
SUBWORD PARALLELISM
WITH MAX-2

Ruby B. Lee

Hewlett-Packard

MAK2 illustmtes how

a small set qf
instruction extensions

can provide suhword

pwmllelism to

uccelemte mediu

processing and other

dutu-pumllel

pro~rpms.

T he genera-purpose computing work-
load is changing to include more pro-
cessing of multimedia information.

We define media processing as the process-
ing of digital multimedia information, such
as images. video, audio. 2D and 3D graph-
ics, animation, and text. This multimedia
data, at the lowest component level, tend to
be 16 bits or less. However, general-purpose
microprocessors are generally optimized for
processing data in units of words, where a
word is currently at least 32 or 64 bits.

This article proposes that subword paral-
lelism-parallel computation on lower pre-
&ion data packed into a word-is an
efficient and effective solution for accelerat-
ing media processing. As an example, it
describes MAX-2, a very lean, RISC-like set
of media acceleration primitives included in
the &-bit PA-RISC 2.0 architecture.’ Because
MAX-2 strives to be a minimal set of instruc-
tions: the article discusses both instructions
included and excluded. Several examples
illustrate the use of MAX-2 instructions,
which provide subword parallelism in a
wor&oriented general-purpose processor at
essentially no incremental cost.

Subword parallelism
A subword is a lower precision unit of

data contained within a word. In subword
parallelism, we pack multiple subwords into
a word and then process whole words. With
the appropriate subword boundaries, this
technique results in parallel processing of
subwords. Since the same instruction applies
to all the subwords within the word, this is
a form of small-scale SIMD (single-instruc-
tion. multiple-data) processing.’

It is possible to apply subword parallelism
t<> noncontiguous suhwords of different sizes
within a word. In practice, however, imple-
mentations are much simpler if we allow
only a few subword sizes and if a single
instruction operates on contiguous subwords
that arc all the same size. Furthermore, data-

0272.1732/96/$5.000 19961EEE

parallel programs that benefit from subword
parallelism tend to process data that are of
the same size. For example, if the word size
is 64 bits, some useful subword sizes are 8,
16, and 32 bits. Hence, an instruction oper-
ates on eight g-bit subwords, four l&bit sub-
words, two 32-bit subwords, or one 64-bit
subword (a word) in parallel. The degree of
SIX/ID parallelism within an instruction, then,
depends upon the size of the subwords.

Data parallelism refers to an algorithm’s
execution of the same program module on
different sets of dacd. Subword parallelism
is an efficient and flexible solution for media
processing, because the algorithms exhibit
a great deal of data parallelism on lower pre-
cision data. The basic components of multi-
media objects are usually simple integers
with 8, 12, or 16 bits of precision. Subword
parallelism is also useful for computations
unrelated to multimedia that exhibit data
parallelism on lower precision data.

One key advantage of subword paral-
lelism is that it allows general-purpose
processors to exploit wider word sizes even
when not processing high-precision data.
The processor can achieve more subword
parallelism on lower precision data rather
than wasting much of the word-oriented
data paths and registers. Media processors-
processors specially designed for media
rather than general-purpose processing-
and DSPs allow more flexibility in data path
widths. Even for these processors, howev-
er. organizing the data paths for words that
support subword parallelism provides low-
overhead parallelism with less duplication
of control. A more efficient use of memory
also results, since a single load- or store-
word instruction moves multiple packed
~~lnvcd~ between memory and prmrssor

registers. Hence, subword parallelism is an
efficient organization for media processing,
whether on a general-purpose micro-
processor or a specially designed media
processor or DSP.

August 1996 51

Data-parallel algorithms with lower precision data map m ell
into subword-parallel programs. The support required for such
subword-parallel computations then mirrors the needs of the
data-parallel algorithms.

To exploit data parallelism, we need subword parallel com-
pute primitives, which perform the same operation simulta-
neously on subwords packed into a word. These may include
basic arithmetic operations like add, subtract, and multiply, as
well as some form of divide, logical, and other compute oper-
ations. Data-parallel computations also need

0 data alignment before or after certain operations for sub-
words representing fixed-point numbers or fractions;

0 subword rearrangement within a register so that algo-
rithms can continue parallel processing at full clip;

0 a way to expand data into larger containers for more
precision in intermediate computations; similarly, a way
to contract it to a fewer number of bits after the com-
putation’s completion and before its output:

e conditional execution;
0 reduction operations that combine the packed subwords

in a register into a single value or a smaller set of val-
ues; and

= a way to clip higher precision numbers to fewer bits for
storage or transmission;

* the ability to move data between processor registers and

tions already work. For example, the load-word instruc-
tion loads multiple packed subwords into a register from
memory, in a single instruction.)

Efficient support of inner-loop operations is more important
than one-time operations For example, the data expansion, con-
traction, clipping, and reduction functions just mentioned tend
to occur outside the inner loop, so their support is not as per-
formance critical. There are obviously many possibilities for
selecting instructions and features that meet these needs. The
next section presents an example of a very small set of instruc-
tions supporting subword parallelism that we added to a gener-
al-purpose RISC processor architecture.

IMAX is a small set of Multimedia Acceleration extensions
implemented in PA-RISC processors. For a general-purpose
processor architecture like PA-RISC, the trend of both techni-
cal and business computations to include an increasing amount
of multimedia information motivated the inclusion of such
instructions.

We first implemented MAX-l3 in the PA-7100LC micro-
processor. a 32.bit PA-RISC 1.1 architecture.* MAX2 is the sec-
ond generation of multimedia instructions’ and an integral part
of the 64-bit PA-RISC 2.0 architecture.5 Hence, all 64.bit PA-
RISC processors will contain MAX2.

Table 1 summarizes m-2. The first five parallel subword
memory, as well as the ability to loop and branch to an
arbitrary program location. (General-purpose proces-
sors require no new instructions for these functions,
since the load-word, store-word, and branch instruc-

arithmetic instructions are the same as the MAX-1 instructions,
while the rest are new. In addition to four new instruction
types, rU-2 has twice the subword parallelism per instruc-
tion since it assumes 64-bit words; MAX1 operated on proces-

sors with 32-bit words. Since MAX-1 is
a proper subset of MAX-2, PA-RISC
programs including MAX1 instruc-
tions will run unchanged on PA-RISC
2.0 processors. (When something is
common to both MAY-1 and MAX2,
we will use the notation MAX.)

Table 1. MAX-2 instructions in PA-RISC 2.0.

Parallel subword instruction* Description Cycles

Parallel add Adds corresponding subwords
with modulo arithmetic, HADD (saturation arithmetic speeds up 1
with signed saturation, HADD,ss and simplifies overflow handling) 1
with unsrgned saturation, HADD,us 1

Parallel subtract Subtracts corresponding subwords
with modulo anthmetrc, HSUB 1
with signed saturation, HSUB,ss 1
with unsigned saturation, HSUB,us 1

Parallel shaft left and add, Multiplies subwords by integer constant 1
with signed saturation, HSLADD

Parallel shift right and add, Multiplies subwords by fractional constant 1
with srgned saturation, HSHRADD

Parallel average, HAVG Calculates arithmetic means of subwords 1
Parallel shift right Aligns data

signed, HSHR divrdes signed integer; extends sign 1
unsigned, HSHR,u drvrdes unsrgned integer; zero fill on left 1

Parallel shift left, HSHL Aligns data; zero fill on right 1
Mix, MIXH, MIXW Rearranges subwords from two source 1

registers
Permute, PERMH Rearranges subwords within a regrster 1

Although MAX-2 is the second gen-
eration of multimedia instructions for
PA-RISC, it is still much smaller than
the sets proposed for other micro-
processors. (See Kohn et al.” and the
articles by Tremblay et al. and Peleg
and Weiser in this issue.) Our design
goal was to leverage existing micro-
processor capabilities as much as pos-
sible. We only added new features
that have both significant perfor-
mance acceleration for media pro-
cessing and potential general-purpose
utility. In addition, the new instruc-
tions do not have significant impact
on the cycle time, area, and design
time of the PA-RISC processor.

We considered supporting 8- and

!
32-bit subwords in addition to I6-bit
subwords, but rejected this for our
workstation and server markets. We

52 IEEE Micro

rejected &hits subwords for insufficient precision, and 32-b&
subwords for insufficient pamllelism compared to ?&bit (sin-
gle-precision) floating point.

Although pixel components may be input and output as 8
bits, using 16-bit s&words in intermediate calculations is usu-
ally desirable. Color components of less than 8 bits represent
very low-end graphics, which may be less important in the
future. For medical imaging, pixel components are already 12
rather than 8 bits, again requiring at least lh-bit computation-
al precision.

LJsing 32.bit integer subwords provides a parallelism of only
two operations per subword instruction. Media computations
that need this level of precision often work better with single-
precision floating-point operations such as FMAC (floating-
point multiply and accumulate), which already combine two
operations into one instruction.

Parallel subword compute instructions
We found that the most common compute operations in

media processing programs are the basic integer add and sub
tract and simple variations of these.:* The first five entries in
Table 1 represent parallel subword versions of sucl~ arithmetic
operations.

The pdmk-add and parallel-subtract instructions each have
three variants that describe what happens on an overflow. The
default action is modulo arithmetic, which discards any over-
flow. An instruction that specifies signed saturation clips the result
to the largest or smallest signed integer in the result range,
depending on the overflow direction. Similarly, an instruction
specifying unsigned saturation clips a result that overflows to the
largest or smallest unsigned integer in the result range.5,’

Often, the multiplications required in media processing are by
constants. MAX speeds this up with parallel shift left and add,
and parallel shift right and add. These two instructions very
effectively implement multiplication by integer and fractional
constants.5,9 They require just a minor modification to the exist-
ing preshifter in the integer arithmetic logic unit, rather than a
whole new multiplier functional unit on the integer data path.

The parallel-average instruction performs a very common and
useful function in image and video processing: the arithmetic
mean (Figure 1). It adds two source operands then performs a
divide by two. This is a combined-operation instruction, involv-
ing an add and a right shift of one bit. In the process, the instruc-
tion shifts in the carry-out bit as the most significant bit of the
result, so the instruction has the added advantage that no over-
flow can occur. In addition, it rounds the least significant bit to
conserve precision in cascaded average operations.

MAX-Z includes new parallel (subword) shift instructions,
which use the existing 64-bit shifter but block any bits shifted
out of one subword from being shifted into the adjoining sub-

word. These instructions are useful for data alignment. Here,
each subword represents some fixed-point (integer or fraction-
al) number that must be pre- or post-aligned after certain arith-
metic operations. Pawllel shift r-i& (signed or unsigned) can
also speed up division of signed and unsigned subwords by
powers of two. It is also useful for sign or zero extension. (While
the parallel shift and add instructions allow shifting of only one,
two, or three bits, the parallel shift instructions allow shifting of
any number of bits.)

I A / B / C I D / Input register 1

E F 1 G 1 H Input register 2

Subword average, HAVG

A+E---- B+F C+G D+H
2 2 2 2

Figure 1. Parallel subword average instruction

We can use the p”ralle1 shift-right instructions freely for inte-
ger division. However, we can use the parallel shift-left instruc-
tion for multiplication only when we know that the suhword
values are small enough to not overflow during each subword’s
left shift. These instructions do no checking for overflow-that
is, for significant bits shifted out on the left of each subword. This
is because we use parallel shift instructions mainly for data align-
ment and data rearrangement.

We considered adding subword integer-multiply hardware,
but decided against it for the following reasons. Media-pro-
cessing computations like audio and graphics transformations.
which use multiply-accumulate or multiply-by-a-variable oper-
ations extensively, usually require intermedbte calcu~dtion pre-
cision greater than 16 bits. When audio samples come 21s 1 G-bit
linear audio input. internal computational precision greater than
16 bits is desirable.

Given the choice of 32.bit integer versus 32.bit floating-point
precision, most audio and graphics programmers prefer the lat-
ter for its automatic alignment features, accuracy, and greater
dynamic range. FMAC instructions exist in PA-RISC 2.0 proces-
sors in both single and double precision. These already provide
the combined-operation parallelism of two operations (a multi-
ply and an accumulate) per pipeline cycle. Furthermore, PA-RISC
2.0 processors usually have two such floating-point multiply-
accumulate units, giving a parallelism of four operations per
cycle. By using the existing floating-point FMAC units, we save
considerable area otherwise needed for new integer multiply
units in the integer data path. We also save pipeline complexi-
ty, since integer multiply is a multicycle operation while all exist-
ing integer instructions are single cycle.

A bonus of using the floating-point register file rather than
the integer register file is that it makes available twice as many
addressable registers (64 rather than 32). This is because in PA-
RISC, though each integer and floating-point register file has 32
registers, we can address each 64.bit floating-point register as
two 32.bit registers. Another advantage is that this arrangement
sometimes allows video and audio processing to occur simul-
taneously: one on the integer side and the other on the floating-
point side, each with its own register file and comp@tion
hardware.

Hence, we implement graphics transformations and audio
compuldtions as single-precision floating-point programs. Data

is loaded directly to one of the sixty-four addressable 32.bit
floating-point registers. These programs do not need to move
data back and forth belween the integer and floating-point reg-
ister files. Alternative solutions to multiply-by-a-variable involve
either new, costly subword multiply hardware or some form

August 1996 53

ri I

II Integer
general registers

HADD HSHL
HSUB HSHR
HSHLADD HSHR, U
HSHRADD MIX
HAVG PERMH

ri I I

II Floating-point
registers

Figure 2. MAX instructions, listed under the units that
execute them, use existing processor resources.

(A/B/CIDI
/

MIX left

Mix right

Figure 3. Mix interleaves alternate subwords from two
registers.

Permute index
(4

Permute index 3 2 1 0
(b)

Figure 4. Permute allows rearrangement and repetition
(a) and reversal (b) of subwords.

of less costly but less capable multiply hardware.”
Figure 2 shows some of the resources of the PA-8000.” The

existing integer ALUs (arithmetic logic units) and SMUs (shift
merge units) implement the MAX-2 instructions. MAX-1 used
only the ALUs. However, different types of media-processing
computations use the entire processor, including integer and
floating-point register files, integer and floating-point func-
tional units, and the enhanced cache memory system.

r@~~ra t i~s~~~~~~on~
Many algorithms require subword rearrangement within reg-

isters. The challenge is to find a small set of primitives that ful-
fills most frequent subword regrouping or rearrangement
needs. In MAY-Z, we introduce just two new data rearrange-
ment instructions: mix and permute.

Mix. These instructions take subwords from two registers
and interleave alternate subwords from each register in the
result register. ~\ilix left starts from the leftmost subword in each
of the two source registers, while mix right ends with the right-
most subn-ords from each source register. Figure 3 illustrates
this for 16.bit subwords.

Mix implements an even-odd paradigm for parallel process-
ing: Even elements are processed in parallel, then odd elements,
or vice versa. (We use the names mix-left and mix-right instead
of mix-even and mix-odd because whether an element is odd
or even depends on whether elements are numbered from zero
or one; stzting from the left or right.) Mix is more powerful than
interleaving sequential subwords from each source register
(AaBb rather than AaCc) because it can combine subwords from
both halves of each source register in the result register. It also
has a ion-er implementation cost, requiring only very minor
changes to the existing two-input, unidirectional shifter.

Permute. The permute instruction takes one source regis-
ter and produces a permutation of that register’s subwords.
With 16.bit subwords, this instruction can generate all possi-
ble permutations. with and without repetitions, of the four sub-
n-ords in the source register. Figure 4 shows some possible
permutations. To specify a particular permutation, we use a
permute index. The instruction numbers subwords in the
source register starting with zero for the leftmost subword. A
permute index identifies which subword in the source regis-
ter the instruction places in each subword of the destination
register.

Integer or f loaling-
We implemented the MAX-2 instructions in the integer data

path for several reasons. First, they require only very minor
modifications to the integer ALU and SMU units; implementa-
tion on the floating-point side would require new subword
integer functional units using the floating-point registers.

In addition. to implement MAX on the floating-point side, we
would have to replicate many useful integer functions or not
use them. These include all field manipulation instructions like
shift-pair, extract, and deposit, and logical instructions like
AND. AND-complement, OR, and exclusive-OR (see Table 2).
The shift-pair instruction is particularly useful, since it allows
a 0- to 63-bit shift on any two source registers. Common shift
instructions work on only one source tegisteu. For example,
shift-pair can properly align an unaligned sequence of sub-
words to a 64-bit word boundary.

The area savings of not adding new integer units on the
floating-point side outweighed the relatively minor disadvan-
tage of sharing general-purpose registers with address and
loop counter variables. Load and store instructions do not nec-
essarily compete for superscalar issue slots with MAX instruc-
tions. For example, the PA-8000 allows two load or store
instructions to issue with two m-2 instructions, even though
they all use the general registers. Furthermore, the floating-
point registers and functional units can operate simultaneous-
ly with MAX-2 instructions for possible parallel audio

54 IEEE Micro

processing or graphics transforma-
tions, making a total of 96 registers
available for simultaneous processing
of different media streams.

Table 2. Other useful PA-RISC features.

Feature

Other PA-RISC features
Several other PA-RISC features that

enhance floating-point, cache memo-
ry, and branching performance’ also
contribute to higher performance
media processing (see Table 2). We
have already mentioned the useful-
ness of the FMAC instructions.
Multiple floating-point condition bits
allow simultaneous testing of several
conditions. They are also used to per-
form faster boundary box “trivial“
accept and reject tests in graphics
computations.

Cache prefetch instructions allow
prefetching cache lines from memory
into the cache to reduce cache miss
penalties when rhe processor actual-
ly needs the data. This is very useful
for the predictable streaming data of

Shift right a pair of registers,
SHRPD, SHRPW

Extract a field, EXTRD, EXTRW

Deposit a field into a register,
DEPD, DEPDI, DEPW, DEPWI

Logical operations,
AND, ANDCM, OR, XOR

FMAC

Multiple floating-point
condition bits

Cache line prefetch,
prefetch for read, LDD RO
prefetch for write, LDW RO

Cache hint: spatial locality

many multimedia memory accesses.ll If a TLR miss occurs for
such a cache prefetch instruction, it is ignored, and the instruc-
tion reduces to a one-cycle NOP (no operation). This reduces
the downside of prefetching a cache line that is not actually
used, allowing more aggressive prefetch policies.

PA-RISC processors also have a cache hint in load and store
instructions that indicates that the data has spatial locality but

DescriptiotVmotlvation

Concatenate and shift 64.bit (SHRPD) or
rightmost 32-bit (SHRPW) contents of two
registers into one result register

Select any field in the source register and places
it right-aligned In the target register

Select a right-aligned field from the source
register or an immediate, and places it
anywhere in the target register

Existing logical operations in integer ALUs

Floating-point multiply accumulate combined-
operation Instruction

Enable concurrency in floating-point
comparisons and tests

Reduce cache miss penalty and cache prefetch
penal-ty by disallowing TLB miss

Prevent cache pollution when data has no reuse

high-level-language loop may look like this:

short x[2001, y[2001, 2[2OOl. w[2001;
int i:
for (i = 0, i < 200, i++>i

z[il = x[il + y[il;
w[il = x[il - ylil; 1

no temporal locality. Thus, a processor implementation can
fetch the cache line containing the desired data into a buffer
without displacing useful data in the cache. This can reduce
conflict misses in the cache due to streaming data that the
processor does not reuse.

Mapping data parallelism
A data-parallel computation includes a piece of code that it

must execute many times for different sets of data. The goal is
to map data-parallel computations that operate on lower pre-
cision data onto subword-parallel instructions. A basic tech-
nique is to execute multiple iterations of a loop in parallel,
rather than to find opportunities for using s&word-parallel
instructions within the loop itself.

For example, for an 8x8 discrete cosine transform (DCT),
the processor must perform the same loop on eight rows and
eight columns. If we apply our basic technique, a subword
parallel instruction would work on four rows or four columns
at a time--that is, on four loop iterations at a time-rather than
trying to restructure the code for a single DCT loop using sub-
word-parallel instructions.

Figure ia (next page) shows a PA-RISC assembler version of
the loop only, generated by a C compiler. Figure 5b shows the
desired subword-parallel assembly version, which is very sim-
ilar. The programmer has the choice of either modifying com-
piler-generated assembly code to get Ihe subword-parallel
version, or modifying the C code to assist the compiler in gen-
erating the subword-parallel version directly. One difficulty for
the compiler is data alignment-it cannot be sure that the 16.
bit shorts align on the 64-b& boundaries. We propose that the
programmer specifically indicate that such alignment is neces-
sary. using C’s existing “union” feature, which superimposes
the elements in the union onto the same storage locations. The
programmer can use the feature to force four 16-bit shorts to
be 64-bit aligned (where “long” is 64 bits).

The compiler could recognize statements in for-loops that
use variables declared in earlier “union” constructs as hints to
generate subword-parallel code. However, for the program-
mer, it is not necessarily easier to write such stylized C code,
since it usually takes multiple C statements to express a single
MAX instruction.

While it is beyond this article’s scope to describe compre- Consider the C statements specifying saturation arithmetic
hensive techniques for exploiting data parallelism in general for each subword operation, for example. It is often easier for
and mapping to subworcl-parallel instructions in particular, the the programmer to just write the MAX-2 assembly instruction
following example illustrates the process. itself, or a C macro that corresponds to this assembly instruc-

High-level programming languages (for example, C) often tion. Using macro calls M-HADD and M_HSIJR to generate
capture data-parallel computations as for- or while-loops. A the corresponding MAX-2 instruction. the following C code

August 1996 55

al examples of their use. Often, an algo-
rithm must rearrange the subwords
packed into registers to fully utilize sub-
sequent subword-parallel instructions.

Matrix transpose. Suppose that an
algorithm performs a certain
sequence of operations on all the
rows and columns of a matrix. The
first four rows of Table 4 show a 4x4
matrix of 16-bit subwords contained
in four 64.bit registers. We can apply
parallel-subword instructions to the
elements of four columns in parallel,
since these are in the four separate
subword tracks in the registers. Then,
to apply the same algorithm to the
elements of four rows in parallel, we
must transpose the 4x4 matrix. The
last four rows in Table 4 show the
transposed matrix.

Figure 5. High-level-language loop: PA-RISC assembler version without (a) and with
(b) subword-parallel instructions. In PA-RISC three-register assembly instructions,
the order of the fields is opcode, sourcel, source2, destination. For load instruc-
tions, the order is opcode, displacement (base), target. A halfword (h) denotes 16
bits, and a doubleword (d) denotes 64 bits in PA-RISC load and store instructions.

can generate the desired subword-parallel assembly code
shown in Figure 5b:

Union (long a[501; short x[20011 e;
Union {long b[501; short y[20011 f;
Union Ilong c[501; short 2[20011 g;
Union {long d[501; short w[20011 h;

int i;
for (i = 0, i<50, i++>l

M-HADD (e.a[il, f.b[il, g.c[i]);
M-HSUB (e.a[il, f.b[il, h.d[il); I

Since the parameters to the macro calls M-HADD and
M_HSUB are hi-bit longs, the compiler will issue load-double
(&bit) and store-double instructions. The programmer may
freely intermix such in-line assembly macros with C statements
For the compiler, macro expansion is much easier and faster
than using pattern matching for code generation. The compil-
er performs register allocation and renaming, loop unrolling,
scheduling, and other optimizations. Hence, PA-RISC compil-
ers support MAX-2 instructions (and other PA-RISC assembly
instructions) through macros. Programmers can also include in
header files the macro calls for optimized MAX-2 code
sequences in Table 3 and any larger macros of their choice;
such as the DCT.

~~~g~~ les 
This section gives very short code examples, pulled from 

larger programs, that illustrate how m-2 instructions sup- 
port key needs of data-parallel computations (as enumerated 
earlier in the section on support for subword parallelism). 

Subword reamangement. Since mix and permute are new 
MA?-2 instructions not covered in earlier work,’ we give sever- 

56 IEEE Micro 

The conventional way to achieve 
this is to store the subwords into dif- 
ferent memory locations, then read 
them back as a word with the sub- 
words in the rearranged positions 

within the word. This requires 16 store (halfword) and four 
load (doubleword) instructions. We can achieve considerable 
speedup if w-e rearrange the subwords within the register file 
rather than going through memory, which can incur potential 
cache misses. Using PA-RISC extract and deposit instructions 
for the reanangement would require more than 20 instructions. 

Table 4 shows such a 4x4 matrix transform done with just 
eight mix instructions. To transpose each row of the matrix, the 
processor must read four registers. Hence, for a processor with 
two register reads and one register write per cycle and no inter- 
mediate storage, eight is the minimum number of instructions 
for 4x4 matrix transpose. Table 4 shows the transformation using 
four temporary registers. Though we can accomplish the task 
with only two temporary registers, this does not permit the max- 
imum superscalar use of two SMUs processing two mix instruc- 
tions per cycle. This matrix transpose takes four cycles with two 
SMUs implementing mix instructions, and only two cycles with 
four such SMUs. 

Transposing an 8x8 matrix would require four such 4x4 
matrix transposes, taking 16 cycles with two SMUs. Sixteen 64- 
bit registers would be needed to house an 8x8 matrix of 16. 
bit subwords. 

Expanding and contracting. Mix instructions are also useful 
for data formatting. For example, the mix instruction with regis- 
ter zero as one source can expand 2-byte subwords in Ra into 
4-byte subwords in Rx and Ry. After the desired computation 
with this expanded precision, the mix instruction can also con- 
tract the 4-byte subwords contained in Rx and Ry back into 
packed 2-byte subwords in a single register (see Table 3). By 
using mix instructions to perform both expand and contract oper- 
ations. we preserve the data’s original order after contraction. 

Replicating subword constants. The permute instruction is 
useful for replicating subword constants (see Table 3). First, the 
load offset instruction, LDO, loads a lh-bit signed-immediate 



Table 3. Short code examples using MAX-2. Table 4. 
Register contents in matrix transpose. 

Operation Code examples* Cycles** 

Instruction Register contents 
4x4 matrix transpose of MIXH,L Rl,R2,tl; 4 (2 SMUs), 

16-bit subwords in MIXH,R Rl,RZ,t2; 2 (4 SMUs) 
four registers: RI, R2, MIXH,L R3,R4,t3; 
R3, and R4 MIXH,R R3,R4,t4 

MIXW,L tl,t3,Rl; 
MIXW,L t2,t4,R2; 
MIXW,R tl ,t3,R3; 
MIXW,R tZ,t4,R4 

Expand halfwords to MIXH,L RO,Ra,Rx; 1 
32.bit words MIXH,R RO,Ra,Ry 

Contract words back to MIXH,R Rx,Ry,Rb 1 
halfwords 

Replicate subword LDO const(RO),Rm 2 
constant in register PERMH,3333 Rm,Rm 

Max (a,, b,) HSUB,us Ra, Rb, Rt 2 
HADD,ss Rt, Rb, Rt 

Mln (a,, b,) HSUB,us Ra, Rb, Rt 3 
HSUB,ss RO, Rt, Rt 
HADD,ss Rt, Ra, Rt 

Sum of absolute differences HSUB,us Ra, Rb, Rc; 2 
SAD (a,. b,) HSUB,us Rb, Ra, Rd 
accumulated in Rx and Ry HADD,us Rx, Rc, Rx; 

HADD,us RY, W Ry 
Abs b,) HSUB,us Ra, RO, Rc; 2 

HSUB,us RO, Ra, Rd 
HADD Rc, Rd, Rx 

Tree add EXTRD Ra,31,32,Rt 4 
HADD Ra, Rt, Rs 
EXTRD Rs,47,16, Rt 
HADD Rt, Rs, Rt 

Clip (a,) signed 16-bit HADD,ss Ra,Rmax,Ra 2 
to unsigned n-bit, n<l6 HSUB,us Ra,Rmax,Ra 

[Rmax,= (215 - I)-(2”- I)] 
Clip (a,) to new maximum HADD,ss Ra,Rmax,Ra 2 

value, H HSUB,ss Ra,Rmax,Ra 
[Rmax,=(215-1)-H] 

Clip (a,) to new nonzero HSUB,ss Ra,Rmin,Ra 2 
minimum value, L HADD,ss Ra,Rmin,Ra 

[Rmin,=215-L] 
Clip (a,) to both new max’mum HADD,ss Ra,Rmax,Ra 3 

value, H, and new nonzero HSUB,ss Ra,Rboth,Ra 
minimum value, L HADD,ss Ra,Rmin,Ra 

[Rmax,= (215- 1)-H, 
Rmin,= 215- L, and 
Rboth,=(215-1)-H+2’5-L] 

RI = al bl cl dl 
R2 =a2 b2 c2 d2 
R3=a3 b3 c3 d3 
R4=a4 b4 c4 d4 

MixH,L Rl,RZ,tl tl = al a2 cl c2 
MixH,R Rl,RZ,tZ t2 = bl b2 dl d2 
MixH,L R3,R4,t3 t3 = a3 a4 c3 c4 
MixH,R R3,R4,t4 t4= b3 b4 d3 d4 
MixW,L tl,t3,Rl RI = al a2 a3 a4 
MixW,L tZ,t4,R2 R2= bl b2 b3 b4 
MixW,R tl,t3,R3 R3 = cl c2 c3 c4 
MixW,R tZ,t4,R4 R4=dl d2 d3 d4 

instruction PERMH replicates this value for the 
other three subwords in the register. 

Conditional execution using saturation 
arithmetic. Saturation arithmetic efficiently han- 
dles the multiple overflows that arise in parallel 
subword arithmetic. Signed saturation (ss) refers 
to cases with two signed operands in which the 
instruction clips subword results to a signed inte- 
ger. Unsigned saturation (us) in MAX refers to 
cases with one unsigned and a second signed 
operand, in which the instruction clips each sub- 
word result to an unsigned integer. We found this 
definition of unsigned saturation more useful than 
the more common one (where both operands are 
unsigned) since the algorithms often require 
adding a signed value to the original unsigned 
data. 

Saturation arithmetic is also very useful for con- 
ditional operations in the following class: 

If cond(Ra,, RbJ Then Rt, = Ra, Else Rt,=Rb,, 
for i = number of subwords in the word 

These are conditional operations that, based on 
a comparison of corresponding subwords in reg- 
isters Ra and Rb, select one subword as the result 
to go into register Rt For example, condition 
(cond) could be Max or Min. With Max, result reg- 
ister Rt, gets the larger of Ra, or Rb,. With Min, Rt, 
gets the smaller of Ra, or Rb,. 

* A semicolon after an instruction indicates that it may execute in 
parallel with the following instruction 
** Number of cycles is based on data dependencies in the code 
sequence and on at least two integer ALU or SMU instructions issuing 
each cycle (as in PA-8000). 

Maxfunction. In Table 3, the entry for the Max& 
hJ function shows that we can accomplish this oper- 
ation with just two in-line instructions using satura- 
tion arithmetic. The first instruction, HSUB, subtracts 
Rb from Ra, and the second instruction adds Rb 
back. Without saturation arithmetic, these two 
instructions would cancel each other out. However, 
with saturation arithmetic, they place the larger of 

value into the target register’s low-order bits. (LDO is a PA- 
RISC instruction used for address computation,) Then permute 

Ra, or Rb, in the result Rt,. If Ra, > Rb,, then Rt, = Ra, - Rb, for the 
first instruction, and Rt, = Ra, - Rb, + Rb, = Ra, after the second 

August 1996 57 



instruction. If Ra, < Rb,, then Rt, = 0 for the first instruction using 
unsigned saturation, and Rt, = Rb, after the second instruction. 
The clipping to zero that unsigned saturation provides in the first 
instruction is the key to such in-line conditional operations. 

Min,function. The next entry in Table 3 shows how we can 
obtain the Min(a,, 63 function using saturation arithmetic. This 
requires three rather than two instructions. The extra instruc- 
tion subtracts the result of the first instruction from zero to invert 
the sense of greater than (Max) to less than (Min). If Ra, > Rb,, 
then Rt, = Ra, - Rb, for the first instruction; Rt, = Rb, - Ra, (neg- 
ative) after the second instruction; and Rt, = Rb, - Ra, + Ra, = Rb, 
after the third instruction. If Ra, < Rb,, then Rt, = 0 for the first 
instruction; Rt, = -0 after the second instruction; and Rt, = Ra, after 
the third instruction. For example, 

kl = 260 60 260 60 
Rb = 60 260 -60 -260 

HSUB,us Ra, Rb, Rt 200 0 320 320 
HSUB,ss RO, Rt, Rt -200 0 -320 -320 
HADD,ss Rt, Ra, Rt 60 60 -60 -260 

In practice, Max and Min are usually taken over unsigned num- 
bers, but we also accommodate the cases where the second 
operand may be negative. 

Sum ofabsolute dzyferences. SAD is an important metric in 
many compression algorithms, including MPEG-1 and MPEG- 
2. The code example for SAD in Table 3 does two subtracts 
with the operands switched. Using subtract with unsigned sat- 
uration, negative numbers are clipped to zero. Thus, in each 
subword track in the two result registers Rc and Rd. only one 
would have a nonzero positive value; the other would have a 
zero value. Then, the two add instructions accumulate the 
absolute differences in two sets of accumulators, Rx and Ry, 
each of which consists of four 16.bit accumulators. By using 
two accumulator registers, we can issue the two add instructions 
simultaneously. At the end of the inner loop. we add up these 
eight 16-bit accumulated values to get the final sum of absolute 
differences (see Reduction, later). 

In superscalar processors, which issue at least two instructions 
per cycle, the two subtract and two add instructions would only 
take two cycles to execute. Since these instructions retire four 
pixels, their peak execution rate is 0.5 cycles/pixel. 

To better illustrate the cycles per pixel metric, we coded the 
whole block comparison of two 16x16-pixel blocks. We then 
calculated the sum of absolute differences for these 256 pairs 
of pixels, using the four instructions described earlier for every 
four pairs of pixels. Including loads, stores, and loop overhead. 
this took 0.51 cycles/pixel on a PA-8000 processor. This corn- 
paves very favorably to special-purpose sum-of-absolute-dif- 
ference instructions proposed by other processors.6 

Absolute value. The code example for finding absolute values 
of the subwords (Table 3) is similar to that for SAD, except that 
it takes differences from zero, rather than from a second source 
register. Also, since accumulation is not necessary, we can add 
intermediate result registers Rc and Rd, saving one instruction. 

Reduction. Reduction instructions condense the horizontal 
subwords in a register into fewer subwords or into a single 
value. For example, we considered many versions of “tree 
add,” which would add all the subwords packed in a word 

58 IEEE Micro 

into a single value. With a programming model that uses par- 
allel-subword accumulators, the final accumulation across the 
parallel accumulators occurs only once at the end of a loop. 
Hence, tree add does not require very efficient execution, and 
we added no new instructions to MAX-2. 

Instead, we can implement it as shown in Table 3. Register 
Ra contains four subword accumulators. The first extract instruc- 
tion moves the left half of register Ra to the right half of regis- 
ter Rt. HADD adds two pairs of subwords, reducing four 
accumulated values to two in register Rs. The second extract 
instruction moves the next-to-rightmost subword in partial-sum 
register Rs to the rightmost position of Rt. The final HADD 
instruction reduces these two partial sums to the final accumu- 
lated sum in the rightmost subword of register Rt. 

Clipping. After computation with data in expanded format 
for higher precision, it is often necessary to clip the data to fit 
in a smaller number of bits before storage or transmission. For 
example, we expand unsigned 8-bit pixel components to 
signed 16.bit subwords for computation. We must then clip 
them back to 8 bits before output. 

Clip signed to unsigned. We need only two instructions for 
the common case of clipping a signed 16.bit number to an 
unsigned 8-bit one (see Table 3). Let register Rmax contain the 
constant value 32,512 (2lj - 1 - 255) in each 16.bit subword. 
This is the largest representable number in signed 16.bit nota- 
tion minus the largest representable number in unsigned &bit 
notation. The first instruction adds Rmax to Ra, which contains 
the values to be clipped. The second instruction subtracts Rmax 
from this result. If the original value in Ra is between 0 and 
255, these two instructions cancel each other out. If the origi- 
nal value in Ra is greater than 255, then the first instruction clips 
it to 21i - 1. and the second instruction brings this down to 255. 
If the original value is negative, the first instruction brings it to 
a value less than 21i - 1, and the second instruction clips it to 
zero using unsigned saturation. 

One advantage of clipping with saturation arithmetic is its 
versatility. These two instructions can clip to any n-bit unsigned 
value. For example, medical-imaging applications use 12.bit 
instead of 8-bit pixel components. The same two instructions 
can clip signed 16.bit numbers to unsigned 12-bit numbers. The 
only change is that the constant register, Rmax, now contains the 
difference between 2’j - 1 and 4,095, the new maximum. An 
instruction defined specifically for clipping signed 16.bit sub- 
words to unsigned X-bit values would be useless in this case. 

General clipping. When we use saturation arithmetic for 
clipping, the new maximum or minimum value of the result 
does not have to be of the form 2n - 1. It can be any value. 
Table 3 also lists general cases of clipping to any new maxi- 
mum or minimum value, or both.3 When clipping to both a 
new maximum and a new nonzero minimum value, there is a 
trade-off between using one more instruction or one more reg- 
ister. Three instructions are sufficient if we use three constant 
registers (as in Table 3). If we use only two constant registers, 
then we need four instructions. 

The maximum parallelism, measured in operations per cycle, 
is a function of the number of instructions that can execute in 
parallel, the number of subwords we can pack into a word, and 



the presence of combined-operation9 ” instructions. 
Table 5 shows examples of the operation parallelism achiev- 

able by the PA-8000, which ia a four-issue superscalar proces- 
sor with hi-bit integer data paths. In the PA-8000, two load or 
store instructions may execute with two computation instruc- 
tions (integer or floating-point) each cycle. FMAC is a combined- 
operation instruction, representing two operations per cycle. 
With 16-bit subwords, each subword instruction is equivalent 
to at least four operations. Some, like the halfword-average and 
halfword-shift-and-add instructions combine two operations per 
suhword per cycle, so that each instruction represents eight 
operations per cycle. Since saturation arithmetic replaces five 
PA-RISC instructions per suhword, a halfword add with satura- 
tion instruction replaces 20 PA-RISC instructions, bringing the 
parallelism up to 42 operations per cycle. Such peak parallelism 
is, of course, not sustainable in real applications. 

For a large application, we first achieved real-time software 
MPEG-1 decode (video, audio, and system layers) on a low-end 
PA-RISC workstation using MAX1 instructions in the PA-7100LC 
processor. 78 lj Withour MAX-l, this would not have been attain- 
able on 60. to 80-MHz microprocessors, since MPEG-1 requires 
about 200 million operations per second. Several large applica- 
tions, including MPEG-1, ~.261, Convolve 512x512, and Zoom 
512x512, showed speedups in frames per second of 1.9 to 2.7 on 
the PA-7100LC with MAX-1.j 

The PA-8000 doubles the superscalar degree from two to 
four instructions per cycle, doubles the number of parallel sub- 
words by increasing the word size from 32 to 64 bits, more 
than doubles the clock fr-equency, and makes available MAX- 
2 rather than MAX-J instructions. With its greater peak per- 
formance potential compared to the PA-71OOLC, it can, for 
example, process multiple MPEG-1 streams and MPEG-2 in 
real time with software alone. 

m-2 IS A MUCH SMALLER SET of multimedia instruc- 
tions than those proposed for other processors. However, its sim- 
ple instructions are often as efficient in media processing as 
complex, special-purpose instmctions, as many of the examples 
in this article show. As genera-purpose primitives, they are usu- 
ally also more flexible, as illustrated by the clipping examples. 

A key advantage of this minimalist approach is that all this 
subword parallelism and media acceleration essentially come 
for free with the general-purpose processor. The area impact 
is truly insignificant: MAX-l took about 0.2 percent of the PA- 
7100LC silicon area, and MAX-2 took less than 0.1 percent of 
the PA-8000 silicon area. Neither caused any cycle time impact 
on the processors nor lengthened the design schedules. 

Suhword parallelism provides a cost-effective method of 
achieving usable operation parallelism for lower precision data. 
It is a low-overhead technique for speeding up media and 
other processing in general-purpose microprocessors, media 
processors, and USPS. This significant speedup puts difficult 
media-processing tasks in the realm of software rather than 
spcci&puI-pose hardware. This is especially useful for irnplr- 
menting multiple algorithms for different media data types, 
adjusting to emerging standards, and exploiting improved 
algorithms. 

As processor performance increases, MAX performance will 
automatically increase, as will the performance of media-pro- 

Table 5. 
Operation parallelism in PA-8000 with MAX-2. 

Instruction sequence Operations/cyc 

Load Load FMAC FMAC 6 
Load Store HADD HSUB 10 
Load Load HAVG HSHLADD 18 
Load Load HADD,ss HSUB,us 42 

cessing programs. Eventually, even complex media-processing 
tasks like multiway videoconferencing or multiple MPEG-2 
streams may take only a small fraction of a processor’s com- 
putational power. p 

Acknowledgments 
I thank Larry McMahan and Behzad Kazban for help with cod- 

ing the sum of absolute differences, Max, and Min examples. 

References 
1 

2 

3. 

4 

5. 

6 

7. 

8. 

9. 

IO. 

11. 

12. 

13. 

R. Lee and J. Huck, “64-bit and Nlultimedia Extensions for the PA- 
RISC 2.0 Architecture,” Proc. Compcon, IEEE Computer Society 
Press, Los Alamitos, Calif., 1996, pp. 152-I 60 
M. Flynn, “Very High-Speed Computing Systems,” froc. IEEE, Vol 
54, No. 12, Dec. 1966, pp. 1901-1909. 
R.B. Lee, “Accelerating Multimedia with Enhanced Microproces- 
sors,” /EEEMicro, Vol. 15, No. 2, Apr. 1995, pp. 22-32. 
PA-RISC 1.1 Architecture and Instruction Set Recerence Manual, 3rd 
ed., Hewlett-Packard, Cupertino, Calif., 1994. 
G Kane, PA-R/SC2.OArchitecture, Prentice Hail, Old Tappan, N.J., 
1996. 
L Kohn et al., “The Visual Instruction Set (VIS) in UltraSPARC,” Proc. 
Compcon, IEEE CS Press, 1995, pp. 462-469. 
R. Lee, “MultimediaAcceleratIon with Subword Parallelism in Micro- 
processors,” Distinguished lecture Series X, recorded March 24, 
1995, University Video Communications, Stanford, Calif. 
R. Lee, “Realtime MPEG Video via Software Decompression on a 
PA-RISC Processor,” Proc. Compcon, IEEE CS Press, 1995, pp. 1% 
192 
R. Lee, “Precrslon Architecture,” Computer, Vol. 22, No. 1, Jan. 
1989, pp. 78-91. 
D. Hunt, “Advanced Performance Features of the 64.bit PA-8000,” 
Proc. Compcon, IEEE CS Press, 1995, pp. 123-I 28. 
D. Zucker, M. Flynn, and R. Lee, “lmprovrng Performance for Soft- 
ware MPEG Players,” Proc. Compcon, IEEE CS Press, 1996, pp. 327. 
332. 
R. Lee, M. Mahon, and D. Morns, “Pathlength Reduction Features 
in the PA-RISC Architecture,” Proc. Compcon, 1992, IEEE CS Press, 
pp. 129-13s. 
L. Gwennap, “New PA-RISC Processor Decodes MPEG Video,” 
Microprocessor Repoft, Vol. 8, No. 1, Jan. 24, 1994, pp 16-l 7. 

Ruby B. Lee’s photograph and biography appear on p. 9. 
Direct questions concerning this article to Ruby B. Lee, 
Hewlett-Packard, 19410 Homestead Road, MS 43UG, 
Cupertino, CA 95014; rblee@cup.hp.com. 

August 1996 59 


