
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Fall 2019
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 9: Limits of ILP, Case Studies

Lecture Outline
• Speculative Execution

– “Implementing Precise Interrupts in Pipelined Processors” – J.E. Smith
and A. Pleszkun (Trans. Computers ’88)

– “Instruction Issue Logic for High-Performance Interruptable Pipelined
Processors” – G. Sohi and S. Vajapeyam (ISCA ’87)

– Tomasulo with ROB example
– Pointer Based Methods

• SuperScalar/ILP Limits
– “Limits of ILP,” – D. Wall (ASPLOS’91)
– “Complexity Effective Superscalar Design,” – S. Palacharla, N. Jouppi, J.E.

Smith (ISCA’97)

• Case Studies
– Pentium III
– Pentium 4

• “Trace Cache: A Low Latency Approach to High Bandwidth Instruction
Fetching,” E. Rotenberg, S. Bennett, J.E. Smith (MICRO ’96)

2

0 Add1 No Reservation
0 Add2 No Stations
0 Add3 No
0 Mult1 No MULT Mem[0+Regs[R1]] Regs[F2] #2
0 Mult2 No MULT Mem[0+Regs[R1]] Regs[F2] #7

Busy Address
Entry Busy Instruction State Destination Value Load1 No

1 No LD F0, 0(R1) commit F0 Mem[0+R1] Load2 No
2 No MULT F4, F0, F2 commit F4 F0 x F2 Load3
3 Yes SD 0(R1), F4 write 0+Reg[R1] #2
4 Yes SUBI R1, R1, 8 write R1 R1 - 8
5 Yes BNEZ R1, Loop write
6 Yes LD F0, 0(R1) write F0 Mem[#4] Reorder Buffer
7 Yes MULT F4, F0, F2 write F4 #6 X F2
8 Yes SD 0(R1), F4 write 0+Regs[R1] #7
9 Yes SUBI R1, R1, 8 write R1 #4 - 8

10 Yes BNEZ R1, Loop write
F0 F2 F4 F6 F8 F10 F12 ... F30

Reorder # 6 7
Busy yes no yes no no no no no

Example of Speculative State of Reorder Buffer

First
loop

Second
loop

Multiply has just reached commit, so other instructions can start committing

Computer Science 146
David Brooks

Tomasulo + ROB Summary

• Many implementations are very similar
– Pentium III, PowerPC, etc

• Some limitations
– Too many value copy operations

• Register file => RS => ROB => Register File

– Too many muxes/busses (CDB)
• Values are coming from everywhere to everywhere else!

– Reservation Stations mix values(data) and tags(control)
• Slows down the max clock frequency

3

Computer Science 146
David Brooks

Alternative to ROB

• Separate control (ROB/RS) from data (RegFile)
• Store all data in physical register file

Computer Science 146
David Brooks

MIPS R10K Register Renaming

• Architectural Register file is removed
• Physical Register file holds all values

– #Physical Register = #Architectural Registers + #ROB entries
– Map architectural registers to physical registers
– Removes WAW, WAR hazards

• Physical registers replace RS

• Register Status Table replaced by Register Map Table
– But all registers must be mapped somewhere!

• Free List tracks unallocated registers
– ROB returns physical registers to free list

4

Computer Science 146
David Brooks

MIPS R10K: Register Map Table

ADD R1, R2, R4
SUB R4, R1, R2
ADD R3, R1, R3
ADD R1, R3, R2

ADD P5, P2, P4
SUB P6, P5, P2
ADD P7, P5, P3
ADD P8, P7, P2

P4P3P2P5

Map Table

P6P7P2P8

P6P7P2P5

P6P3P2P5

P4P3P2P1

R4R3R2R1Initial Mapping

Computer Science 146
David Brooks

MIPS R10K:
How to free registers?

• Old Method (Tomasulo + Reorder Buffer)
– Don’t free speculative storage explicitly
– At Retire:

• Copy value from ROB to register file, free ROB entry

• MIPS R10K
– Can’t free physical register when instructions retire

• There is no architectural register to copy to

– Free physical register previously mapped to same
logical register

– All instructions that will read it have retired already

5

Computer Science 146
David Brooks

MIPS R10K Precise State

• Physical registers are written at commit
– No architectural register file to update
– “Free” written registers and “restore” old ones

• Restore register map table to the way it was
• Choose to:

– Roll back ROB serially
– Restore from checkpoints

• Checkpoint Cache
• MIPS R10K can only speculate past 4 branches, 4 checkpoints

Computer Science 146
David Brooks

MIPS R10K vs. Pentium III

Complex CheckpointsSimple Reset StructuresPrecise State

Overwriting instruction
retires

Instruction CommitsReg. Free

On Writeback from FUOn Commit, from ROBReg. Write

On Execute, to FUOn Issue, Write into RSReg. Read

Physical Register FileArchitectural Register File,
ROB, Reservation Station

Value Storage

MIPS R10KPentium IIIFeature

6

Computer Science 146
David Brooks

Limits on ILP/SuperScalars:
Perfect Processor

• What limits?

Computer Science 146
David Brooks

Implementation Issues:
SuperScalar Width Implications

• Wide Fetch
– Must predict multiple branches (what if you have two

taken branches!)

• Wide Decode
– Ok for fixed width ISAs -- What about variable length?

• Wide Rename
– Complexity grows with N2

• Wide issue and bypass
– Many tag checks needed, muxes, datapaths

7

Computer Science 146
David Brooks

Implementation Issues:
Alpha 21264

• 6-way superscalar
processor (4-way
integer)

• Intercluster
communication:
– 1 Cycle Latency

Computer Science 146
David Brooks

Implementation Issues:
Reservation Station Design

• Logical Structure
– Unified

• Better Utilization, More Complex Logic (multiported)
• Pentium III – Unified RS Queue

– Distributed
• Worse utilization, Simpler logic
• MIPS R10K – Three RS Queues (Int, Mem, FP)

• Physical Implementation
– FIFO vs. RAM

8

Computer Science 146
David Brooks

Limits on ILP:
Instruction Window Size

Computer Science 146
David Brooks

Limits on ILP:
Realistic Branch Prediction

9

Computer Science 146
David Brooks

Limits on ILP:
Rename Registers

Computer Science 146
David Brooks

Limits on ILP:
Load/Store Disambiguation

• “Alias analysis” problem
– How do we analyze dependencies through memory?

• Compiler Solutions
– Examine Registers + base offsets to check for conflicts

• Hardware Solutions
– In-order load/stores (slow!)
– Loads in-order with other stores, but not loads
– Loads issue out of order, cleanup mis-speculations (complex)
– Predictors to choose from above policies

10

Computer Science 146
David Brooks

Limits on ILP:
Load/Store Disambiguation

Computer Science 146
David Brooks

Dynamic Scheduling in P6
(Pentium Pro, II, III)

• Q: How pipeline 1 to 17 byte 80x86 instructions?
• P6 doesn’t pipeline 80x86 instructions
• P6 decode unit translates the Intel instructions into 72-bit micro-
operations (~ MIPS)
• Sends micro-operations to reorder buffer & reservation stations
• Many instructions translate to 1 to 4 micro-operations
• Complex 80x86 instructions are executed by a conventional
microprogram (8K x 72 bits) that issues long sequences of micro-
operations
• 14 clocks in total pipeline (~ 3 state machines)

11

Computer Science 146
David Brooks

Dynamic Scheduling in P6
Parameter 80x86 microops

Max. instructions issued/clock 3 6
Max. instr. complete exec./clock 5
Max. instr. committed/clock 3
Window (Instrs in reorder buffer) 40
Number of reservations stations 20
Number of rename registers 40
No. integer functional units (FUs) 2
No. floating point FUs 1
No. SIMD Fl. Pt. FUs1
No. memory Fus 1 load + 1 store

Computer Science 146
David Brooks

P6 Pipeline
• 8 stages are used for in-order instruction fetch,

decode, and issue
– Takes 1 clock cycle to determine length of 80x86 instructions + 2 more

to create the micro-operations (uops)

• 3 stages are used for out-of-order execution in one of
5 separate functional units

• 3 stages are used for instruction commit

Instr
Fetch
16B
/clk

Instr
Decode
3 Instr

/clk

Renaming
3 uops
/clk

Execu-
tion
units
(5)

Gradu-
ation

3 uops
/clk

16B 6 uops
Reserv.
Station

Reorder
Buffer

12

Pentium III Overview

P6 Block Diagram

13

Pentium III Die Photo
• EBL/BBL - Bus logic, Front, Back
• MOB - Memory Order Buffer
• Packed FPU - MMX Fl. Pt. (SSE)
• IEU - Integer Execution Unit
• FAU - Fl. Pt. Arithmetic Unit
• MIU - Memory Interface Unit
• DCU - Data Cache Unit
• PMH - Page Miss Handler
• DTLB - Data TLB
• BAC - Branch Address Calculator
• RAT - Register Alias Table
• SIMD - Packed Fl. Pt.
• RS - Reservation Station
• BTB - Branch Target Buffer
• IFU - Instruction Fetch Unit (+I$)
• ID - Instruction Decode
• ROB - Reorder Buffer
• MS - Micro-instruction Sequencer

1st Pentium III, Katmai: 9.5 M transistors, 12.3 x 10.4
mm, 250 nm CMOS with 5 layers of Al

Pentium III Power Dissipation

Max: ~20W
Typical: ~15W

14

P6 Performance: Stalls at decode stage
I$ misses or lack of RS/Reorder buf. entry

0 0.5 1 1.5 2 2.5 3

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0.5 to 2.5 Stall cycles per instruction: 0.98 avg. (0.36 integer)

Instruction stream Resource capacity stalls

P6 Performance: uops/x86 instr

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

1.2 to 1.6 uops per IA-32 instruction: 1.36 avg. (1.37 integer)

15

P6 Performance: Branch Mispredict Rate

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

10% to 40% Miss/Mispredict ratio: 20% avg. (29% integer)

BTB miss frequency
Mispredict frequency

P6 Performance: Speculation rate
(% instructions issued that do not commit)

0% 10% 20% 30% 40% 50% 60%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

1% to 60% instructions do not commit: 20% avg (30% integer)

16

P6 Performance: uops commit/clock

Average
0: 55%
1: 13%
2: 8%
3: 23%

Integer
0: 40%
1: 21%
2: 12%
3: 27%

0% 20% 40% 60% 80% 100%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0 uops commit
1 uop commits
2 uops commit
3 uops commit

P6 Dynamic Benefit?
Sum of parts CPI vs. Actual CPI

Ratio of
sum of

parts vs.
actual CPI:
1.38X avg.

(1.29X
integer)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0.8 to 3.8 Clock cycles per instruction: 1.68 avg (1.16 integer)

uops
Instruction cache stalls
Resource capacity stalls
Branch mispredict penalty
Data Cache Stalls

Actual CPI

17

Computer Science 146
David Brooks

Pentium 4

• Still translate from 80x86 to micro-ops
• P4 has better branch predictor, more FUs
• Instruction Cache holds micro-operations vs. 80x86 instructions

– no decode stages of 80x86 on cache hit (“Trace Cache”)
• Faster memory bus: 400 MHz v. 133 MHz
• Caches

– Pentium III: L1I 16KB, L1D 16KB, L2 256 KB
– Pentium 4: L1I 12K uops, L1D 8 KB, L2 256 KB
– Block size: PIII 32B v. P4 128B; 128 v. 256 bits/clock

• Clock rates:
– Pentium III 1 GHz v. Pentium IV 1.5 GHz
– 14 stage pipeline vs. 24 stage pipeline

Computer Science 146
David Brooks

Trace Cache

• IA-32 instructions are difficult to decode
• Conventional Instruction Cache

– Provides instructions up to and including taken branch

• Trace cache, records uOps instead of x86 Ops
• Builds them into groups of six sequentially

ordered uOps per line
– Allows more ops per line
– Avoids clock cycle to get to target of branch

18

Computer Science 146
David Brooks

Pentium 4 features

• Multimedia instructions 128 bits wide vs. 64 bits wide => 144
new instructions
– When used by programs??
– Faster Floating Point: execute 2 64-bit Fl. Pt. Per clock
– Memory FU: 1 128-bit load, 1 128-store /clock to MMX regs

• Using RAMBUS DRAM
– Bandwidth faster, latency same as SDRAM
– Cost 2X-3X vs. SDRAM

• ALUs operate at 2X clock rate for many ops
• Pipeline doesn’t stall at this clock rate: uops replay
• Rename registers: 40 vs. 128; Window: 40 v. 126
• BTB: 512 vs. 4096 entries (Intel: 1/3 improvement)

Computer Science 146
David Brooks

Pentium, Pentium Pro, P4 Pipeline

• Pentium (P5) = 5 stages
Pentium Pro, II, III (P6) = 10 stages (1 cycle ex)
Pentium 4 (NetBurst) = 20 stages (no decode)

19

Block Diagram of Pentium 4
Microarchitecture

• BTB = Branch Target Buffer (branch predictor)
• I-TLB = Instruction TLB, Trace Cache = Instruction cache
• RF = Register File; AGU = Address Generation Unit
• "Double pumped ALU" means ALU clock rate 2X => 2X ALU F.U.s

Pentium 4 Block Diagram

20

Pentium 4 Die Photo
• 42M xistors

– PIII: 26M

• 217 mm2

– PIII: 106 mm2

• L1 Execution
Cache
– Buffer 12,000

Micro-Ops

• 8KB data cache
• 256KB L2$

Computer Science 146
David Brooks

Pentium III vs. Pentium 4:
Performance

0

100

200

300

400

500

600

700

800

900

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

MHz

SP
EC

in
t2

K
 (P

ea
k)

Coppermine (P3, 0.18um)

Tualatin (P3, 0.13um)

Williamette (P4, 0.18um)

Northwood (P4, 0.13um)

21

Computer Science 146
David Brooks

Pentium III vs. Pentium 4:
Performance / mm2

0

1

2

3

4

5

6

7

8

9

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

MHz

SP
EC

in
t2

K
 (P

ea
k)

/s
qm

m

Coppermine (P3, 0.18um)

Tualatin (P3, 0.13um)

Williamette (P4, 0.18um)

Northwood (P4, 0.13um)

Williamette: 217mm2, Northwood: 146mm2, Tualatin: 81mm2, Coppermine: 106mm2

Computer Science 146
David Brooks

For next time
• Static Scheduling

