science 146
David Brooks

Abstract Implementation

Registers
Register #

Data

Register #

Data�
memory

Address

Data

Register #

PC Instruction ALU

Instruction�
memory

Address

21

Computer Science 146
David Brooks

Instruction Decode/Reg Fetch

• Decide what type of instruction we have
– ALU, Branch, Memory
– Decode Opcode

• Get operands from Reg File
– A <= Regs[IR25..21]; B <= Regs[IR20..16];
– Imm <= SignExtend(IR15..0)

• Performance Affected by
– Regularity in instruction format, instruction length

Computer Science 146
David Brooks

Calculate Effective Address:
Memory Ops

• Calculate Memory address for data
• ALUoutput<= A + Imm
• LW R10, 10(R3)

Opcode Rs Rd Immediate

22

Computer Science 146
David Brooks

Calculate Effective Address:
Branch/Jump Ops

• Calculate target for branch/jump operation
• BEQZ, BNEZ, J

– ALUoutput<= NPC + Imm; cond <= A op 0
– “op” is a check against 0, equal, not-equal, etc.
– J is an unconditional

• ALUoutput<= A

Computer Science 146
David Brooks

Execution: ALU Ops

• Perform the computation
• Register-Register

– ALUoutput<= A op B

• Register-Immediate
– ALUoutput<= A op Imm

• No ops need to do effective address calc and
perform an operation on data

• Why?

23

Computer Science 146
David Brooks

Memory Access

• Take effective address, perform Load or Store
• Load

– LMD <= Mem[ALUoutput]

• Store
– Mem[ALUoutput] <= B

Computer Science 146
David Brooks

Mem Phase on Branches

• Set PC to the calculated effective address
• BEQZ, BNEZ

– If (cond) PC <= ALUoutput else PC <= NPC

24

Computer Science 146
David Brooks

Write-Back

• Send results back to register file
• Register-register ALU instructions

– Regs[IR15..11] <= ALUoutput

• Register-Immediate ALU instruction
– Regs[IR20..16] <= ALUoutput

• Load Instruction
– Regs[IR20..16] <= LMD

• Why does this have to be a separate step?

Computer Science 146
David Brooks

Final Implementation

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write�
register
Write�
data

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

Sign�
extend

ALU�
result

Zero

Data�
memory

Address Read�
data M�

u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

Instruction [15– 11]

ALU�
control

Shift�
left 2

PCSrc

ALU

Add ALU�
result

25

Computer Science 146
David Brooks

For next time

• Implementation Review
• Pipelining

– Start to read Appendix A or review previous textbook

