Computer Science 146
Computer Architecture

Fall 2019

Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 3: CISC/RISC, Multimedia ISA,
Implementation Review

Computer Science 146
David Brooks

Lecture Outline

CISC vs. RISC

Multimedia ISAs
— Review of the PA-RISC, MAX-2
— Examples

Compiler Interactions

Implementation Review

Computer Science 146
David Brooks

Instruction Set Architecture

“Instruction Set Architecture is the structure of a computer
that a machine language programmer (or a compiler) must
understand to write a correct (timing independent) program
for that machine.”

IBM, Introducing the IBM 360 (1964)
» The ISA defines:

— Operations that the processor can execute

— Data Transfer mechanisms + how to access data
— Control Mechanisms (branch, jump, etc)

— “Contract” between programmer/compiler + HW

Computer Science 146
David Brooks

Classifying ISAs

(a) Stack (b) Accumulator (c) Register-memary (d) Register-registeroad-store

Ty

Memary

Computer Science 146
David Brooks

Stack

 Architectures with implicit “stack”
— Acts as source(s) and/or destination, TOS is implicit
— Push and Pop operations have 1 explicit operand

* Example: C=A+B

— Push A // S[++TOS] = Mem[A]

— Push B /I S[++TOS] = Mem[B]

— Add // Teml = S[TOS--], Tem2 = S[TOS--],
S[++TOS] =Teml + Tem2

— Pop C // Mem[C] = S[TOS--]

» x86 FP uses stack (complicates pipelining)

Computer Science 146
David Brooks

Accumulator

Architectures with one implicit register
— Acts as source and/or destination

— One other source explicit

Example: C=A +B

— Load A // (Acc)umulator <= A
— Add B // Acc <= Acc+B
— Store C /l C <= Acc

Accumulator implicit, bottleneck?

x86 uses accumulator concepts for integer

Computer Science 146
David Brooks

Register

* Most common approach

— Fast, temporary storage (small)

— Explicit operands (register IDs)

 Example:C=A+B
Register-memory
Load R1, A
Add R3,R1,B
Store R3, C

load/store

Load R1, A
Load R2, B

Add R3,RI,R2
Store R3, C

All RISC ISAs are load/store
IBM 360, Intel x86, Moto 68K are register-memory

Computer Science 146
David Brooks

Common Addressing Modes

Base/Displacement
Register Indirect
Indexed

Direct

Memory Indirect
Autoincrement
Scaled

Load R4, 100(R1)
Load R4, (R1)

Load R4, (R1+R2)
Load R4, (1001)

Load R4, @(R3)

Load R4, (R2)+

Load R4, 100(R2)[R3]

Computer Science 146
David Brooks

What leads to a good/bad ISA?

» Ease of Implementation (Job of Architect/Designer)
— Does the ISA lead itself to efficient implementations?
» Ease of Programming (Job of Programmer/Compiler)
— Can the compiler use the ISA effectively?
 Future Compatibility
— ISAs may last 30+yrs
— Special Features, Address range, etc. need to be thought out

Computer Science 146
David Brooks

Implementation Concerns

Simple Decoding (fixed length)

Compactness (variable length)

Simple Instructions (no load/update)

— Things that get microcoded these days

— Deterministic Latencies are key!

— Instructions with multiple exceptions are difficult

More/Less registers?
— Slower register files, decoding, better compilers

Condition codes/Flags (scheduling!)

Computer Science 146
David Brooks

Programmability

1960s, early 70s
— Code was mostly hand-coded

Late 70s, Early 80s

— Most code was compiled, but hand-coded was better

Mid-80s to Present

— Most code is compiled and almost as good as assembly

Why?

Computer Science 146
David Brooks

Programmability: 70s, Early 80s
“Closing the Semantic Gap”

» High-level languages match assembly languages

 Efforts for computers to execute HLL directly

— e.g. LISP Machine

» Hardware Type Checking. Special type bits let the type be
checked efficiently at run-time

» Hardware Garbage Collection
» Fast Function Calls
« Efficient Representation of Lists
* Never worked out...“Semantic Clash”
— Too many HLLs? C was more popular?
— Is this coming back with Java? (Sun’s picoJava)

Computer Science 146
David Brooks

Programmability: 1980s ... 2000s
“In the Compiler We Trust”

e Wulf: Primitives not Solutions

— Compilers cannot effectively use complex
instructions

— Synthesize programs from primitives

» Regularity: same behavior in all contexts
— No odd cases — things should be intuitive

* Orthogonality:
— Data type independent of addressing mode

— Addressing mode independent of operation performed

Computer Science 146
David Brooks

ISA Compatibility

“In Computer Architecture, no good idea ever goes unpunished.”
Marty Hopkins, IBM Fellow

» Never abandon existing code base
» Extremely difficult to introduce a new ISA
— Alpha failed, IA64 is struggling, best solution may not win
» x86 most popular, is the least liked!
* Hard to think ahead, but...

— ISA tweak may buy 5-10% today

— 10 years later it may buy nothing, but must be implemented
» Register windows, delay branches

Computer Science 146
David Brooks

CISC vs. RISC

Debate raged from early 80s through 90s
Now it is fairly irrelevant

Despite this Intel (x86 => Itanium) and
DEC/Compaq (VAX => Alpha) have tried to
switch

Research in the late 70s/early 80s led to RISC
— IBM 801 -- John Cocke — mid 70s

— Berkeley RISC-1 (Patterson)

— Stanford MIPS (Hennessy)

Computer Science 146
David Brooks

VAX

32-bit ISA, instructions could be huge (up to 321
bytes), 16 GPRs

Operated on data types from 8 to 128-bits,
decimals, strings

Orthogonal, memory-to-memory, all operand
modes supported

Hundreds of special instructions
Simple compiler, hand-coding was common

CPI was over 10!

Computer Science 146
David Brooks

x86

* Variable length ISA (1-16 bytes)
* FP Operand Stack

2 operand instructions (extended accumulator)
— Register-register and register-memory support

 Scaled addressing modes

* Has been extended many times (as AMD has
recently done with x86-64)

* Intel, instead (?) went to [A64

Computer Science 146
David Brooks

RISC vs. CISC Arguments

« RISC

— Simple Implementation

» Load/store, fixed-format 32-bit instructions, efficient pipelines
— Lower CPI
— Compilers do a lot of the hard work

» MIPS = Microprocessor without Interlocked Pipelined Stages

« CISC

— Simple Compilers (assists hand-coding, many
addressing modes, many instructions)

— Code Density

Computer Science 146
David Brooks

MIPS/VAX Comparison

Performance
ratio

MIPS/VAX

Instructions
executed ratic

w CPI ratio
f (@@*— Q'bré\ dﬁq @&é &9) 4 @99° 0&‘(’6 N

o &
SPECS9 benchmarks

After the dust settled

* Turns out it doesn’t matter much
* (Can decode CISC instructions into internal “micro-

ISA”

— This takes a couple of extra cycles (PLA
implementation) and a few hundred thousand transistors

— In 20 stage pipelines, 55M tx processors this is minimal
— Pentium 4 caches these micro-Ops

» Actually may have some advantages

— External ISA for compatibility, internal ISA can be
tweaked each generation (Transmeta)

Computer Science 146
David Brooks

Multimedia ISAs

Motivation

— Human perception does not need 64-bit precision

— Single-instruction, Multiple-data (SIMD) parallelism
Initially introduced in workstations

— HP MAX-1 (°94), MAX-2 (°96)

— SPARC VIS-1 (°95)

Quickly migrated to desktops/laptops

— Intel MMX (°97), SSE (’99), SSE2 (°00), SSE3 (°04)
Future will focus on security ISAs

Computer Science 146
David Brooks

Apps suitable to MM-ISAs

Tons of parallelism

— Ideally, parallelism exists at many levels
» Frame, color components, blocks, pixels, etc

Low precision data available

— 8-bits per color component per pixel (RGB)

— Sometimes 12-bits (medical apps)
Computationally intensive apps

— Lots of adds, subtracts, shift-and-add, etc
Examples: MPEG encode/decode, jpeg, mp3

Computer Science 146
David Brooks

Subword Parallelism Techniques

* Loop vectorization
— Multiple iterations can be performed in parallel
* Parallel accumulation
 Saturating arithmetic
— In-line Conditional Execution!
* Data rearrangment
— Ceritical for matrix transpose

» Multiplication by constants

Computer Science 146
David Brooks

Types of Ops

 Parallel Add/Subtract
— Modulo Arithmetic, Signed/Unsigned Saturating

* Parallel Shift-and-Add
— Shift Left and Right
— Equivalent to Multiply-by-Constant

 Parallel Average

e Mix, Permute
— Subword Rearrangment

« MADD, Max/Min, SAD

Computer Science 146
David Brooks

Simple implementation

64-bit Registers

Reg File

Computer Science 146
David Brooks

Simple implementation

A | Blc|DpD

Reg File

64-bit Registers

4- 16-bit Adders

(Partitioned)

* Could also be 8x8-bit, 2x32-bit
 How would we do shift-and-add?

Computer Science 146
David Brooks

Overflow?

* Ignore Overflow (Modulo arithmetic)
» Set flags
» Throw an exception

* Clamp results to max/min values (Saturating
arithmetic)

* Some ops never overflow (PAVG)

Computer Science 146
David Brooks

Saturating Arithmetic

Positive Overflow

216.1 (0XFFFF)
2151 (Ox7FFF)
i Signed 16-bit Integer 0 (OXOOOO)

Negative Overflow

yy
Unsigned 16-bit Integer Positive Overflow
7y

; -2151 (0x8000)

Negative Overflow

* How would this be implemented?

Computer Science 146
David Brooks

In-line Conditional Execution

 Saturating arithmetic allows the following:
If cond(Ra,;,Rb;) Then Rt;=Ra; else Rt,=Rb;

For i=number of subwords in the word

» Takes advantage of the fact that saturating arithmetic is
not commutative
— 1e. (+k)-k not same as +k(-k)
- (0+20)+(0-20)=0 (Standard Arithmetic)
- (0+20)+(0-20)=20 (With Unsigned Saturating Arith.)

Computer Science 146
David Brooks

Finding min(Ra,Rb) with
Saturating Arithmetic

« Example: Finding min(Ra, Rb)
If Ra,;>Rb; Then Rt;=Rb; else Rt;=Ra;

Ra=[260 |60 (260 |60
Rb=1|60 260 |-60 [-260

HSUB,us Ra, Rb, Rt 200 |0 320 |320
HSUB,ss RO, Rt, Rt -200 |0 -320 |-320
HADD;,ss Rt, Ra, Rt 60 60 |[-60 |-260

* max(Ra, Rb), abs(Ra), SAD(Ra,Rb) are easy too

Computer Science 146
David Brooks

Speedups on Kernels on PA-8000
(with and without MAX?2)

Programs 16x16 8x8 Matrix | 3x3 Box 8x8

vs. Metrics Block Match | Transpose | Filter IDCT
Instructions 420 (1307) |32(84) 1107 (5320) | 380 (1574)
Cycles 160 (426) 16 (42) 548 (2234) | 173 (716)
Registers 14 (12) 18 (22) 15 (18) 17 (20)
Cycles/Element | 0.63 (1.66) |0.25 (0.66) |[2.80 (11.86) |2.70 (11.18)
Instructions/Cycle | 2.63 (3.07) | 2.00 (2.00) |2.02 (2.29) |2.20(2.20)
Speedup 2.66 2.63 4.24 4.14

Computer Science 146
David Brooks

What 1s Intel’s SSE?

* An extension of Intel’s MMX (similar to MAX)

 Streaming SIMD Extensions
— 8 new 128-bit SIMD Floating Point registers
— PIII: SSE -> 50 new ops
- ADD, SUB, MUL, DIV, SQRT, MAX, MIN
— P4: SSE2 -> MMX -> 128bits, SSE-> 64-bit FP
— Prescott New Instructions: SSE3 -> 13 new instructions
(data movement, conversion, “horizontal addition™)

Computer Science 146
David Brooks

Packed vs. Scalar

X1 ‘ X2 X3 ‘ x4 | x| x ‘ X3 | xa

S

N O R A N A N

B A K L & \v
or or ® ®
A A S S .
1 X10PY1 ‘ X20P Y2 X30PY3 i X4 OP Y4 | X1 ‘ X2 ! X3 I X4 0P Y4 .
SSE Packed SSE Scalar

Computer Science 146
David Brooks

SSE3: Horizontal Add

« HADDPS OpA OpB
— OpA (128bits, 4 elements): 34, 24, 1a, 0a
— OpB (128bits, 4 elements): 3p, 2b, 1v, Op
— Result (in OpA): 3p+ 2p, 1ot Op 3at 24, 1ot 04

Computer Science 146
David Brooks

Compilers 101

Jependencies
.anguage dependent;
nachine independent

Somewhat language dependent;

argely machine independent

3mall language dependencies;
nachine dependencies slight
e.g., register counts/types)

Highly machine dependent;

anguage independent

Front end per
language

Itermediate
representation

High-level
optimizations

Global
optimizer

Code generator '

Function

Transiorm language to
common intermediate form

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Including global and local
optimizations + register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

Compiler Optimizations

High-level optimizations

— Done on source, may be source-to-source conversions

— Examples — map data for cache efficiency, remove
conditions, etc.

» Local Optimizations
— Optimize code in small straight-line sections

Global Optimizations

— Extend local opts across branches and do loop
optimizations (loop unrolling)

Register Allocation

— Assign temporary values to registers, insert spill code

Computer Science 146
David Brooks

Compiler support for MM ISAs

* Actually there is very little

 Surprising because vector-computers have good
compiler support

* Problems
— Short, architecture-limited vectors
— Few registers and simple addressing modes
— Most programming languages don’t support subwords
— Kernels tend to be handcoded

Computer Science 146
David Brooks

Implementation Review

 First, let’s think about how different instructions
get executed

All Instructions

Control Ops Calculate | | Branch

Eff. Addr| | Complete

Computer Science 146
David Brooks

Instruction Fetch

Send the Program Counter (PC) to memory

Fetch the current instruction from memory

— IR <=Mem[PC]

Update the PC to the next sequential

— PC <=PC + 4 (4-bytes per instruction)

Optimizations

— Instruction Caches, Instruction Prefetch

Performance Affected by

— Code density, Instruction size variability (CISC/RISC)

Computer Science 146
David Brooks

Abstract Implementation

—> Cita
—| Regstar#
Addess Instrudtion=— Regders Al Addess
Insiructian = Regater#
nmenay / Detal’] -
— Rgsta# nmenay
Dea

Computer Science 146
David Brooks

Instruction Decode/Reg Fetch

» Decide what type of instruction we have
— ALU, Branch, Memory
— Decode Opcode
 Get operands from Reg File
— A <=Regs[IR,s5 5]; B <= Regs[IRy; j4];
— Imm <= SignExtend(IR 5 ,)
» Performance Affected by

— Regularity in instruction format, instruction length

Computer Science 146
David Brooks

Calculate Effective Address:
Memory Ops

 (Calculate Memory address for data
* ALU p<=A + Imm

. LW\R 0, 10(R3)

Opcode Rs Rd Immediate

Computer Science 146
David Brooks

Calculate Effective Address:
Branch/Jump Ops

* Calculate target for branch/jump operation
« BEQZ, BNEZ,J
— ALU,,,,«<= NPC + Imm; cond <= A op 0

— “op” is a check against 0, equal, not-equal, etc.

output

— J 1s an unconditional

* ALU ,(,,i<= A

output

Computer Science 146
David Brooks

Execution: ALU Ops

 Perform the computation

» Register-Register

- ALUoutput<: A op B
* Register-Immediate
— ALU <= A op Imm

» No ops need to do effective address calc and
perform an operation on data

* Why?

Computer Science 146
David Brooks

Memory Access

» Take effective address, perform Load or Store
* Load

— LMD <= Mem[ALU
* Store

— Mem[ALU,,] <=B

output]

Computer Science 146
David Brooks

Mem Phase on Branches

» Set PC to the calculated effective address
« BEQZ, BNEZ
— If (cond) PC <= ALU,,,, else PC <= NPC

Computer Science 146
David Brooks

Write-Back

 Send results back to register file

* Register-register ALU instructions
— Regs[IR 5 1] <= ALUoutput

* Register-Immediate ALU instruction
— Regs[IRy; 151 <= ALU 5

* Load Instruction
— Regs[IRy 6] <= LMD

* Why does this have to be a separate step?

Computer Science 146

David Brooks

Final Implementation

Add

Read
address

Instruction

[31-0]

Instruction
memory

AL
Add foqit

ALUSrc

MemWrite
!

RegWrite
|
Instruction [25—21] Read
register 1 Read
Instruction [20—16] Read data 1
register 2
M Write data 2
) U register
Instruction [15-11] [x | | write
{0/ *|data Registers
RegDst|
Instruction [15—0] 1\6 Sign 32
T\ extend

Instruction [5—-0]

ALUOp

Address

Read

data

MemRead

MemtoReg

Computer Science 146

David Brooks

For next time

 Implementation Review
* Pipelining

— Start to read Appendix A or review previous textbook

Computer Science 146
David Brooks

