
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Fall 2019
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 4: Basic Implementation and Pipelining

Computer Science 146
David Brooks

Lecture Outline

• Finish ISAs (Compiler Impact)
• Basic Implementation Review
• Advantages of Pipelining
• “Easy” Challenges of Pipelining

– Hazards (Structural, Data, Control)

• “Hard” Challenges of Pipelining
– Maintaining Precise Exceptions

2

Computer Science 146
David Brooks

Compilers 101

Computer Science 146
David Brooks

Compiler Optimizations

• High-level optimizations
– Done on source, may be source-to-source conversions
– Examples – map data for cache efficiency, remove conditions,

etc.

• Local Optimizations
– Optimize code in small straight-line sections

• Global Optimizations
– Extend local opts across branches and do loop optimizations

(loop unrolling)

• Register Allocation
– Assign temporary values to registers, insert spill code

3

Computer Science 146
David Brooks

Compilers and the ISA

• Architects can help compiler writers
– Providing regularity (already discussed)
– Primitives, not solutions (HLL-support has not

succeeded)
– Simplify trade-offs among alternatives
– Provide instructions that bind compile-time constants

Computer Science 146
David Brooks

Compiler support for MM ISAs

• Actually there is very little
• Surprising because vector-computers have good

compiler support
• Problems

– Short, architecture-limited vectors
– Few registers and simple addressing modes

• Vector machines support strided addressing and gather/scatters

– Most programming languages don’t support subwords
– Results: Only some kernels tend to be handcoded

4

Computer Science 146
David Brooks

Implementation Review

• First, let’s think about how different instructions
get executed

Instruction
Fetch

Instruction
Decode

Register
Fetch

Execute
Write
Result

All Instructions

ALU Ops

Memory Ops

Control Ops

Calculate
Eff. Addr

Memory
Access

Write
Result

Calculate
Eff. Addr

Branch
Complete

Computer Science 146
David Brooks

Instruction Fetch

• Send the Program Counter (PC) to memory
• Fetch the current instruction from memory

– IR <= Mem[PC]

• Update the PC to the next sequential
– PC <= PC + 4 (4-bytes per instruction)

• Optimizations
– Instruction Caches, Instruction Prefetch

• Performance Affected by
– Code density, Instruction size variability (CISC/RISC)

5

Computer Science 146
David Brooks

Abstract Implementation

Registers
Register #

Data

Register #

Data�
memory

Address

Data

Register #

PC Instruction ALU

Instruction�
memory

Address

Computer Science 146
David Brooks

Instruction Decode/Reg Fetch

• Decide what type of instruction we have
– ALU, Branch, Memory
– Decode Opcode

• Get operands from Reg File
– A <= Regs[IR25..21]; B <= Regs[IR20..16];
– Imm <= SignExtend(IR15..0)

• Performance Affected by
– Regularity in instruction format, instruction length

6

Computer Science 146
David Brooks

Calculate Effective Address:
Memory Ops

• Calculate Memory address for data
• ALUoutput<= A + Imm
• LW R10, 10(R3)

Opcode Rs Rd Immediate

Computer Science 146
David Brooks

Calculate Effective Address:
Branch/Jump Ops

• Calculate target for branch/jump operation
• BEQZ, BNEZ, J

– ALUoutput<= NPC + Imm; cond <= A op 0
– “op” is a check against 0, equal, not-equal, etc.
– J is an unconditional

• ALUoutput<= A

7

Computer Science 146
David Brooks

Execution: ALU Ops

• Perform the computation
• Register-Register

– ALUoutput<= A op B

• Register-Immediate
– ALUoutput<= A op Imm

• No ops need to do effective address calc and
perform an operation on data

• Why?

Computer Science 146
David Brooks

Memory Access

• Take effective address, perform Load or Store
• Load

– LMD <= Mem[ALUoutput]

• Store
– Mem[ALUoutput] <= B

8

Computer Science 146
David Brooks

Mem Phase on Branches

• Set PC to the calculated effective address
• BEQZ, BNEZ

– If (cond) PC <= ALUoutput else PC <= NPC

Computer Science 146
David Brooks

Write-Back

• Send results back to register file
• Register-register ALU instructions

– Regs[IR15..11] <= ALUoutput

• Register-Immediate ALU instruction
– Regs[IR20..16] <= ALUoutput

• Load Instruction
– Regs[IR20..16] <= LMD

• Why does this have to be a separate step?

9

Computer Science 146
David Brooks

Final Implementation

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write�
register
Write�
data

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

Sign�
extend

ALU�
result

Zero

Data�
memory

Address Read�
data M�

u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

Instruction [15– 11]

ALU�
control

Shift�
left 2

PCSrc

ALU

Add ALU�
result

Computer Science 146
David Brooks

What is Pipelining?

• Implementation where multiple instructions are
simultaneously overlapped in execution
– Instruction processing has N different stages
– Overlap different instructions working on different

stages
• Pipelining is not new

– Ford’s Model-T assembly line
– Laundry – Washer/Dryer
– IBM Stretch [1962]
– Since the ’70s nearly all computers have been pipelined

10

Computer Science 146
David Brooks

Pipelining Advantages

• Unpipelined

• Pipelined

time
Instrs latency

latency
1/throughput

1/throughput

Computer Science 146
David Brooks

Ideal Pipelining Performance
• Assume instruction execution takes N stages

– Each stage takes tn time
– Single Instruction latency, T = Σ tn

– Throughput = 1/T
– M-Instruction Latency = M/T

• For an N-stage pipeline
– Single Instruction latency, T = Σ tn

– Throughput = 1/max(tn) <= T/N (unless all tn are equal)
– M-instruction Latency = M * max(tn) <= M*T/N

• CPIIdeal = CPI withoutpipeline
Pipeline Depth

11

Computer Science 146
David Brooks

Why is this not the case?

• Two things we are
missing
– Pipelining overhead

(latches, clock skew,
jitter)

• This eats into the
maximum speedup

– Hazards

• CPIReal =
CPIIdeal+CPIStall

IBM POWER4 Clock Skew Measurement

Computer Science 146
David Brooks

How are clocks distributed?
POWER4 Clock Distribution Net

12

Computer Science 146
David Brooks

Recall from Earlier…

Instruction�
memory

Address

4

32

0

Add Add�
result

Shift�
left 2

Instruction

M�
u�
x

0

1

Add

PC

0Write�
data

M�
u�
x

1
Registers

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

16
Sign�

extend

Write�
register

Write�
data

Read�
dataAddress

Data�
memory

1

ALU�
result

M�
u�
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/�
register file read

EX: Execute/�
address calculation

MEM: Memory access WB: Write back

Computer Science 146
David Brooks

Now the pipelined version

Instruction�
memory

Address

4

32

0

Add Add�
result

Shift�
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M�
u�
x

0

1

Add

PC

0

Address

Write�
data

M�
u�
x

1
Registers

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

16
Sign�

extend

Write�
register

Write�
data

Read�
data

Data�
memory

1

ALU�
result

M�
u�
x

ALU
Zero

ID/EX

13

Computer Science 146
David Brooks

Representation of Pipelines

lw R10, 20(R1) IF ID EX MEM WB
Sub R11, R2, R3 IF ID EX MEM WB

IM Reg DM Reg

IM Reg DM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $10, 20($1)

Program�
execution�
order�
(in instructions)

sub $11, $2, $3

ALU

ALU

Computer Science 146
David Brooks

Pipeline Hazards

• Hazards
– Situations that prevent the next instruction from executing

in its designated clock cycle
• Structural Hazards

– When two different instructions want to use the same
hardware resource in the same cycle (resource conflict)

• Data Hazards
– When an instruction depends on the result of a previous

instruction that exposes overlapping of instructions
• Control Hazards

– Pipelining of PC-modifying instructions (branch, jump, etc)

14

Computer Science 146
David Brooks

How to resolve hazards?

• Simple Solution: Stall the pipeline
– Stops some instructions from executing
– Make them wait for older instructions to complete
– Simple implementation to “freeze” (de-assert write-

enable signals on pipeline latches)
– Inserts a “bubble” into the pipe
– Must propagate upstream as well! Why?

Computer Science 146
David Brooks

Structural Hazards

• Two cases when this can occur
– Resource used more than once in a cycle (Memory, ALU)
– Resource is not fully pipelined (FP Unit)

• Imagine that our pipeline shares I- and D-memory

MEM

WB

WBEXIDIFadd R13, R6, R7

MEMEXIDIFadd R12, R4, R5

WBMEMEXIDIFsub R11, R2, R3
WBMEMEXIDIFlw R10, 10(R1)

15

Computer Science 146
David Brooks

Structural Hazards
Solutions

• Stall
– Low Cost, Simple (+)
– Increases CPI (-)
– Try to use for rare events in high-performance CPUs

• Duplicate Resources
– Decreases CPI (+)
– Increases cost (area), possibly cycle time (-)
– Use for cheap resources, frequent cases

• Separate I-, D-caches, Separate ALU/PC adders, Reg File Ports

Computer Science 146
David Brooks

Structural Hazards
Solutions

• Pipeline Resources
– High performance (+)
– Control is simpler than duplication (+)
– Tough to pipeline some things (RAMs) (-)
– Use when frequency makes it worthwhile
– Ex. Fully pipelined FP add/multiplies critical for scientific

• Good news
– Structural hazards don’t occur as long as each instruction uses a resource

• At most once
• Always in the same pipeline stage
• For one cycle

– RISC ISAs are designed with this in mind, reduces structural hazards

16

Computer Science 146
David Brooks

Pipeline Stalls

• What could the performance impact of unified
instruction/data memory be?

Loads ~15% of instructions, Stores ~10%

Prob (Ifetch + Dfetch) = .25
CPIReal = CPIIdeal+CPIStall= 1.0 + .25 = 1.25

Computer Science 146
David Brooks

Data Hazards

• Two operands from different instructions use the
same storage location

• Must appear as if instructions are executed to
completion one at a time

• Three types of Data Hazards
– Read-After-Write (RAW)

• True data-dependence (Most important)

– Write-After-Read (WAR)
– Write-After-Write (WAW)

17

Computer Science 146
David Brooks

RAW Example

• First Add writes to R3 in cycle 5
• Second Add reads R3 in cycle 3
• Third Add reads R3 in cycle 4

– We would compute the wrong answer because R3 holds
the “old” value

WBMEMEXIDIFAdd R6, R3, R5

WBMEMEXIDIFAdd R7, R3, R5

7

WB

6 8

MEMEXIDIFAdd R4, R3, R5

54321Cycle
WBMEMEXIDIFAdd R3, R2, R1

Computer Science 146
David Brooks

Solutions to RAW Hazards

• As usual, we have a couple of choices
• Stall whenever we have a RAW

– Huge performance penalty, dependencies are common!

• Use Bypass/Forwarding to minimize the problem
– Data is ready by end of EXE (Add) or MEM (Load)
– Basic idea:

• Add comparator for each combination of destination and
source registers that can have RAW hazards (How many?)

• Add muxes to datapath to select proper value instead of regfile

– Only stall when absolutely necessary

18

Computer Science 146
David Brooks

Solutions to RAW Hazards:
Pipeline Interlocks

• Two part problem: Detect the RAW, forward/stall
the pipe
– Need to keep register ID’s along with pipestages
– Use comparators to check for hazards

• Operand 2 bypass ADD R1, R2, R3
If (R3 == RD(MEM)) use ALUOUT(MEM)
else (if R3 == RD(WB)) use ALUOUT (WB)
else Use R3 from Register File

PC Instruction�
memory

Registers

M�
u�
x

M�
u�
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data�
memory

M�
u�
x

Forwarding�
unit

IF/ID

In
st

ru
ct

io
n

M�
u�
x

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

19

Computer Science 146
David Brooks

Forwarding, Bypassing

• Code is now “stall-free”
• Are there any cases where we must stall?

WBMEMEXIDIFAdd R6, R3, R5

WBMEMEXIDIFAdd R7, R3, R5

7

WB

6 8

MEMEXIDIFAdd R4, R3, R5

54321Cycle
WBMEMEXIDIFAdd R3, R2, R1

Computer Science 146
David Brooks

Load Use Hazards

• Unfortunately, we can’t forward “backward in time”

WBMEMEXIDIFAdd R6, R3, R5

7

WB

6 8

MEMEXIDIFAdd R4, R3, R5

54321Cycle
WBMEMEXIDIFlw R3, 10(R1)

WBMEMEXIDstallIFAdd R6, R3, R5

WB

7

MEM

6 8

EXstallIDIFAdd R4, R3, R5

54321Cycle
WBMEMEXIDIFlw R3, 10(R1)

20

Computer Science 146
David Brooks

Load Use Hazards
• Can the compiler help out?

– Scheduling to avoid load followed by immediate use
• “Delayed Loads”

– Define the pipeline slot after a load to be a “delay slot”
– NO interlock hardware. Machine assumes the correct

compiler
• Compiler attempts to schedule code to fill delay slots
• Limits to this approach:

– Only can reorder between branches (5-6 instructions)
– Order of loads/stores difficult to swap (alias problems)
– Makes part of implementation architecturally visible

Computer Science 146
David Brooks

Instruction Scheduling Example

a = b +c;
d = e – f;
No Scheduling Version Scheduled Version
LW Rb, b LW Rb, b
LW Rc, c LW Rc, c
ADD Ra, Rb, Rc LW Re, e
SW a, Ra ADD Ra, Rb, Rc
LW Re, e LW Rf, f
LW Rf, f SW a, Ra
SUB Rd, Re, Rf SUB Rd, Re, Rf
SW d, Rd SW d, Rd

How many cycles for each?

21

Computer Science 146
David Brooks

Other Data Hazards: WARs

• Write-After-Read (WAR) Hazards
– Can’t happen in our simple 5-stage pipeline because writes

always follow reads
– Preview: Late read, early write (auto-increment)

• i DIV (R1), --, --
• i+1 ADD --, R1+, --

– Preview: Out-of-Order reads (OOO-execution)

Computer Science 146
David Brooks

Other Data Hazards: WAWs

• Write-After-Write (WAW) Hazards
– Can’t happen in our simple 5-stage pipeline because only one

writeback stage (ALU ops go through MEM stage)
– Preview: Slow operation followed by fast operation

• i DIVF F0, --, --
• i+1 BFPT --, --, --
• i+2 ADDF F0, --, --

– Also cache misses (they can return at odd times)

• What about RARs?

22

Computer Science 146
David Brooks

Control Hazards

• In base pipeline, branch outcome not known until MEM
• Simple solution – stall until outcome is known
• Length of control hazard is branch delay

– In this simple case, it is 3 cycles (assume 10% cond. branches)
– CPIReal = CPIIdeal+CPIStall= 1.0 + 3 cycles * .1 = 1.3

EXIDIFstallstallstallInstr +2

EX

7

ID

6

MEM

8

IFstallstallIFInstr +1

54321Cycle
WBMEMEXIDIFBranch Instr.

Computer Science 146
David Brooks

Control Hazards: Solutions
Fast Branch Resolution

• Performance penalty could be more than 30%
– Deeper pipelines, some code is very branch heavy

• Fast Branch Resolution
– Adder in ID for PC + immediate targets
– Only works for simple conditions (compare to 0)
– Comparing two register values could be too slow

WBMEMEXIDIFstallInstr +2

WB

7

MEM

6 8

EXIDIFstallInstr +1

54321Cycle
WBMEMEXIDIFBranch Instr.

23

Computer Science 146
David Brooks

Control Hazards:
Branch Characteristics

• Integer Benchmarks: 14-16% instructions are
conditional branches

• FP: 3-12%
• On Average:

– 67% of conditional branches are “taken”
– 60% of forward branches are taken
– 85% of backward branches are taken
– Why?

Computer Science 146
David Brooks

Control Hazards: Solutions

1. Stall Pipeline
• Simple, No backing up, No Problems with Exceptions

2. Assume not taken
• Speculation requires back-out logic:

• What about exceptions, auto-increment, etc
• Bets the “wrong way”

3. Assume taken
• Doesn’t help in simple pipeline! (don’t know target)

4. Delay Branches
• Can help a bit… we’ll see pro’s and con’s soon

24

Computer Science 146
David Brooks

Control Hazards:
Assume Not Taken

WBMEMEXIDIFInstr +2

7

WB

6 8

MEMEXIDIFInstr +1

54321Cycle
WBMEMEXIDIFUntaken Branch

Looks good if we’re right!

WBMEMEXIDIFBranch Target

WBMEMEXIDIFBranch Target +1

7

flush

6 8

flushflushflushIFInstr +1

54321Cycle
WBMEMEXIDIFTaken Branch

Computer Science 146
David Brooks

Control Hazards:
Branch Delay Slots

• Find one instruction that will be executed no matter which
way the branch goes

• Now we don’t care which way the branch goes!
– Harder than it sounds to find instructions

• What to put in the slot (80% of the time)
– Instruction from before the branch (indep. of branch)
– Instruction from taken or not-taken path

• Always safe to execute? May need clean-up code (or nullifying
branches)

• Helps if you go the right way

• Slots don’t help much with today’s machines
– Interrupts are more difficult (why? We’ll see soon)

25

Computer Science 146
David Brooks

Now for the hard stuff!

• Precise Interrupts
– What are interrupts?
– Why do they have to be precise?

• Must have well-defined state at interrupt
– All older instructions are complete
– All younger instructions have not started
– All interrupts are taken in program order

Computer Science 146
David Brooks

Interrupt Taxonomy

• Synchronous vs. Asychronous (HW error, I/O)

• User Request (exception?) vs. Coerced
• User maskable vs. Nonmaskable (Ignorable)
• Within vs. Between Instructions
• Resume vs. Terminate
The difficult exceptions are resumable interrupts

within instructions
• Save the state, correct the cause, restore the state,

continue execution

26

Computer Science 146
David Brooks

Interrupt Taxonomy

TerminateWithinNonmaskCoercedAsyncHardware/Power Failure

TerminateWithinNonmaskCoercedSyncUsing Undefined Insns

ResumeWithinNonmaskCoercedSyncMem. Protection Violation

ResumeWithinMaskableCoercedSyncMisaligned Memory

ResumeWithinNonmaskCoercedSyncPage Fault (not in main m)

ResumeWithinMaskableCoercedSyncArithmetic Overflow

ResumeBetweenMaskableUserSyncBreakpoint

ResumeBetweenMaskableUserSyncTracing Instructions

ResumeBetweenNonmaskUserSyncInvoke O/S

ResumeBetweenNonmaskCoercedAsyncI/O Device Req.

Resume vs.
terminate

Within vs.
Between Insn

User mask vs.
nommask

User Request
Vs. Coerced

Sync vs.
Async

Exception Type

Computer Science 146
David Brooks

Interrupts on Instruction Phases

• Exceptions can occur on many different phases
• However, exceptions are only handled in WB
• Why?
load IF ID EX MEM WB
add IF ID EX MEM WB

XXMem. Protection Violation

XXMisaligned Memory

XXPage Fault (not in main memory)

XArithmetic Overflow

WBMEMEXEIDIFException Type

27

Computer Science 146
David Brooks

How to take an exception?

1. Force a trap instruction on the next IF
2. Squash younger instructions (Turn off all writes

(register/memory) for faulting instruction and all
instructions that follow it)

3. Save all processor state after trap begins
• PC-chain, PSW, Condition Codes, trap condition
• PC-chain is length of the branch delay plus 1

4. Perform the trap/exception code then restart
where we left off

Computer Science 146
David Brooks

Summary of Exceptions

• Precise interrupts are a headache!
• All architected state must be precise
• Delayed branches
• Preview: Out-of-Order completion

– What if something writes-back earlier than the exception?

• Some machines punt on the problem
– Precise exceptions only for integer pipe
– Special “precise mode” used for debugging (10x slower)

28

Computer Science 146
David Brooks

For next time

• Multi-cycle operations
– More WAR, WAW nastiness
– More precise interrupt nastiness

• SuperScalar/Dynamic Scheduling

