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Lecture Outline

• Tomasulo’s Algorithm Review (3.1-3.3)
• Pointer-Based Renaming (MIPS R10000)
• Dynamic Branch Prediction (3.4)

– Yeh + Patt Paper

• Other Front-end Optimizations (3.5)
– Branch Target Buffers/Return Address Stack
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Tomasulo Review

• Reservation Stations
– Distribute RAW hazard detection
– Renaming eliminates WAW hazards
– Buffering values in Reservation Stations removes WARs
– Tag match in CDB requires many associative compares

• Common Data Bus
– Achilles heal of Tomasulo
– Multiple writebacks (multiple CDBs) expensive

• Load/Store reordering
– Load address compared with store address in store buffer
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Tomasulo Organization
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Tomasulo Review
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Register Renaming: Pointer-Based

• MIPS R10K, Alpha 21264, Pentium 4, POWER4
• Mapper/Map Table: Hardware to hold these 

mappings
– Register Writes: Allocate new location, note mapping in 

table
– Register Reads: Look in map table, find location of most 

recent write
• Deallocate mappings when done
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Register Renaming: Example
– Mapper/Map Table: Hardware to hold these mappings

• Register Writes: Allocate new location, note mapping in table
• Register Reads: Look in map table, find location of most recent write

– Deallocate mappings when done
• Assume

– 4 Architected/Logical Registers (F1,F2,F3,F4) “names”
– 8 Physical/Rename Registers (P1—P8) “locations”

• Code – Lots of Potential WAR/WAW, also RAWs
ADD R1, R2, R4
SUB R4, R1, R2
ADD R3, R1, R3
ADD R1, R3, R2
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Register Renaming: Example

ADD R1, R2, R4
SUB R4, R1, R2
ADD R3, R1, R3
ADD R1, R3, R2

ADD P5, P2, P4
SUB P6, P5, P2
ADD P7, P5, P3
ADD P8, P7, P2

P4P3P2P5

Map Table

P6P7P2P8

P6P7P2P5

P6P3P2P5

P4P3P2P1

R4R3R2R1Initial Mapping
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Control Hazards

• Key to performance in current microprocessors
• Almost every design decision changes if we 

assume “perfect” rather than realistic branch 
prediction
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Strategies to reduce control hazards

• Compiler techniques reduce branch frequency
• Hardwired strategies for responding to branches –

“assume not taken”
• Delayed branches
• Nullifying branches
• Compiler hints to suggest likely outcomes
• Dynamic hardware branch prediction
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Compiler techniques to reduce 
branch frequency

• Loop unrolling
– Will discuss in detail in Chapter 4

• Constant propagation
N=0;
…
A=b*N; A=0;
…
If(A==0) {
}

• Procedure inlining/cloning
foo(int i) {
return(2*i);

}
a=foo(b);
Inlining => a=2*b;
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Branch prediction methods

• When is information about branches 
gathered/applied?
– When the machine is designed
– When the program is compiled (“compile-time”) (ch.4)
– When a “training run” of the program is executed 

(“profile-based”)
– As the program is executing (“dynamic”)
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Why predict? Speculative Execution

• Execute beyond branch boundaries before the 
branch is resolved

• Correct Speculation
– Avoid stall, result is computed early, performance++

• Incorrect Speculation
– Abort/squash incorrect instructions, complexity+
– Undo any incorrect state changes, complexity++

• Performance gain is weighed vs. penalty
• Speculation accuracy = branch prediction accuracy
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Dynamic Hardware Branch 
Prediction

• Branch behavior is monitored during program execution
– History data can influence prediction of future executions of 

the branch instruction

• Branches instruction execution has two tasks/predictions
– Condition evaluation (taken or not-taken)
– Target address calculation (where to go when taken)

• Target prediction also applies to unconditional branches
• Branch Direction Prediction: 3 levels of complexity

– Branch history tables, Two-level tables, hybrid predictors
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Branch Direction Prediction

• Basic idea: Hope that future behavior of the 
branch is correlated to past behavior
– Loops
– Error-checking conditionals

• For a single branch PC
– Simplest possible idea: Keep 1 bit around to indicate 

taken or not-taken
– 2nd simplest idea: Keep 2 bits around, saturating counter

Computer Science 146
David Brooks

Two-bit Saturating Counters

• 2-bit FSMs mean prediction must miss twice before change
• N-bit predictors are possible, but after 2-bits not much benefit

Predict  Not Taken

Predict Taken

Predict  Not Taken

Predict Taken
11 10

01 00
Taken

Taken

Taken

Taken

Not Taken

Not Taken

Not Taken

Not Taken

“strongly
taken”

“strongly
not taken”
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Example: Two-bit Vs. 1-bit 
Branch Prediction

• 2-bit “hysterisis” helps

Y

t

Y

T

N

~75%

~50%

% predict rate

YYY2-bit Mis-Predict?

TTTtTTTtTTn2-bit Prediction

YYYYY1-bit Mis-Predict?

TTNTTTNTTTN1-bit Prediction

TTTNTTTNTTTBranch Outcome 
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Branch Prediction Buffer
(branch history table, BHT)

• Small memory indexed with low bits of the 
branch instruction’s address
– Why the low bits?

• Implementation
– Separate memory accessed during IF phase
– 2-bits attached to each block in the Instruction 

Cache
• Caveats: Cannot separately size I-Cache and BHT
• What about multiple branches in a cache line?

– Does this help our simple 5-stage pipeline?

PC
12-bits

212 = 4K Entries

Taken or
Not-taken?
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Correlating Predictors

• 2-bit scheme only looks at branch’s own history to 
predict its behavior

• What if we use other branches to predict it as well?

if (aa==2)aa=0;
if (bb==2)bb=0;
if (aa!=bb){..}

• Clearly branch #3 depends on outcome of #1 and #2
• Prediction must be a function of own branch as well as 

recent outcomes of other branches

// Branch #1
// Branch #2
// Branch #3
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Two-level Adaptive Branch 
Prediction (Correlating Predictor)

• Two-level BP requires to main 
components
– Branch history register (BHR):  

recent outcomes of branches (last 
k branches encountered)

– Pattern History Table (PHT): 
branch behavior for last s
occurrences of the specific pattern 
of these k branches

– In effect, we concatenate BHR 
with Branch PC bits

• Can also XOR (GSHARE), etc

PC
12-bits

212 = 4K Entries each (PHTs)

Taken or
Not-taken?

2-bit BHR0 0
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Branch History Register

• Simple shift register
– Shift in branch outcomes as they occur
– 1 => branch was taken
– 0 => branch was not-taken
– k-bit BHR => 2k patterns
– Use these patterns to address into the Pattern History Table
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Pattern History Table

• Has 2k entries
• Usually uses a 2-bit counter for the prediction
• Each entry summarizes branch results for the last s

times that BHR pattern was seen
– Not a shift register, usually an FSM

• BHR is used to address the PHT
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Variations on 2-Level BP

• See Yeh + Patt for details
• Variations depend on

– How many branches share a BHR
– How many branches share a PHT

• 3 possibilities for each: global, per-address, per-set
• 9 total!

– GAg, GAs, GAp
– PAg, PAs, PAp
– SAg, SAs, SAp
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2-level Branch History

• Global history -- 1 Branch History Register (BHR)
• Per-address/set history

– Per-Address/set Branch History Table holds many BHRs

k-bits
k-bits

k-bits
k-bits

k-bits

k-bits

PC

Taken or
Not-taken?

K-bits
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Hardware Costs of 2-level 
predictions

• (m,n) predictor m-bits of global history, n-bit 
predictor

• 2m*n*Number of prediction entries
• Say you have m-bits of history (m=2)
• n-bits of predictor per entries (n=2)

(2,2) predictor with 1K prediction entries
22*2*1024 = 8K-bits
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Variations on the basics --
GSHARE

• Gshare a variant on GAg
• Don’t use BHR directly to address PHT
• Instead, XOR bits of BHR with bits of 

PC (branch address) and use that to 
index PHT

• Tries to separate out the 
behaviors/predictions associated with 
different branches, without extra 
hardware of PA and SA schemes

PC
12-bits

BHR

XOR
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Hybrid Branch Predictors

• Tournament predictors: Adaptively combine local 
and global predictors

• Different schemes work better for different branches

Local
Predictor

Global
Predictor

Chooser
Predictor

Taken or
Not-taken?

Could be 
G-share

Could be 
2-bit BHT
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Branch Predictor Performance
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Branch Target Prediction

• So far we have only talked about predicting 
direction

• We still need to predict the address
– Branch Target Buffer (BTB)

• Useful for conditional/unconditional branches

– Return Address Stack (RAS)
• Useful for procedure returns
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Branch Target Buffer
• Simple pipeline resolves stages in ID

– We’d really like to know by the end of IF so we can proceed 
without a bubble

• Idea:
– As part of IF use the instruction address (every instruction) to do a 

lookup in the BTB
– For N recently executed branches, hold the predicted PC value 

(may also hold additional prediction bits)
– If instruction is not a branch, don’t add to BTB
– If BTB fails revert to earlier method

• Either instruction is not a branch
• Or, there is no predictor entry for that branch

– Many more bits per entry than BHT
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Branch Target Buffer
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Branch Target Cache

• Similar to BTB, but we also want to know the 
target instruction!
– Prediction returns not just the direction address, but 

also the instruction stored there
– Allows zero-cycle branches (branch-folding)

• Send target-instruction to ID rather than branch
• Branch is not sent into pipe
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Return Address Stack

• Included in many recent processors
– Alpha 21264 => 12 entry RAS

• Procedure returns account for ~85% of indirect jumps
• Like a hardware stack, LIFO

– Procedure Call => Push Return PC onto stack
– Procedure Return => Prediction off of top of stack, Pop it

• RAS tends to work quite well since call depths are 
typically not large

• Problem: Speculative state! More next time
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For next time
• Multiple Issue Machines
• Hardware Speculation

– Performance and Precise Interrupts


