
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Fall 2019
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 7: Dynamic Branch Prediction

Computer Science 146
David Brooks

Lecture Outline

• Tomasulo’s Algorithm Review (3.1-3.3)
• Pointer-Based Renaming (MIPS R10000)
• Dynamic Branch Prediction (3.4)

– Yeh + Patt Paper

• Other Front-end Optimizations (3.5)
– Branch Target Buffers/Return Address Stack

2

Computer Science 146
David Brooks

Tomasulo Review

• Reservation Stations
– Distribute RAW hazard detection
– Renaming eliminates WAW hazards
– Buffering values in Reservation Stations removes WARs
– Tag match in CDB requires many associative compares

• Common Data Bus
– Achilles heal of Tomasulo
– Multiple writebacks (multiple CDBs) expensive

• Load/Store reordering
– Load address compared with store address in store buffer

Computer Science 146
David Brooks

Tomasulo Organization

FP addersFP adders

Add1
Add2
Add3

FP multipliersFP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

3

Computer Science 146
David Brooks

Tomasulo Review

M4

Iss

Ex

Iss

Wb

15

M3

Iss

Ex

Iss

Ex

14

M2

Iss

Ex

Iss

Ex

13

M1

Wb

Iss

Ex

Iss

Ex

12

Iss

Ex

Wb

Iss

Iss

Wb

Iss

Ex

11

Iss

Iss

M7

M2

M3

18

Iss

Iss

M8

M3

Wb

19

IssIssSD 0(R1), F0

WbM1IssIssIssIssSD 0(R1), F0
ExIssSUBI R1, R1, 8
IssBNEZ R1, Loop

WbM6M5LD F0, 0(R1)

WbExIssSUBI R1, R1, 8
WbExIssBNEZ R1, Loop

IssIssIssMUL F4, F0, F2

WbIssIssIssIssMUL F4, F0, F2

MIssIssIssIssLD F0, 0(R1)

M2M1IssIssIssIssIssIssIssIssSD 0(R1), F0

IssIssIssIssIssIssIssIssIssMUL F4, F0, F2

WbM8M7M6M5M4M3M2M1IssLD F0, 0(R1)

20171610987654321

Computer Science 146
David Brooks

Register Renaming: Pointer-Based

• MIPS R10K, Alpha 21264, Pentium 4, POWER4
• Mapper/Map Table: Hardware to hold these

mappings
– Register Writes: Allocate new location, note mapping in

table
– Register Reads: Look in map table, find location of most

recent write
• Deallocate mappings when done

4

Computer Science 146
David Brooks

Register Renaming: Example
– Mapper/Map Table: Hardware to hold these mappings

• Register Writes: Allocate new location, note mapping in table
• Register Reads: Look in map table, find location of most recent write

– Deallocate mappings when done
• Assume

– 4 Architected/Logical Registers (F1,F2,F3,F4) “names”
– 8 Physical/Rename Registers (P1—P8) “locations”

• Code – Lots of Potential WAR/WAW, also RAWs
ADD R1, R2, R4
SUB R4, R1, R2
ADD R3, R1, R3
ADD R1, R3, R2

Computer Science 146
David Brooks

Register Renaming: Example

ADD R1, R2, R4
SUB R4, R1, R2
ADD R3, R1, R3
ADD R1, R3, R2

ADD P5, P2, P4
SUB P6, P5, P2
ADD P7, P5, P3
ADD P8, P7, P2

P4P3P2P5

Map Table

P6P7P2P8

P6P7P2P5

P6P3P2P5

P4P3P2P1

R4R3R2R1Initial Mapping

5

Computer Science 146
David Brooks

Control Hazards

• Key to performance in current microprocessors
• Almost every design decision changes if we

assume “perfect” rather than realistic branch
prediction

Computer Science 146
David Brooks

Strategies to reduce control hazards

• Compiler techniques reduce branch frequency
• Hardwired strategies for responding to branches –

“assume not taken”
• Delayed branches
• Nullifying branches
• Compiler hints to suggest likely outcomes
• Dynamic hardware branch prediction

6

Computer Science 146
David Brooks

Compiler techniques to reduce
branch frequency

• Loop unrolling
– Will discuss in detail in Chapter 4

• Constant propagation
N=0;
…
A=b*N; A=0;
…
If(A==0) {
}

• Procedure inlining/cloning
foo(int i) {
return(2*i);

}
a=foo(b);
Inlining => a=2*b;

Computer Science 146
David Brooks

Branch prediction methods

• When is information about branches
gathered/applied?
– When the machine is designed
– When the program is compiled (“compile-time”) (ch.4)
– When a “training run” of the program is executed

(“profile-based”)
– As the program is executing (“dynamic”)

7

Computer Science 146
David Brooks

Why predict? Speculative Execution

• Execute beyond branch boundaries before the
branch is resolved

• Correct Speculation
– Avoid stall, result is computed early, performance++

• Incorrect Speculation
– Abort/squash incorrect instructions, complexity+
– Undo any incorrect state changes, complexity++

• Performance gain is weighed vs. penalty
• Speculation accuracy = branch prediction accuracy

Computer Science 146
David Brooks

Dynamic Hardware Branch
Prediction

• Branch behavior is monitored during program execution
– History data can influence prediction of future executions of

the branch instruction

• Branches instruction execution has two tasks/predictions
– Condition evaluation (taken or not-taken)
– Target address calculation (where to go when taken)

• Target prediction also applies to unconditional branches
• Branch Direction Prediction: 3 levels of complexity

– Branch history tables, Two-level tables, hybrid predictors

8

Computer Science 146
David Brooks

Branch Direction Prediction

• Basic idea: Hope that future behavior of the
branch is correlated to past behavior
– Loops
– Error-checking conditionals

• For a single branch PC
– Simplest possible idea: Keep 1 bit around to indicate

taken or not-taken
– 2nd simplest idea: Keep 2 bits around, saturating counter

Computer Science 146
David Brooks

Two-bit Saturating Counters

• 2-bit FSMs mean prediction must miss twice before change
• N-bit predictors are possible, but after 2-bits not much benefit

Predict Not Taken

Predict Taken

Predict Not Taken

Predict Taken
11 10

01 00
Taken

Taken

Taken

Taken

Not Taken

Not Taken

Not Taken

Not Taken

“strongly
taken”

“strongly
not taken”

9

Computer Science 146
David Brooks

Example: Two-bit Vs. 1-bit
Branch Prediction

• 2-bit “hysterisis” helps

Y

t

Y

T

N

~75%

~50%

% predict rate

YYY2-bit Mis-Predict?

TTTtTTTtTTn2-bit Prediction

YYYYY1-bit Mis-Predict?

TTNTTTNTTTN1-bit Prediction

TTTNTTTNTTTBranch Outcome

Computer Science 146
David Brooks

Branch Prediction Buffer
(branch history table, BHT)

• Small memory indexed with low bits of the
branch instruction’s address
– Why the low bits?

• Implementation
– Separate memory accessed during IF phase
– 2-bits attached to each block in the Instruction

Cache
• Caveats: Cannot separately size I-Cache and BHT
• What about multiple branches in a cache line?

– Does this help our simple 5-stage pipeline?

PC
12-bits

212 = 4K Entries

Taken or
Not-taken?

10

Computer Science 146
David Brooks

Correlating Predictors

• 2-bit scheme only looks at branch’s own history to
predict its behavior

• What if we use other branches to predict it as well?

if (aa==2)aa=0;
if (bb==2)bb=0;
if (aa!=bb){..}

• Clearly branch #3 depends on outcome of #1 and #2
• Prediction must be a function of own branch as well as

recent outcomes of other branches

// Branch #1
// Branch #2
// Branch #3

Computer Science 146
David Brooks

Two-level Adaptive Branch
Prediction (Correlating Predictor)

• Two-level BP requires to main
components
– Branch history register (BHR):

recent outcomes of branches (last
k branches encountered)

– Pattern History Table (PHT):
branch behavior for last s
occurrences of the specific pattern
of these k branches

– In effect, we concatenate BHR
with Branch PC bits

• Can also XOR (GSHARE), etc

PC
12-bits

212 = 4K Entries each (PHTs)

Taken or
Not-taken?

2-bit BHR0 0

11

Computer Science 146
David Brooks

Branch History Register

• Simple shift register
– Shift in branch outcomes as they occur
– 1 => branch was taken
– 0 => branch was not-taken
– k-bit BHR => 2k patterns
– Use these patterns to address into the Pattern History Table

Computer Science 146
David Brooks

Pattern History Table

• Has 2k entries
• Usually uses a 2-bit counter for the prediction
• Each entry summarizes branch results for the last s

times that BHR pattern was seen
– Not a shift register, usually an FSM

• BHR is used to address the PHT

12

Computer Science 146
David Brooks

Variations on 2-Level BP

• See Yeh + Patt for details
• Variations depend on

– How many branches share a BHR
– How many branches share a PHT

• 3 possibilities for each: global, per-address, per-set
• 9 total!

– GAg, GAs, GAp
– PAg, PAs, PAp
– SAg, SAs, SAp

Computer Science 146
David Brooks

2-level Branch History

• Global history -- 1 Branch History Register (BHR)
• Per-address/set history

– Per-Address/set Branch History Table holds many BHRs

k-bits
k-bits

k-bits
k-bits

k-bits

k-bits

PC

Taken or
Not-taken?

K-bits

13

Computer Science 146
David Brooks

Hardware Costs of 2-level
predictions

• (m,n) predictor m-bits of global history, n-bit
predictor

• 2m*n*Number of prediction entries
• Say you have m-bits of history (m=2)
• n-bits of predictor per entries (n=2)

(2,2) predictor with 1K prediction entries
22*2*1024 = 8K-bits

Computer Science 146
David Brooks

Variations on the basics --
GSHARE

• Gshare a variant on GAg
• Don’t use BHR directly to address PHT
• Instead, XOR bits of BHR with bits of

PC (branch address) and use that to
index PHT

• Tries to separate out the
behaviors/predictions associated with
different branches, without extra
hardware of PA and SA schemes

PC
12-bits

BHR

XOR

14

Computer Science 146
David Brooks

Hybrid Branch Predictors

• Tournament predictors: Adaptively combine local
and global predictors

• Different schemes work better for different branches

Local
Predictor

Global
Predictor

Chooser
Predictor

Taken or
Not-taken?

Could be
G-share

Could be
2-bit BHT

Computer Science 146
David Brooks

Branch Predictor Performance

15

Computer Science 146
David Brooks

Branch Target Prediction

• So far we have only talked about predicting
direction

• We still need to predict the address
– Branch Target Buffer (BTB)

• Useful for conditional/unconditional branches

– Return Address Stack (RAS)
• Useful for procedure returns

Computer Science 146
David Brooks

Branch Target Buffer
• Simple pipeline resolves stages in ID

– We’d really like to know by the end of IF so we can proceed
without a bubble

• Idea:
– As part of IF use the instruction address (every instruction) to do a

lookup in the BTB
– For N recently executed branches, hold the predicted PC value

(may also hold additional prediction bits)
– If instruction is not a branch, don’t add to BTB
– If BTB fails revert to earlier method

• Either instruction is not a branch
• Or, there is no predictor entry for that branch

– Many more bits per entry than BHT

16

Computer Science 146
David Brooks

Branch Target Buffer

Computer Science 146
David Brooks

Branch Target Cache

• Similar to BTB, but we also want to know the
target instruction!
– Prediction returns not just the direction address, but

also the instruction stored there
– Allows zero-cycle branches (branch-folding)

• Send target-instruction to ID rather than branch
• Branch is not sent into pipe

17

Computer Science 146
David Brooks

Return Address Stack

• Included in many recent processors
– Alpha 21264 => 12 entry RAS

• Procedure returns account for ~85% of indirect jumps
• Like a hardware stack, LIFO

– Procedure Call => Push Return PC onto stack
– Procedure Return => Prediction off of top of stack, Pop it

• RAS tends to work quite well since call depths are
typically not large

• Problem: Speculative state! More next time

Computer Science 146
David Brooks

For next time
• Multiple Issue Machines
• Hardware Speculation

– Performance and Precise Interrupts

