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Abstract 

The performance of pipelined processors is 
severely limited by data dependencies. In order 
to achieve high performance, a mechanism to 
alleviate the effects of data dependencies must 
exist. If a pipelined CPU with multiple func- 
tional units is to be used in the presence of a vir- 
tual memory hierarchy, a mechanism must also 
exist for determining the state of the machine 
precisely. In this paper, we combine the issues 
of dependency-resolution and preciseness of 
state. We present a design for instruction issue 
logic that resolves dependencies dynamically 
and, at the same time, guarantees a precise state 
of the machine, without a significant hardware 
overhead. Detailed simulation studies for the 
proposed mechanism, using the Lawrence 
Livermore loops as a benchmark, are presented. 

1. INTRODUCTION 

As the demand for processing power increases, computer 
system designers are forced to use techniques that result in 
high-performance processing units. A widely used technique 
is pipelining [1], in which the overall logic of the system is 
split into several stages with each stage performing a sub-task 
of a complete task. Considerable overlap can be achieved 
because each stage can perform a sub-task for a different task. 
Pipelined CPUs have two major impediments to their perfor- 
mance: i) data dependencies and ii) branch instructions. An 
instruction cannot begin execution until its operands are avail- 
able. If an operand is the result of a previous instruction, the 
instruction must wait till the previous instruction has com- 
pleted execution, thereby degrading performance. The perfor- 
mance degradation due to branch instructions is even more 
severe. Not only must a conditional branch instruction walt for 
its condition to be known (resulting in "bubbles" in the pipe- 
line), an additional penalty is incurred in fetching an instruc- 
tion from the taken branch path to the instruction decode and 
issue stage. 
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A major problem that arises in pipelined computer design 
is that an interrupt can be imprecise [2, 3]. This problem is 
especially severe in multiple functional unit computers in 
which instructions can complete execution out of program 
order [2, 4]. For a high-performance, pipelined CPU, an ade- 
quate solution must be found for the imprecise interrupt prob- 
lem and means must be provided for overcoming the 
performance-degrading factors. 

1.1. Background and Previous Work  

The detrimental effects of branch instructions can be 
alleviated by using delayed branch instructions. However, the 
utility of delayed branch instructions is limited for long pipe- 
lines. In such cases, other means must exist to alleviate the 
detrimental effects. A common approach is to use branch 
prediction [5, 6]. Using prediction techniques, the probable 
execution path of a branch instruction is determined. Instruc- 
tions from the predicted path can then be fetched into instruc- 
tion buffers or even executed in a conditional model2, 7, 8]. 
While the conditional mode of execution will result in a higher 
pipeline throughput, especially if the outcome of the branches 
is predicted correctly, a hardware mechanism must exist which 
will allow the machine to recover from an incorrect sequence 
of conditional instructions. 

Both hardware and software solutions exist to the data 
dependency problem. Software solutions use code scheduling 

techniques (combined with a large set of registers) to increase 
the dependency distance and to provide interlocks [9]. 
Hardware solutions employ waiting stations or reservation sta- 
tions where an instruction can wait for its operands and allow 
subsequent instructions to proceed [ 10]. 

In a pipelined machine, imprecise interrupts can be 
caused by instruction-generated traps such as arithmetic excep- 
tions and page faults. An imprecise interrupt can leave the 
machine in an irrecoverable state. While the occurrence of 
arithmetic exceptions is rare, the occurrence of page faults in a 
machine that supports v ~ u a l  memory is not. Therefore, if vir- 
tual memory is to be used with a pipelined CPU, it is crucial 
that interrupts be precise. Several hardware solutions to the 
problem are described in [3]. We are unaware of any software 
solutions to the imprecise interrupt problem for multiple func- 
tional unit computers. A software solution will be extremely 
difficult, if not impossible. Not only must the software allow 
for the worst-case execution time for any instruction, it must 
also keep track of instructions that have completed out of pre- 
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gram order and generate the appropriate code sequence to undo 
the effects of those instructions. In either case, some hardware 
support must be provided to maintain run time information. 

1.2. Outline of the Paper 
In this paper, we treat the problems of dependency resolu- 

tion and imprecise interrupts simultaneously. Since a hardware 
mechanism must exist for implementing precise interrupts, 
why not extend this mechanism to resolve dependencies and 
allow out-of-order instruction execution? 

In section 2, we discuss Tomasulo's dependency- 
resolution algorithm and extend it, giving several variations, so 
that the cost of implementing it is not prohibitive even for a 
large number of registers. In section 3, we discuss the problem 
of imprecise interrupts and present solutions. Section 4 
describes a unit that resolves dependencies as well as imple- 
ments precise interrupts. The precise interrupt and 
dependency-resolution mechanisms mutually aid and simplify 
each other. A simulation analysis of the proposed mechanism 
using several Livermore loops as benchmarks is carried out in 
section 5. Finally, we discuss how our mechanism might be 
used to alleviate the degradation due to branch instructions. 

Throughout the paper, we discuss incremental 
modifications to the basic principles. Data supporting our 
claims for such modifications have been omitted for reasons of 
conciseness. However, we do present detailed simulation data 
for our final design. 

1.3. Model Architecture 

The model architecture that we use for our studies is 
presented in Figure 1. It has the same capabilities and executes 
the same instruction set as the scalar unit of the CRAY-1 
[4, 11]. However, there is a major difference. In our architec- 
ture, all instructions, whether they are composed of I parcel 
(16 bits) or 2 parcels (32 bits) can issue in a single cycle if 
issue conditions are favorable. Therefore, the best-case execu- 
tion time of a conditional branch instruction is 4 clock cycles 
after the condition is known as opposed to 5 clock cycles for 
the CRAY-1 [11]. The CRAY-1 was chosen because it 
represents a state-of-the-art scalar unit and its execution can be 
modeled precisely. The authors also had easy access to tools 
that could be used to generate instruction traces for the 
CRAY-1 scalar unit [12]. The model machine, therefore, con- 
sists of several functional units connected to a common result 
bus. Only one function can output data onto the result bus in 
any clock cycle. Instructions are fetched by the Instruction 
Fetch Unit and decoded and issued by the Decode and Issue 
Unit. Once dependencies have been resolved in the decode 
and issue unit, instructions are forwarded to the functional 
units for execution. The results of the functional units are writ- 
ten direct2y into the register file. The register file consists of 8 

A, 8 S, 64 B and 64 T registers. 

2. DEPENDENCY RESOLUTION: OUT-OF-ORDER 
INSTRUCTION EXECUTION 

When an instruction reaches the decode and issue stage in 
the pipeline, checks must be made to determine if the operands 
for the instruction are available, i.e., if all dependencies for this 
instruction have been resolved. If an operand is not available, 
the instruction must wait. Consequently, subsequent instruc- 
tions cannot proceed even though they may be ready to exe- 
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Figure 1. The Basic Architecture 

cute. Subsequent instructions can proceed if the waiting 
instruction "steps aside," and allows other instructions to 
bypass it while it waits for its operanfs. Reservation stations 
permit an instruction to do this [10]. 

2.1. Tomasulo's Algorithm 

Tomasulo's dependency-resolution algorithm was first 
presented for the floating-point unit of the IBM 360/91 [10]. 
An extension of this algorithm for the scalar unit of the 
CRAY-1 is presented in [13]. The algorithm operates as fol- 
lows. An instruction whose operands are not available when it 
enters the decode and issue stage is forwarded to a Reservation 
Station (RS) associated with the functional unit that it will be 
using. It waits in the RS until its data dependencies have been 
resolved, i.e., its operands are available. Once at a reservation 
station, an instruction can resolve its dependencies by monitor- 
ing the Common Data Bus (the Result Bus in our model archi- 
tecture). When all the operands for an instruction are avail- 
able, it is dispatched to the appropriate functional unit for exe- 
cution. The result bus can be reserved either when the instruc- 
tion is dispatched to the functional unit[13] or soon before it is 
about the leave the functional unit [10]. 

Each source register is assigned a bit that determines if 
rthe register is busy. A register is busy if it is the destination of 
an instruction that is still in execution. A destination register is 
also called a sink register [10]. Each sink register is assigned a 
tag which identifies the result that must be written into the 
register. Since any register in the register file can be a sink, 
each register must be assigned a tag. Each reservation station 
has the following fields: 

Source Operand 1 Source Operand 2 Destination 
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If a source register is busy when the instruction reaches 
the issue stage, the tag for the source register is obtained and 
the instruction is forwarded to a reservation station. If the sink 
register is busy, the instruction fetches a new tag, updates the 
tag of the sink register and proceeds to a reservation station. 
The registers as well as the reservation stations monitor the 
result bus and update their contents when a matching tag is 
found. Memory is treated as a special functional unit. Details 
of the algorithm can be found in [10] and [13]. 

While this algorithm is straightforward and effective, it is 
expensive to implement because each register needs to be 
tagged and each tag needs associative comparison hardware to 
carry out the tag-matching process. This may not be practical 
if the number of possible sink fields, i.e., the number of regis- 
ters is large. For our model architecture which has 8 A, 8 S, 64 
B and 64 T registers, clearly the use of 144 tag-matching 
hardware units is impractical. 

2.2. Extensions to Tomasulo's Algorithm 

2.2.1. A Separate Tag Unit 

On closer inspection we see that very few of all possible 
sink registers may actually be active, i.e., be waiting for a 
result at any given time. Therefore, if we associate a tag with 
each possible sink register, a lot of associative tag-matching 
hardware will be idle at any given time. Why not have a com- 
mon tag pool and assign a tag only to a currently active sink 
register rather than associating a tag with each possible sink 
field? In Tomasulo's algorithm, a currently active register is 
one whose busy bit is on. 

We consolidate the tags from all currently active registers 
into a Tag Unit (TU). Each register now has only a single busy 
bit. At instruction issue time, if a source register is busy, the 
TU is queried for the current tag of the appropriate register and 
the tag is forwarded to the reservation stations. A new tag is 
obtained for the destination register of the instruction. If the 
destination register is not busy, acquiring such a tag from the 
TU is s~aightforward. If the destination register is busy, i.e., 
the TU already holds a tag for the register, a new tag is 
obtained and the instruction holding the old tag is informed 
that, while it may update the register, it may not unlock the 
register, i.e., clear the busy bit. Instruction issue blocks if no 
tag can be obtained, i.e., the TU is full. 

As before, the instruction along with its associated 
tags/operands is forwarded to a reservation station where it 
waits for its operands to become ready. The result from a 
functional unit (along with its tag) is broadcast to all reserva 
tion stations and is also forwarded to the TU. Reservation sta- 
tions monitor the result bus and gate in the result if the tag of 
the data on the result bus matches the tag stored in the reserva- 
tion station. The TU forwards the result to the register 
specified in the appropriate slot of the TU. All registers are, 
therefore, updated only by the TU when their data is available 
and no direct connection is needed between the functional units 
and the register file. When the register has been updated by the 
TU, the corresponding tag is released and is marked free in the 
TU. 

In order to ensure correct operation, i.e., only the latest 
tag for each register is used by all subsequent instructions and 
only the latest instruction updates the busy bit of the register, 

we associate another bit with each TU entry. This bit indicates 
if the tag is the latest tag for the register and if the instruction 
has a key to unlock the register, i.e., clear the busy bit. The 
modified architecture that incorporates a Tag Unit and reserva- 
tion stations associated with each functional unit is shown in 
Figure 2. The reservation stations are modified so that the 
result can be forwarded to the appropriate slot in the TU. The 
new reservation station has the following fields: 

Source Operand 1 Source Operand 2 Destination 
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Figure 2. Issue Logic with a Tag Unit and 

Distributed Reservation Stations 

2.2.1.1. Example 

The operation of the Tag Unit is best illustrated by an 
example. Consider a TU that has 6 entries as shown in Figure 
3. Each entry in the TU has a bit indicating if the tag is free, 
i.e., available for use by the issue logic, a bit indicating if the 
tag is the latest tag for the register and a field for the number of 
the destination register. 

The TU is indexed by the tag number. Consider the exe- 
cution of an instruction 11 that adds the contents of registers SO 
and $7 and put the result in $4. Assume that the state of the 
TU is as shown in Figure 3. When the issue logic decodes 11, 
it attempts to get a new tag for the destination register $4 from 
the TU and obtains tag 3. Since the TU already has a tag for 
$4, the old tag (4) is updated to indicate that it no longer 
represents the latest copy of the register. Since S7's contents 
are valid, they can be read from the register file and forwarded 
to the reservation stations directly. However, since the 
contents of SO are not valid, the latest tag for SO (tag 2) must 
be obtained from the TU. The issue unit forwards a packet to 
the reservation station associated with the add functional unit. 
The packet contains the contents of $7, a tag (2) for SO and a 
tag (3) for the destination register $4. When I t  completes exe- 
cution, i.e., leaves the add functional unit, the result is for- 
warded to all reservation stations that have a matching tag (3) 
and also to the TU. The TU forwards the result to the register 
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Figure 3: A Tag Unit 

file to be written into $4. Since tag 3 is the latest tag for $4, 
S4's  busy bit can be reset when the data has been written into 
$4. Tag 3 is then marked free, i.e., is available for reuse by the 
issue logic. 

2.2.2. Merging the Reservation Stations 

If  each functional unit has a separate set of  reservation 
stations, it is likely that some functional unit will run out of  
reservation stations while the reservation stations associated 
with another functional unit are idle. As suggested in [13], we 
can combine all the reservation stations into a common RS 
Pool rather than having disjoint pools of  reservation stations 
associated with each functional unit. All instructions that were 
previously issued to distributed reservation stations associated 
with the functional units now go to the common RS Pool. 
Instruction issue is blocked if no free reservation station is 
available, i.e., i f  the RS Pool is full. As instructions become 
ready in the RS Pool, they are issued to the functional units. 
All the other functions are as before. 

An organization with merged reservation stations does 
have one disadvantage over distributed reservation stations - 
only one instruction can issue from the RS Pool to the func- 
tional units unless multiple paths are provided between the RS 
Pool and the functional units. On the other hand, a better use 
of  the reservations stations, results since the reservation stations 
can be shared amongst several functional units. We chose to 
provide only a single path from the RS Pool to the functional 
units because our simulations showed that multiple paths 
between the RS Pool and the functional units would not have a 
significant impact on performance. Rather than present 
detailed simulations to support our decision, we use an argu- 
ment based on instruction flow to convince the reader. The RS 
Pool is essentially a reservoir of instructions that is filled by the 
decode and issue logic and drained by the functional units. 
Since the decode and issue logic can fill this reservoir at a 
maximum rate of  1 instruction per cycle, having a drain that is 
capable of  draining more than 1 instruction per cycle will not 
be very useful in a steady state. 

2.2.3. Merging the RS Pool with the Tag Unit  

In the Tag Unit, there is one entry for every instruction 
that is present in either the RS Pool or in the functional units. 
Therefore, at any time, there is a one-to-one correspondence 
between the entries in the TU and the number of  instructions in 
the reservation stations or the functional units. This suggests 
that we can combine the RS Pool and the Tag Unit into a single 

RS Tag Unit (RSTU). In the RSTU, a reservation station is 
reserved at the same time that a tag is reserved. Of  course, a 

reservation station is wasted if it is associated with an instruc- 
tion that is in a functional unit. However, as we shall see in 
section 4, this organization can easily be extended to allow for 
the implementation of  precise interrupts. When an instruction 
issues, it obtains a tag from the RSTU and in doing so automat- 
ically reserves a reservation station. All the other functions are 
as before. Each entry in the RSTU is as follows: 

Tag Tag Latest Source Operand 1 
Number Free Copy 

r Ir Y°+o II Y+o  II R+y i Ta+ i cont   II 

Source Operand 2 Destination 

3. I M P L E M E N T A T I O N  OF  P R E C I S E  I N T E R R U P T S  

Now we address the issue of precise interrupts. A com- 
plete description of  several schemes that implement precise 
interrupts is given in [3]. The scheme of interest to us is the 
reorder buffer. The reorder buffer allows instructions to finish 
execution out of  order but updates the state of the machine 
(registers, memory, etc.), i.e., commits the instructions in the 
order that the instructions were present in the program, thereby 
assuring that a precise state of  the machine is recoverable at 
any time. By forcing an ordering of  commitment amongst the 
instructions, the reorder buffer aggravates data dependencies - 
the value of  a register cannot be read till it has been updated by 
the reorder buffer, even though the instruction that computed a 
value for the register may have completed already. 

An alternative to a simple reorder buffer is to associate 
bypass logic with the reorder buffer. In such an organization, 
an instruction does not have to wait for the reorder buffer to 
update a source register; it can fetch the value from the reorder 
buffer (if it is available) and can issue. With a bypass mechan- 
ism, the issue rate of  the machine is not degraded considerably 
if the size of  the buffer is reasonably large [3]. However, a 
bypass mechanism is expensive to implement since it requires 
a search capability and additional data paths for each buffer 
entry. 

4. M E R G I N G  D E P E N D E N C Y  R E S O L U T I O N  AND PRE-  
CISE  I N T E R R U P T S  

We note that the RSTU of section 2.2.3 can be modified 
to behave like a reorder buffer if  it is forced to update the state 
of  the machine in the order that the instructions are encoun- 
tered. This is easily accomplished by managing the RSTU as a 
queue. Therefore, all that we have to do to implement precise 
interrupts in an architecture with a RSTU is to manage the 
RSTU like a queue. The modified logic is called the Register 
Update Unit (RUU). The RUU is essentially the RSTU con- 
strained to commit instructions in the order that the instructions 
were received by the decode and issue logic (and consequently 
by the RUU). The functional units remain unchanged. The 
modified architecture that uses a RUU to execute instructions 
out of program order and to ensure a precise state of  the 
machine is given in Figure 4. 
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Figure 4. The Modified Architecture with a RUU 

Note the absence of a direct path between the decode and 
issue logic and the functional units. In order to implement pre- 
cise interrupts, every instruction must reserve an entry in the 
RUU. Since every instruction must pass through the RUU, no 
direct connection is needed between the decode and issue logic 
and the functional units. Also note that the CPU's  interactions 
with the memory functional unit have been depicted in more 

detail. In the next few sections, we describe in some detail the 
operation of the modified architecture with a RUU. 

4.1. Decode and Issue Unit 
When an instruction is decoded, the issue logic requests 

an entry in the RUU. If no free entry is available, i.e., the 
RUU is full, instruction issue is blocked. If an entry is avail- 
able, the issue logic obtains the position of the entry (an index 
into the RUU). It then forwards the contents of the source 
registers (if they are available) or a register identifier (the 
register number appended with some extra control bits to be 
used as a tag) to the selected reservation station in the RUU. 
Control bits for the destination register (a complete description 
of which follows in section 4.2.2) in the register file are 
updated and the identifier for the destination register forwarded 
to the RUU. 

4.2. The Register Update Unit 
The RUU is the unit that (i) determines which instruction 

should be issued to the functional units for execution, reserves 
the result bus and dispatches the instruction to the functional 
unit, (ii) determines which instruction can commit, i.e., update 
the state of the machine, (iii) monitors the result bus to resolve 
dependencies and (iv) provides tags to and accepts new 
instructions from the decode and issue logic. The RUU is 
managed like a queue using RUU_Head and RUU_Tail 
pointers. RUU slots that do not lie between RUU_Head and 
RUU_Tail are free. If RUU_Head = RUU_Tail, the RUU is 
full and cannot accept any more instructions from the decode 
and issue logic. In designing the RUU, we keep in mind that 
(i) it should not involve a large amount of comparison 
hardware and (ii) it should not affect the clock speed to an 

intolerable extent. In the next few sections, we describe the 
components of the RUU in some more detail. 

4.2.1. Source Operand Fields 
The design of the source operand fields is straightforward. 

Each source operand field has a ready bit, a tag sub-field and a 
content sub-field as below: 

Source Operand 

I Roady I T.g I Co~e~ I 

If the operand is not ready, the tag sub-field monitors the result 
bus for a matching tag. If a match is detected, the data on the 
bus is gated into the content field. 

4.2.2. Destination Field 

Recall that in the RSTU of section 2.2.3, the issue logic 
needed to search the TU to obtain the correct tag for the source 
operand and to update the latest copy field for the destination 
register. Such a wide associative search may not acceptable 
because of  the large amount of hardware required. If multiple 
instances of  the same destination register are disallowed, no 
associative logic is necessary. An instance of a register is a 
new copy of the register. By providing a new instance for a 
busy destination register, the architecture can process several 
instructions that write into the same register simultaneously. 
Unfortunately, disallowing multiple instances of a destination 
register degrades performance [13]. However, all is not lost. 
As noted in [10], it is possible to eliminate the associative 
search and use a counter to provide multiple instances for each 
register i f  we can guarantee that results return to the registers 
in order. This is exactly the goal of the precise-interrupt 
mechanism. The implementation of precise interrupts, there- 
fore, simplifies the design of the dependency resolution 
mechanism. 

The scheme we use associates 2 n-bit counters (control 
bits) with each register in the register file. There is no busy bit. 
The counters, the Number  o f  Instances (NI) and the Latest 
Instance (LI), represent the number of  instances of  a register in 
the RUU and the number of the latest instance, respectively. 
When an instruction that writes into register Ri is issued to the 
RUU, both NI and LI are incremented. LI is incremented 
modulo n. Up to 2 n-1  instances of a register can be present in 
the RUU at any time; issue is blocked if NI for a destination 
register is 2n-1.  When an instruction leaves the RUU and 
updates the value of Ri, the associated NI is decremented. A 
register is free if  NI = 0, i.e., there is no instruction in the RUU 
that is going to write into the register. 

The register tag sent to the RUU now consists of the 
register number Ri appended with the LI counter. This guaran- 
tees that future instructions access the latest instance, i.e., 
obtain the latest copy of the register contents and that instruc- 
tions already present in the RUU get the correct version of the 
data. In our experiments, each of these counters was 3 bits 
wide. A 3-bit counter ensured that, for our benchmark pro- 
grams, an instruction never blocked in the decode and issue 
stage because an instance of  a register was unavailable. Since 
we had a total of  144 registers, the tag field was 11 (8+3) bits 
wide. There is no need for a Latest Copy field in the RUU and 
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no associative logic is needed to search within the RUU. 

4.2.3. Bypass Logic in the RUU 

One of the primary drawbacks of the simple reorder 
buffer presented in[3] is that performance may be degraded 
because instruction issue is blocked if a source register is busy 
even though its result may be present in the reorder buffer. 
This performance-degrading problem is easily rectified if 
bypass logic is provided so that a source operand could be read 
directly from the reorder buffer before it is written into the 
register file. Such bypass logic though simple, is cumbersome 
and expensive to implement. Does the RUU need such logic? 

Consider an instruction I i that uses the result of  a previ- 
ous instruction l j .  Recall that the reservation stations associ- 
ated with the RUU already have the capability to monitor the 
result bus. Therefore, if  l j  completes execution after I i is 
issued to the RUU, li can gate in the result from l j  when it 
appears on the result bus. In this case, no bypass logic is 
needed. The only case that bypass logic might be helpful is 
when lj has completed execution but has not committed, i.e., 
updated the register file, when I i is issued to the RUU. 

Rather that providing bypass logic for this case, we 
extend the monitoring capabilities of the reservation stations to 
monitor both the result bus and the RUU to register bus. This 
can be accomplished without a substantial increase in 
hardware. Therefore, I i 's  dependency on l j  is resolved when 
Ij puts its result on the RUU to register bus i f l j  has completed 
execution before li is issued to the RUU. If li is issued to the 
RUU before l j  completes, l i ' s  dependency on l j  can be 
resolved when l j  completes and puts its result on the result 
bus. Therefore, instruction I i needs to wait in the decode and 
issue stage only if the RUU is full. 

4.3. Interact ions  with Memory  

Instructions that interact with the memory, i.e., load/store 
instructions, are handled in a special manner. Rather than 
using Load  addresses, a Store data buffer and a Conflict buffer 
as in [13], we keep a set of Load  Registers to resolve depen- 
dencies in the memory functional unit. The reservation sta- 
tions for load/store instructions are provided by the RUU. The 
load registers contain the addresses of "currently active" 
memory locations. Each load register has the LI and NI 
counters to allow for multiple instances of a memory address. 

If the address of a load/store operation is unavailable, 
subsequent load/store instructions in the RUU are not allowed 

to proceed. When a load instruction is allowed to proceed, it 
checks to see if  the address for the load operation matches an 
address stored in the load registers. If  a match occurs and the 
load register is not free (NI is nonzero) the load instruction 
simply forwards a tag to the RUU. The load operation is not 
submitted to the memory. The tag is the number of  the load 
register appended with the LI counter. A match can occur if  
there is either a pending load or a pending store operation. In 
either case, the load need not be submitted to memory since the 
desired data can be obtained when the pending load or store 
operation completes. If  a match occurs for a store instruction, 
the NI and LI counters are incremented and the new tag for- 
warded to the RUU. 

If no match occurs for either operation, a free load regis- 
ter is obtained. A load register is free if  there are no pending 
load or store instructions to the memory address held in the 
load register, i.e., NI = 0. The NI counter is set to 1 and the LI 
counter is set to 0. The load request is submitted to memory. 
The corresponding tag is also submitted to memory so that the 
data supplied by the memory may be read by the appropriate 
source operands in the RUU. Load/store instructions are not 
issued by the RUU if a free load register is not available. 
When the result for a load operation returns from the memory 
or the store operation is committed by the RUU, NI is decre- 
mented. The data and the address are forwarded to the memory 
in case of  a store operation. 

Note that decode and issue unit logic needs to search the 
load registers associatively for memory addresses. However, 
the hardware needed for this comparison is not very great for a 
small number of  load registers. In our simulations, we used 6 
load registers though 4 were sufficient for most cases. 

4.4. Opera t ion  of  the RUU 

In each clock cycle, the RUU carries out 4 distinct tasks: 
(i) it accepts an instruction from the issue logic, (ii) it commits 
an instruction, i.e., updates the register file, (iii) it issues an 
instruction to the functional units and (iv) it monitors the 
busses for matching tags. This constitutes a lot of  work; how- 
ever, each of these tasks can be carded out in parallel. 

Accepting a new task is straightforward. If an entry in the 
RUU is free, the issue logic updates the fields of  the selected 
entry. If the instruction at the head of  the RUU has finished 
execution, its results are forwarded to the register file. If  the 
operands of  an instruction in the RUU are ready, the instruc- 
tion can issue to the functional units. Priority is first given to 
load/store instructions and then to an instruction which entered 
the RUU earlier. The RUU reserves the result bus when it 
issues an instruction to the functional units. The final task of  
monitoring the busses is left to the tag-matching logic in the 
source-operand fields. Each entry in the RUU is, therefore: 

Source Operand 1 Source Operand 2 

Destination Executed Program Counter 

I Rogis r,  I con  t II II co  ot I 

The Program Counter field is needed for the implementation of  
precise interrupts [3]. For the sake of brevity, we have omitted 
the details of  extra information that must be carded around 
with each instruction (such as tags and RUU entry numbers). 
The details of  such information are obvious. 

5. S I M U L A T I O N  R E S U L T S  

In order to evaluate the effectiveness of  the RUU, we car- 
ried out trace-driven simulations. The benchmark programs 
used for all our simulations were the Lawrence Livermore 
loops [14]. The first 14 loops were chosen because they were 
readily available. Henceforth, we shall refer to them as LL1, 
LL2 . . . . .  LL14. The simulations were carded out as follows. 
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The benchmark programs, as compiled by the CFT compiler 
for the scalar unit, were fed into the CRAY-1 simulator [12]. 
The CRAY-1 simulator generates an instruction trace for each 
program. Vector instructions are not used. Each instruction 
trace was then fed into our simulator to calculate the execution 
time and the relative speedup for different RUU sizes. Our 
simulator converts 2 parcel instructions to 1 parcel instructions 
when they are encountered. 

In our simulations, the LI and NI counters were each 3 
bits wide thereby allowing up to 7 instances of a register in the 
RUU. This was useful in loops 7, 8, 9 and 14 which updated 
the contents of registers frequently. We used 6 load registers 
so that the issue of a load/store instruction is never blocked 
because a load register is unavailable. Furthermore, an instruc- 
tion left the RUU only when it was executed completely. 
Specifically, load instructions did not leave the RUU for at 
least 10 cycles after they were issued to the memory (the time 
taken for the result to come back from the memory). 

Table 1 presents the speedups for a RUU with bypass 
logic over a simple CRAY-like instruction issue mechan- 
ism[13] for different sizes of the RUU. A speedup of greater 
than 1 implies that the instruction issue mechanism using a 
RUU is faster than the simple CRAY-like instruction issue 
mechanism. Note that the CRAY-like instruction issue 
mechanism does not implement precise interrupts. The aver- 
age column is the average for all 14 loops. The results are 
quite encouraging. A RUU with a reasonable number of 
entries (8-12), not only speeds up execution, it also provides 
precise interrupts. We would like to point out that we have 
assumed that the clock period for our mechanism is the same 
as the clock period for the simple CRAY-like instruction issue 
mechanism. Unfortunately, we cannot verify this assumption 
till a hardware implementation is actually realized. If the clock 
periods are indeed different, the speedup factors would have to 
be normalized accordingly. 

Since bypass logic is expensive, we decided to evaluate a 
RUU that did not have any bypass logic but its reservation sta- 
tions monitored both the result bus and the RUU to register bus 
as discussed in section 4.2.3. The results are presented in 
Table 2. For many cases, the presence of bypass logic made a 
negligible difference, if any. On the average, a RUU with no 
bypass logic is still able to speed up the execution time and, at 
the same time, implement precise interrupts. The RUU is spe- 
cially able to speedup loops that make heavy use of the B and 
T register files (loops 3, 4 and 8). 

From tables 1 and 2, it may seem that a reasonably large 
sized RUU is needed to achieve a performance improvement. 
The main reason for the large RUU size is that, in our simula- 
tions, load instructions did not free a slot in the RUU till the 
instruction was completely executed (10 cycles). Conse- 
quently, instruction issue is blocked because of unavailable 
RUU slots. If, as in [3], we had allowed load instructions to 
free RUU slots as soon as it was determined that they would 
not cause exceptions, much smaller RUU sizes would be 
needed. Even for the presented results we note that an archi- 
tecture with a RUU of size 10 has comparable hardware 
requirements to an architecture that associates only a single 
reservation station with each of the functional units and does 
not associate any tags with the registers. 

6. BRANCH PREDICTION AND CONDITIONAL 
INSTRUCTIONS 

As mentioned earlier, the performance degradation due to 
branches can be reduced by conditionally executing instruc- 
tions from a predicted branch path. Several architectures 
employ this approach [2, 8, 15]. To allow conditional execu- 
tion of instructions, a hardware mechanism is needed that 
would allow the machine to recover from an incorrect branch 
prediction. 

The RUU provides a very powerful mechanism for nulli- 
fying instructions, be the instructions valid instructions or 
instructions that executed in a conditional mode. Valid 
instructions may be nullified because of an interrupt caused by 
a previous instruction; conditionally executed instructions may 
be nullified if they are from an incorrect execution path. 
Therefore, the conditional execution of instructions with a 
RUU is very easy. If the decode and issue unit predicts the 
outcome of branches and actually executes instructions from a 
predicted path in a conditional mode, recovery from incorrect 
branch predictions can be achieved very easily without dupli- 
cating the register file. We can identify such instructions 
through the use of an additional field in the RUU and prevent 
them from being committed until they are proven to be from a 
correct path. Furthermore, there is no hard limit to the number 
of branches that can be predicted in a branch path; the RUU 
can provide multiple instances of a register for the different 
paths. This is in contrast to the approach taken in [15]. 
Extending the RUU to accommodate branch prediction and 
conditional execution is a topic for future research. 

7. CONCLUSION 

In this paper, we have combined the issues of hardware 
dependency-resolution and implementation of precise inter- 
rupts. We devised a scheme that can resolve dependencies and 
thereby allow out-of-order instruction execution without asso- 
ciating tag-matching hardware with each register. Such a 
scheme can, therefore, be used even in the presence of a large 
number of registers without a substantial hardware cost. Then 
we extended the scheme to incorporate precise interrupts. The 
precise interrupt and the dependency-resolution mechanisms 
mutually aid and simplify each other. We evaluated the per- 
formance of the resulting hardware that allows out-of-order 
instruction execution and also implements precise interrupts 
using several Livermore loops as the benchmark. The results 
are quite encouraging. The combined mechanism, called the 
RUU, is able to implement precise interrupts and is able to 

achieve a significant performance improvement over a simple 
instruction issue mechanism without a substantial cost in 
hardware. We noted that this mechanism can easily be 
extended to support conditional execution of instructions from 
a predicted branch path. 
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Table 1: Relative Speedups with Bypass Logic 

RUU Size 
Benchmark ' 

LL1 
LL2 
LL3 
LL4 
LL5 
LL6 
LL7 
LL8 
LL9 
LL10 
LL11 
LL12 
LL13 
LL14 
Average 

4 6 8 10 12 14 16 18 20 30 50 
0.95 1.04 1.26 1.48 1.59 1.78 1.78 1.78 1.78 1.78 1.94 
0.76 0.92 1.04 1.20 1.22 1.22 1.22 1.22 1.22 1.22 1.70 
1.00 1.05 1.27 1.42 1.76 1.76 1.84 1.94 2.05 2 . 0 5  2.05 
1.02 1.13 1.20 1.28 1.37 1.78 1.78 1.78 1.78 1.78 1.78 
0.87 0.98 1.19 1.26 1.34 1.40 1.44 1.44 1.44 1.44 2.02 
0.81 1.01 1.17 1.26 1.34 1.40 1.46 1.49 1.50 1.50 2.04 
0.81 1.10 1.43 1.60 1.73 1.84 1.94 1.97 1.91 1.96 2.01 
0.54 0.78 0.93 1.04 1.09 1.15 1.16 1.16 1.15 1.24 1.60 
0.70 0.90 1.06 1.16 1.22 1.27 1.32 1.42 1.42 1.41 1.80 
0.83 1.01 1.06 1.17 1.20 1.20 1.20 1.20 1.20 1.20 1.75 
0.71 0.75 0.93 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.39 
0.93 1.00 1.33 1.47 1.55 1.55 1.55 1.55 1.55 1.55 1.69 
0.82 1.09 1.18 1.35 11.41 1.50 1.52 1.53 1.57 1.68 1.79 
0.90 1.13 1.31 1.38 1.43 1.55 1.83 1.89 1.95 2.06 2.09 

I 

0.85 0.99 1.17 I 1.29 ] 1.37 1.44 1.48 1.50 1.51 1.53 1.81 

Table 2: Relative Speedups with No Bypass Logic 

Benchmark 

LL1 
LL2 
LL3 
LL4 
LL5 
LL6 
LL7 
LL8 
LL9 
LL10 
LL11 
LL12 
LL13 
LL14 
Average 

RUU Size 

4 6 8 10 l 12 14 16 18 20 30 50 
0.91 1.02 1.22, 1 . 3 0 1 . 3 0  1.34 1.34 1.34 1.34 1.34 1.87 
0.74 0.88 1.01 ] 1.17 1.19 1.19 1.19 1.19 1.19 1.19 1.68 
1.00 1.05 1.271 1.42 1.76 1.76 1.84 1.94 2.05 2.05 i 2.05 
0.97 1.02 1 .08 :1 .14  1.36 1.46 1.46 1.52 1.54 1.47 1.77 
0.82 0.95 1.06 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.90 
0.77 0.93 1.01 1.06 1.10 1.10 1.10 1.10 1.08 1.19 2.05 
0.81 1.05 1.21 1.26 1.31 1.24 1.24 1.27 1.28 1.62 2.00 
0.54 0.76 0 . 9 1  0.98 0.99 1.05 1.06 1.06 1.09 1.11 1.56 
0.69 0.88 1.04 1.11 1.14 1.19 1.18 1.17 1.19 1.20 1.80 
0.83 1.00 1.03 1.14 1.13 1.14 1.14 1.14 1.14 1.16 1.75 
0.69 0.75 0.93 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.39 
0.93 1.00 1.33 1.47 1.55 1.55 1.55 1.55 1.55 1.55 1.69 
0.82 1.02 1.16 1.27 1.39 1.3~5 1.44 1.45 1.45 1.39 1.70 
0.83 0.95 1.05 1.04 1.07 1.08 1.20 1.18 1.23 1.53 1.98 

i t i t i i i i i i 

0.82 0.94 1.10 1.18 1.25 1.26 1.29 1.30 1.31 1.35 1.79 
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