
INSTRUCTION ISSUE LOGIC FOR HIGH-PERFORMANCE,

INTERRUPTABLE P1PELINED PROCESSORS

Gurindar S. Sohi and Sriram Vajapeyam

Computer Sciences Department
University of Wisconsin.Madison

1210 West Dayton Street
Madison, Wisconsin 53706

Abstract

The performance of pipelined processors is
severely limited by data dependencies. In order
to achieve high performance, a mechanism to
alleviate the effects of data dependencies must
exist. If a pipelined CPU with multiple func-
tional units is to be used in the presence of a vir-
tual memory hierarchy, a mechanism must also
exist for determining the state of the machine
precisely. In this paper, we combine the issues
of dependency-resolution and preciseness of
state. We present a design for instruction issue
logic that resolves dependencies dynamically
and, at the same time, guarantees a precise state
of the machine, without a significant hardware
overhead. Detailed simulation studies for the
proposed mechanism, using the Lawrence
Livermore loops as a benchmark, are presented.

1. INTRODUCTION

As the demand for processing power increases, computer
system designers are forced to use techniques that result in
high-performance processing units. A widely used technique
is pipelining [1], in which the overall logic of the system is
split into several stages with each stage performing a sub-task
of a complete task. Considerable overlap can be achieved
because each stage can perform a sub-task for a different task.
Pipelined CPUs have two major impediments to their perfor-
mance: i) data dependencies and ii) branch instructions. An
instruction cannot begin execution until its operands are avail-
able. If an operand is the result of a previous instruction, the
instruction must wait till the previous instruction has com-
pleted execution, thereby degrading performance. The perfor-
mance degradation due to branch instructions is even more
severe. Not only must a conditional branch instruction walt for
its condition to be known (resulting in "bubbles" in the pipe-
line), an additional penalty is incurred in fetching an instruc-
tion from the taken branch path to the instruction decode and
issue stage.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

A major problem that arises in pipelined computer design
is that an interrupt can be imprecise [2, 3]. This problem is
especially severe in multiple functional unit computers in
which instructions can complete execution out of program
order [2, 4]. For a high-performance, pipelined CPU, an ade-
quate solution must be found for the imprecise interrupt prob-
lem and means must be provided for overcoming the
performance-degrading factors.

1.1. Background and Previous Work

The detrimental effects of branch instructions can be
alleviated by using delayed branch instructions. However, the
utility of delayed branch instructions is limited for long pipe-
lines. In such cases, other means must exist to alleviate the
detrimental effects. A common approach is to use branch
prediction [5, 6]. Using prediction techniques, the probable
execution path of a branch instruction is determined. Instruc-
tions from the predicted path can then be fetched into instruc-
tion buffers or even executed in a conditional model2, 7, 8].
While the conditional mode of execution will result in a higher
pipeline throughput, especially if the outcome of the branches
is predicted correctly, a hardware mechanism must exist which
will allow the machine to recover from an incorrect sequence
of conditional instructions.

Both hardware and software solutions exist to the data
dependency problem. Software solutions use code scheduling

techniques (combined with a large set of registers) to increase
the dependency distance and to provide interlocks [9].
Hardware solutions employ waiting stations or reservation sta-
tions where an instruction can wait for its operands and allow
subsequent instructions to proceed [10].

In a pipelined machine, imprecise interrupts can be
caused by instruction-generated traps such as arithmetic excep-
tions and page faults. An imprecise interrupt can leave the
machine in an irrecoverable state. While the occurrence of
arithmetic exceptions is rare, the occurrence of page faults in a
machine that supports v ~ u a l memory is not. Therefore, if vir-
tual memory is to be used with a pipelined CPU, it is crucial
that interrupts be precise. Several hardware solutions to the
problem are described in [3]. We are unaware of any software
solutions to the imprecise interrupt problem for multiple func-
tional unit computers. A software solution will be extremely
difficult, if not impossible. Not only must the software allow
for the worst-case execution time for any instruction, it must
also keep track of instructions that have completed out of pre-

© 1987 ACM 0084-7495/87/0600-0027500,75
27

gram order and generate the appropriate code sequence to undo
the effects of those instructions. In either case, some hardware
support must be provided to maintain run time information.

1.2. Outline of the Paper
In this paper, we treat the problems of dependency resolu-

tion and imprecise interrupts simultaneously. Since a hardware
mechanism must exist for implementing precise interrupts,
why not extend this mechanism to resolve dependencies and
allow out-of-order instruction execution?

In section 2, we discuss Tomasulo's dependency-
resolution algorithm and extend it, giving several variations, so
that the cost of implementing it is not prohibitive even for a
large number of registers. In section 3, we discuss the problem
of imprecise interrupts and present solutions. Section 4
describes a unit that resolves dependencies as well as imple-
ments precise interrupts. The precise interrupt and
dependency-resolution mechanisms mutually aid and simplify
each other. A simulation analysis of the proposed mechanism
using several Livermore loops as benchmarks is carried out in
section 5. Finally, we discuss how our mechanism might be
used to alleviate the degradation due to branch instructions.

Throughout the paper, we discuss incremental
modifications to the basic principles. Data supporting our
claims for such modifications have been omitted for reasons of
conciseness. However, we do present detailed simulation data
for our final design.

1.3. Model Architecture

The model architecture that we use for our studies is
presented in Figure 1. It has the same capabilities and executes
the same instruction set as the scalar unit of the CRAY-1
[4, 11]. However, there is a major difference. In our architec-
ture, all instructions, whether they are composed of I parcel
(16 bits) or 2 parcels (32 bits) can issue in a single cycle if
issue conditions are favorable. Therefore, the best-case execu-
tion time of a conditional branch instruction is 4 clock cycles
after the condition is known as opposed to 5 clock cycles for
the CRAY-1 [11]. The CRAY-1 was chosen because it
represents a state-of-the-art scalar unit and its execution can be
modeled precisely. The authors also had easy access to tools
that could be used to generate instruction traces for the
CRAY-1 scalar unit [12]. The model machine, therefore, con-
sists of several functional units connected to a common result
bus. Only one function can output data onto the result bus in
any clock cycle. Instructions are fetched by the Instruction
Fetch Unit and decoded and issued by the Decode and Issue
Unit. Once dependencies have been resolved in the decode
and issue unit, instructions are forwarded to the functional
units for execution. The results of the functional units are writ-
ten direct2y into the register file. The register file consists of 8

A, 8 S, 64 B and 64 T registers.

2. DEPENDENCY RESOLUTION: OUT-OF-ORDER
INSTRUCTION EXECUTION

When an instruction reaches the decode and issue stage in
the pipeline, checks must be made to determine if the operands
for the instruction are available, i.e., if all dependencies for this
instruction have been resolved. If an operand is not available,
the instruction must wait. Consequently, subsequent instruc-
tions cannot proceed even though they may be ready to exe-

Functional
Units

i From Memory

I Register
Instruction Fetch Unit ,I r File

l i

[, ' IZ

Res~tBus

Figure 1. The Basic Architecture

cute. Subsequent instructions can proceed if the waiting
instruction "steps aside," and allows other instructions to
bypass it while it waits for its operanfs. Reservation stations
permit an instruction to do this [10].

2.1. Tomasulo's Algorithm

Tomasulo's dependency-resolution algorithm was first
presented for the floating-point unit of the IBM 360/91 [10].
An extension of this algorithm for the scalar unit of the
CRAY-1 is presented in [13]. The algorithm operates as fol-
lows. An instruction whose operands are not available when it
enters the decode and issue stage is forwarded to a Reservation
Station (RS) associated with the functional unit that it will be
using. It waits in the RS until its data dependencies have been
resolved, i.e., its operands are available. Once at a reservation
station, an instruction can resolve its dependencies by monitor-
ing the Common Data Bus (the Result Bus in our model archi-
tecture). When all the operands for an instruction are avail-
able, it is dispatched to the appropriate functional unit for exe-
cution. The result bus can be reserved either when the instruc-
tion is dispatched to the functional unit[13] or soon before it is
about the leave the functional unit [10].

Each source register is assigned a bit that determines if
rthe register is busy. A register is busy if it is the destination of
an instruction that is still in execution. A destination register is
also called a sink register [10]. Each sink register is assigned a
tag which identifies the result that must be written into the
register. Since any register in the register file can be a sink,
each register must be assigned a tag. Each reservation station
has the following fields:

Source Operand 1 Source Operand 2 Destination

28

If a source register is busy when the instruction reaches
the issue stage, the tag for the source register is obtained and
the instruction is forwarded to a reservation station. If the sink
register is busy, the instruction fetches a new tag, updates the
tag of the sink register and proceeds to a reservation station.
The registers as well as the reservation stations monitor the
result bus and update their contents when a matching tag is
found. Memory is treated as a special functional unit. Details
of the algorithm can be found in [10] and [13].

While this algorithm is straightforward and effective, it is
expensive to implement because each register needs to be
tagged and each tag needs associative comparison hardware to
carry out the tag-matching process. This may not be practical
if the number of possible sink fields, i.e., the number of regis-
ters is large. For our model architecture which has 8 A, 8 S, 64
B and 64 T registers, clearly the use of 144 tag-matching
hardware units is impractical.

2.2. Extensions to Tomasulo's Algorithm

2.2.1. A Separate Tag Unit

On closer inspection we see that very few of all possible
sink registers may actually be active, i.e., be waiting for a
result at any given time. Therefore, if we associate a tag with
each possible sink register, a lot of associative tag-matching
hardware will be idle at any given time. Why not have a com-
mon tag pool and assign a tag only to a currently active sink
register rather than associating a tag with each possible sink
field? In Tomasulo's algorithm, a currently active register is
one whose busy bit is on.

We consolidate the tags from all currently active registers
into a Tag Unit (TU). Each register now has only a single busy
bit. At instruction issue time, if a source register is busy, the
TU is queried for the current tag of the appropriate register and
the tag is forwarded to the reservation stations. A new tag is
obtained for the destination register of the instruction. If the
destination register is not busy, acquiring such a tag from the
TU is s~aightforward. If the destination register is busy, i.e.,
the TU already holds a tag for the register, a new tag is
obtained and the instruction holding the old tag is informed
that, while it may update the register, it may not unlock the
register, i.e., clear the busy bit. Instruction issue blocks if no
tag can be obtained, i.e., the TU is full.

As before, the instruction along with its associated
tags/operands is forwarded to a reservation station where it
waits for its operands to become ready. The result from a
functional unit (along with its tag) is broadcast to all reserva
tion stations and is also forwarded to the TU. Reservation sta-
tions monitor the result bus and gate in the result if the tag of
the data on the result bus matches the tag stored in the reserva-
tion station. The TU forwards the result to the register
specified in the appropriate slot of the TU. All registers are,
therefore, updated only by the TU when their data is available
and no direct connection is needed between the functional units
and the register file. When the register has been updated by the
TU, the corresponding tag is released and is marked free in the
TU.

In order to ensure correct operation, i.e., only the latest
tag for each register is used by all subsequent instructions and
only the latest instruction updates the busy bit of the register,

we associate another bit with each TU entry. This bit indicates
if the tag is the latest tag for the register and if the instruction
has a key to unlock the register, i.e., clear the busy bit. The
modified architecture that incorporates a Tag Unit and reserva-
tion stations associated with each functional unit is shown in
Figure 2. The reservation stations are modified so that the
result can be forwarded to the appropriate slot in the TU. The
new reservation station has the following fields:

Source Operand 1 Source Operand 2 Destination

I

stations II~

Functional I Units

Result Bus

I From Memory

Register
I File Instruction Fetch Unit I

I

Decode and Issue Unit

'[][],
f

lIl...II V
Figure 2. Issue Logic with a Tag Unit and

Distributed Reservation Stations

2.2.1.1. Example

The operation of the Tag Unit is best illustrated by an
example. Consider a TU that has 6 entries as shown in Figure
3. Each entry in the TU has a bit indicating if the tag is free,
i.e., available for use by the issue logic, a bit indicating if the
tag is the latest tag for the register and a field for the number of
the destination register.

The TU is indexed by the tag number. Consider the exe-
cution of an instruction 11 that adds the contents of registers SO
and $7 and put the result in $4. Assume that the state of the
TU is as shown in Figure 3. When the issue logic decodes 11,
it attempts to get a new tag for the destination register $4 from
the TU and obtains tag 3. Since the TU already has a tag for
$4, the old tag (4) is updated to indicate that it no longer
represents the latest copy of the register. Since S7's contents
are valid, they can be read from the register file and forwarded
to the reservation stations directly. However, since the
contents of SO are not valid, the latest tag for SO (tag 2) must
be obtained from the TU. The issue unit forwards a packet to
the reservation station associated with the add functional unit.
The packet contains the contents of $7, a tag (2) for SO and a
tag (3) for the destination register $4. When I t completes exe-
cution, i.e., leaves the add functional unit, the result is for-
warded to all reservation stations that have a matching tag (3)
and also to the TU. The TU forwards the result to the register

29

Tag Register Tag
Number Number Free

1 A0 N
2 SO N
3 NIL Y
4 $4 N
5 SO N
6 $3 N

Latest
Co

Y
Y
Y
Y
N
Y

Figure 3: A Tag Unit

file to be written into $4. Since tag 3 is the latest tag for $4,
S4's busy bit can be reset when the data has been written into
$4. Tag 3 is then marked free, i.e., is available for reuse by the
issue logic.

2.2.2. Merging the Reservation Stations

If each functional unit has a separate set of reservation
stations, it is likely that some functional unit will run out of
reservation stations while the reservation stations associated
with another functional unit are idle. As suggested in [13], we
can combine all the reservation stations into a common RS
Pool rather than having disjoint pools of reservation stations
associated with each functional unit. All instructions that were
previously issued to distributed reservation stations associated
with the functional units now go to the common RS Pool.
Instruction issue is blocked if no free reservation station is
available, i.e., i f the RS Pool is full. As instructions become
ready in the RS Pool, they are issued to the functional units.
All the other functions are as before.

An organization with merged reservation stations does
have one disadvantage over distributed reservation stations -
only one instruction can issue from the RS Pool to the func-
tional units unless multiple paths are provided between the RS
Pool and the functional units. On the other hand, a better use
of the reservations stations, results since the reservation stations
can be shared amongst several functional units. We chose to
provide only a single path from the RS Pool to the functional
units because our simulations showed that multiple paths
between the RS Pool and the functional units would not have a
significant impact on performance. Rather than present
detailed simulations to support our decision, we use an argu-
ment based on instruction flow to convince the reader. The RS
Pool is essentially a reservoir of instructions that is filled by the
decode and issue logic and drained by the functional units.
Since the decode and issue logic can fill this reservoir at a
maximum rate of 1 instruction per cycle, having a drain that is
capable of draining more than 1 instruction per cycle will not
be very useful in a steady state.

2.2.3. Merging the RS Pool with the Tag Unit

In the Tag Unit, there is one entry for every instruction
that is present in either the RS Pool or in the functional units.
Therefore, at any time, there is a one-to-one correspondence
between the entries in the TU and the number of instructions in
the reservation stations or the functional units. This suggests
that we can combine the RS Pool and the Tag Unit into a single

RS Tag Unit (RSTU). In the RSTU, a reservation station is
reserved at the same time that a tag is reserved. Of course, a

reservation station is wasted if it is associated with an instruc-
tion that is in a functional unit. However, as we shall see in
section 4, this organization can easily be extended to allow for
the implementation of precise interrupts. When an instruction
issues, it obtains a tag from the RSTU and in doing so automat-
ically reserves a reservation station. All the other functions are
as before. Each entry in the RSTU is as follows:

Tag Tag Latest Source Operand 1
Number Free Copy

r Ir Y°+o II Y+o II R+y i Ta+ i cont II

Source Operand 2 Destination

3. I M P L E M E N T A T I O N OF P R E C I S E I N T E R R U P T S

Now we address the issue of precise interrupts. A com-
plete description of several schemes that implement precise
interrupts is given in [3]. The scheme of interest to us is the
reorder buffer. The reorder buffer allows instructions to finish
execution out of order but updates the state of the machine
(registers, memory, etc.), i.e., commits the instructions in the
order that the instructions were present in the program, thereby
assuring that a precise state of the machine is recoverable at
any time. By forcing an ordering of commitment amongst the
instructions, the reorder buffer aggravates data dependencies -
the value of a register cannot be read till it has been updated by
the reorder buffer, even though the instruction that computed a
value for the register may have completed already.

An alternative to a simple reorder buffer is to associate
bypass logic with the reorder buffer. In such an organization,
an instruction does not have to wait for the reorder buffer to
update a source register; it can fetch the value from the reorder
buffer (if it is available) and can issue. With a bypass mechan-
ism, the issue rate of the machine is not degraded considerably
if the size of the buffer is reasonably large [3]. However, a
bypass mechanism is expensive to implement since it requires
a search capability and additional data paths for each buffer
entry.

4. M E R G I N G D E P E N D E N C Y R E S O L U T I O N AND PRE-
CISE I N T E R R U P T S

We note that the RSTU of section 2.2.3 can be modified
to behave like a reorder buffer if it is forced to update the state
of the machine in the order that the instructions are encoun-
tered. This is easily accomplished by managing the RSTU as a
queue. Therefore, all that we have to do to implement precise
interrupts in an architecture with a RSTU is to manage the
RSTU like a queue. The modified logic is called the Register
Update Unit (RUU). The RUU is essentially the RSTU con-
strained to commit instructions in the order that the instructions
were received by the decode and issue logic (and consequently
by the RUU). The functional units remain unchanged. The
modified architecture that uses a RUU to execute instructions
out of program order and to ensure a precise state of the
machine is given in Figure 4.

30

Functional

I From Memory

Instruction Fetch Unitj

m
Register Update Unit],

Register
File

I

T

~ Load
Registers

Units

Result Bus

Figure 4. The Modified Architecture with a RUU

Note the absence of a direct path between the decode and
issue logic and the functional units. In order to implement pre-
cise interrupts, every instruction must reserve an entry in the
RUU. Since every instruction must pass through the RUU, no
direct connection is needed between the decode and issue logic
and the functional units. Also note that the CPU's interactions
with the memory functional unit have been depicted in more

detail. In the next few sections, we describe in some detail the
operation of the modified architecture with a RUU.

4.1. Decode and Issue Unit
When an instruction is decoded, the issue logic requests

an entry in the RUU. If no free entry is available, i.e., the
RUU is full, instruction issue is blocked. If an entry is avail-
able, the issue logic obtains the position of the entry (an index
into the RUU). It then forwards the contents of the source
registers (if they are available) or a register identifier (the
register number appended with some extra control bits to be
used as a tag) to the selected reservation station in the RUU.
Control bits for the destination register (a complete description
of which follows in section 4.2.2) in the register file are
updated and the identifier for the destination register forwarded
to the RUU.

4.2. The Register Update Unit
The RUU is the unit that (i) determines which instruction

should be issued to the functional units for execution, reserves
the result bus and dispatches the instruction to the functional
unit, (ii) determines which instruction can commit, i.e., update
the state of the machine, (iii) monitors the result bus to resolve
dependencies and (iv) provides tags to and accepts new
instructions from the decode and issue logic. The RUU is
managed like a queue using RUU_Head and RUU_Tail
pointers. RUU slots that do not lie between RUU_Head and
RUU_Tail are free. If RUU_Head = RUU_Tail, the RUU is
full and cannot accept any more instructions from the decode
and issue logic. In designing the RUU, we keep in mind that
(i) it should not involve a large amount of comparison
hardware and (ii) it should not affect the clock speed to an

intolerable extent. In the next few sections, we describe the
components of the RUU in some more detail.

4.2.1. Source Operand Fields
The design of the source operand fields is straightforward.

Each source operand field has a ready bit, a tag sub-field and a
content sub-field as below:

Source Operand

I Roady I T.g I Co~e~ I

If the operand is not ready, the tag sub-field monitors the result
bus for a matching tag. If a match is detected, the data on the
bus is gated into the content field.

4.2.2. Destination Field

Recall that in the RSTU of section 2.2.3, the issue logic
needed to search the TU to obtain the correct tag for the source
operand and to update the latest copy field for the destination
register. Such a wide associative search may not acceptable
because of the large amount of hardware required. If multiple
instances of the same destination register are disallowed, no
associative logic is necessary. An instance of a register is a
new copy of the register. By providing a new instance for a
busy destination register, the architecture can process several
instructions that write into the same register simultaneously.
Unfortunately, disallowing multiple instances of a destination
register degrades performance [13]. However, all is not lost.
As noted in [10], it is possible to eliminate the associative
search and use a counter to provide multiple instances for each
register i f we can guarantee that results return to the registers
in order. This is exactly the goal of the precise-interrupt
mechanism. The implementation of precise interrupts, there-
fore, simplifies the design of the dependency resolution
mechanism.

The scheme we use associates 2 n-bit counters (control
bits) with each register in the register file. There is no busy bit.
The counters, the Number o f Instances (NI) and the Latest
Instance (LI), represent the number of instances of a register in
the RUU and the number of the latest instance, respectively.
When an instruction that writes into register Ri is issued to the
RUU, both NI and LI are incremented. LI is incremented
modulo n. Up to 2 n-1 instances of a register can be present in
the RUU at any time; issue is blocked if NI for a destination
register is 2n-1. When an instruction leaves the RUU and
updates the value of Ri, the associated NI is decremented. A
register is free if NI = 0, i.e., there is no instruction in the RUU
that is going to write into the register.

The register tag sent to the RUU now consists of the
register number Ri appended with the LI counter. This guaran-
tees that future instructions access the latest instance, i.e.,
obtain the latest copy of the register contents and that instruc-
tions already present in the RUU get the correct version of the
data. In our experiments, each of these counters was 3 bits
wide. A 3-bit counter ensured that, for our benchmark pro-
grams, an instruction never blocked in the decode and issue
stage because an instance of a register was unavailable. Since
we had a total of 144 registers, the tag field was 11 (8+3) bits
wide. There is no need for a Latest Copy field in the RUU and

31

no associative logic is needed to search within the RUU.

4.2.3. Bypass Logic in the RUU

One of the primary drawbacks of the simple reorder
buffer presented in[3] is that performance may be degraded
because instruction issue is blocked if a source register is busy
even though its result may be present in the reorder buffer.
This performance-degrading problem is easily rectified if
bypass logic is provided so that a source operand could be read
directly from the reorder buffer before it is written into the
register file. Such bypass logic though simple, is cumbersome
and expensive to implement. Does the RUU need such logic?

Consider an instruction I i that uses the result of a previ-
ous instruction l j . Recall that the reservation stations associ-
ated with the RUU already have the capability to monitor the
result bus. Therefore, if l j completes execution after I i is
issued to the RUU, li can gate in the result from l j when it
appears on the result bus. In this case, no bypass logic is
needed. The only case that bypass logic might be helpful is
when lj has completed execution but has not committed, i.e.,
updated the register file, when I i is issued to the RUU.

Rather that providing bypass logic for this case, we
extend the monitoring capabilities of the reservation stations to
monitor both the result bus and the RUU to register bus. This
can be accomplished without a substantial increase in
hardware. Therefore, I i 's dependency on l j is resolved when
Ij puts its result on the RUU to register bus i f l j has completed
execution before li is issued to the RUU. If li is issued to the
RUU before l j completes, l i ' s dependency on l j can be
resolved when l j completes and puts its result on the result
bus. Therefore, instruction I i needs to wait in the decode and
issue stage only if the RUU is full.

4.3. Interact ions with Memory

Instructions that interact with the memory, i.e., load/store
instructions, are handled in a special manner. Rather than
using Load addresses, a Store data buffer and a Conflict buffer
as in [13], we keep a set of Load Registers to resolve depen-
dencies in the memory functional unit. The reservation sta-
tions for load/store instructions are provided by the RUU. The
load registers contain the addresses of "currently active"
memory locations. Each load register has the LI and NI
counters to allow for multiple instances of a memory address.

If the address of a load/store operation is unavailable,
subsequent load/store instructions in the RUU are not allowed

to proceed. When a load instruction is allowed to proceed, it
checks to see if the address for the load operation matches an
address stored in the load registers. If a match occurs and the
load register is not free (NI is nonzero) the load instruction
simply forwards a tag to the RUU. The load operation is not
submitted to the memory. The tag is the number of the load
register appended with the LI counter. A match can occur if
there is either a pending load or a pending store operation. In
either case, the load need not be submitted to memory since the
desired data can be obtained when the pending load or store
operation completes. If a match occurs for a store instruction,
the NI and LI counters are incremented and the new tag for-
warded to the RUU.

If no match occurs for either operation, a free load regis-
ter is obtained. A load register is free if there are no pending
load or store instructions to the memory address held in the
load register, i.e., NI = 0. The NI counter is set to 1 and the LI
counter is set to 0. The load request is submitted to memory.
The corresponding tag is also submitted to memory so that the
data supplied by the memory may be read by the appropriate
source operands in the RUU. Load/store instructions are not
issued by the RUU if a free load register is not available.
When the result for a load operation returns from the memory
or the store operation is committed by the RUU, NI is decre-
mented. The data and the address are forwarded to the memory
in case of a store operation.

Note that decode and issue unit logic needs to search the
load registers associatively for memory addresses. However,
the hardware needed for this comparison is not very great for a
small number of load registers. In our simulations, we used 6
load registers though 4 were sufficient for most cases.

4.4. Opera t ion of the RUU

In each clock cycle, the RUU carries out 4 distinct tasks:
(i) it accepts an instruction from the issue logic, (ii) it commits
an instruction, i.e., updates the register file, (iii) it issues an
instruction to the functional units and (iv) it monitors the
busses for matching tags. This constitutes a lot of work; how-
ever, each of these tasks can be carded out in parallel.

Accepting a new task is straightforward. If an entry in the
RUU is free, the issue logic updates the fields of the selected
entry. If the instruction at the head of the RUU has finished
execution, its results are forwarded to the register file. If the
operands of an instruction in the RUU are ready, the instruc-
tion can issue to the functional units. Priority is first given to
load/store instructions and then to an instruction which entered
the RUU earlier. The RUU reserves the result bus when it
issues an instruction to the functional units. The final task of
monitoring the busses is left to the tag-matching logic in the
source-operand fields. Each entry in the RUU is, therefore:

Source Operand 1 Source Operand 2

Destination Executed Program Counter

I Rogis r, I con t II II co ot I

The Program Counter field is needed for the implementation of
precise interrupts [3]. For the sake of brevity, we have omitted
the details of extra information that must be carded around
with each instruction (such as tags and RUU entry numbers).
The details of such information are obvious.

5. S I M U L A T I O N R E S U L T S

In order to evaluate the effectiveness of the RUU, we car-
ried out trace-driven simulations. The benchmark programs
used for all our simulations were the Lawrence Livermore
loops [14]. The first 14 loops were chosen because they were
readily available. Henceforth, we shall refer to them as LL1,
LL2 LL14. The simulations were carded out as follows.

32

The benchmark programs, as compiled by the CFT compiler
for the scalar unit, were fed into the CRAY-1 simulator [12].
The CRAY-1 simulator generates an instruction trace for each
program. Vector instructions are not used. Each instruction
trace was then fed into our simulator to calculate the execution
time and the relative speedup for different RUU sizes. Our
simulator converts 2 parcel instructions to 1 parcel instructions
when they are encountered.

In our simulations, the LI and NI counters were each 3
bits wide thereby allowing up to 7 instances of a register in the
RUU. This was useful in loops 7, 8, 9 and 14 which updated
the contents of registers frequently. We used 6 load registers
so that the issue of a load/store instruction is never blocked
because a load register is unavailable. Furthermore, an instruc-
tion left the RUU only when it was executed completely.
Specifically, load instructions did not leave the RUU for at
least 10 cycles after they were issued to the memory (the time
taken for the result to come back from the memory).

Table 1 presents the speedups for a RUU with bypass
logic over a simple CRAY-like instruction issue mechan-
ism[13] for different sizes of the RUU. A speedup of greater
than 1 implies that the instruction issue mechanism using a
RUU is faster than the simple CRAY-like instruction issue
mechanism. Note that the CRAY-like instruction issue
mechanism does not implement precise interrupts. The aver-
age column is the average for all 14 loops. The results are
quite encouraging. A RUU with a reasonable number of
entries (8-12), not only speeds up execution, it also provides
precise interrupts. We would like to point out that we have
assumed that the clock period for our mechanism is the same
as the clock period for the simple CRAY-like instruction issue
mechanism. Unfortunately, we cannot verify this assumption
till a hardware implementation is actually realized. If the clock
periods are indeed different, the speedup factors would have to
be normalized accordingly.

Since bypass logic is expensive, we decided to evaluate a
RUU that did not have any bypass logic but its reservation sta-
tions monitored both the result bus and the RUU to register bus
as discussed in section 4.2.3. The results are presented in
Table 2. For many cases, the presence of bypass logic made a
negligible difference, if any. On the average, a RUU with no
bypass logic is still able to speed up the execution time and, at
the same time, implement precise interrupts. The RUU is spe-
cially able to speedup loops that make heavy use of the B and
T register files (loops 3, 4 and 8).

From tables 1 and 2, it may seem that a reasonably large
sized RUU is needed to achieve a performance improvement.
The main reason for the large RUU size is that, in our simula-
tions, load instructions did not free a slot in the RUU till the
instruction was completely executed (10 cycles). Conse-
quently, instruction issue is blocked because of unavailable
RUU slots. If, as in [3], we had allowed load instructions to
free RUU slots as soon as it was determined that they would
not cause exceptions, much smaller RUU sizes would be
needed. Even for the presented results we note that an archi-
tecture with a RUU of size 10 has comparable hardware
requirements to an architecture that associates only a single
reservation station with each of the functional units and does
not associate any tags with the registers.

6. BRANCH PREDICTION AND CONDITIONAL
INSTRUCTIONS

As mentioned earlier, the performance degradation due to
branches can be reduced by conditionally executing instruc-
tions from a predicted branch path. Several architectures
employ this approach [2, 8, 15]. To allow conditional execu-
tion of instructions, a hardware mechanism is needed that
would allow the machine to recover from an incorrect branch
prediction.

The RUU provides a very powerful mechanism for nulli-
fying instructions, be the instructions valid instructions or
instructions that executed in a conditional mode. Valid
instructions may be nullified because of an interrupt caused by
a previous instruction; conditionally executed instructions may
be nullified if they are from an incorrect execution path.
Therefore, the conditional execution of instructions with a
RUU is very easy. If the decode and issue unit predicts the
outcome of branches and actually executes instructions from a
predicted path in a conditional mode, recovery from incorrect
branch predictions can be achieved very easily without dupli-
cating the register file. We can identify such instructions
through the use of an additional field in the RUU and prevent
them from being committed until they are proven to be from a
correct path. Furthermore, there is no hard limit to the number
of branches that can be predicted in a branch path; the RUU
can provide multiple instances of a register for the different
paths. This is in contrast to the approach taken in [15].
Extending the RUU to accommodate branch prediction and
conditional execution is a topic for future research.

7. CONCLUSION

In this paper, we have combined the issues of hardware
dependency-resolution and implementation of precise inter-
rupts. We devised a scheme that can resolve dependencies and
thereby allow out-of-order instruction execution without asso-
ciating tag-matching hardware with each register. Such a
scheme can, therefore, be used even in the presence of a large
number of registers without a substantial hardware cost. Then
we extended the scheme to incorporate precise interrupts. The
precise interrupt and the dependency-resolution mechanisms
mutually aid and simplify each other. We evaluated the per-
formance of the resulting hardware that allows out-of-order
instruction execution and also implements precise interrupts
using several Livermore loops as the benchmark. The results
are quite encouraging. The combined mechanism, called the
RUU, is able to implement precise interrupts and is able to

achieve a significant performance improvement over a simple
instruction issue mechanism without a substantial cost in
hardware. We noted that this mechanism can easily be
extended to support conditional execution of instructions from
a predicted branch path.

Acknowledgments

This work was supported in part by the University of Wiscon-
sin Graduate Research Committee. The authors would like to
thank Jim Goodman, Andy Pleszkun, Jim Smith and the
anonymous reviewers for their useful comments.

33

Table 1: Relative Speedups with Bypass Logic

RUU Size
Benchmark '

LL1
LL2
LL3
LL4
LL5
LL6
LL7
LL8
LL9
LL10
LL11
LL12
LL13
LL14
Average

4 6 8 10 12 14 16 18 20 30 50
0.95 1.04 1.26 1.48 1.59 1.78 1.78 1.78 1.78 1.78 1.94
0.76 0.92 1.04 1.20 1.22 1.22 1.22 1.22 1.22 1.22 1.70
1.00 1.05 1.27 1.42 1.76 1.76 1.84 1.94 2.05 2 . 0 5 2.05
1.02 1.13 1.20 1.28 1.37 1.78 1.78 1.78 1.78 1.78 1.78
0.87 0.98 1.19 1.26 1.34 1.40 1.44 1.44 1.44 1.44 2.02
0.81 1.01 1.17 1.26 1.34 1.40 1.46 1.49 1.50 1.50 2.04
0.81 1.10 1.43 1.60 1.73 1.84 1.94 1.97 1.91 1.96 2.01
0.54 0.78 0.93 1.04 1.09 1.15 1.16 1.16 1.15 1.24 1.60
0.70 0.90 1.06 1.16 1.22 1.27 1.32 1.42 1.42 1.41 1.80
0.83 1.01 1.06 1.17 1.20 1.20 1.20 1.20 1.20 1.20 1.75
0.71 0.75 0.93 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.39
0.93 1.00 1.33 1.47 1.55 1.55 1.55 1.55 1.55 1.55 1.69
0.82 1.09 1.18 1.35 11.41 1.50 1.52 1.53 1.57 1.68 1.79
0.90 1.13 1.31 1.38 1.43 1.55 1.83 1.89 1.95 2.06 2.09

I

0.85 0.99 1.17 I 1.29] 1.37 1.44 1.48 1.50 1.51 1.53 1.81

Table 2: Relative Speedups with No Bypass Logic

Benchmark

LL1
LL2
LL3
LL4
LL5
LL6
LL7
LL8
LL9
LL10
LL11
LL12
LL13
LL14
Average

RUU Size

4 6 8 10 l 12 14 16 18 20 30 50
0.91 1.02 1.22, 1 . 3 0 1 . 3 0 1.34 1.34 1.34 1.34 1.34 1.87
0.74 0.88 1.01] 1.17 1.19 1.19 1.19 1.19 1.19 1.19 1.68
1.00 1.05 1.271 1.42 1.76 1.76 1.84 1.94 2.05 2.05 i 2.05
0.97 1.02 1 .08 :1 .14 1.36 1.46 1.46 1.52 1.54 1.47 1.77
0.82 0.95 1.06 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.90
0.77 0.93 1.01 1.06 1.10 1.10 1.10 1.10 1.08 1.19 2.05
0.81 1.05 1.21 1.26 1.31 1.24 1.24 1.27 1.28 1.62 2.00
0.54 0.76 0 . 9 1 0.98 0.99 1.05 1.06 1.06 1.09 1.11 1.56
0.69 0.88 1.04 1.11 1.14 1.19 1.18 1.17 1.19 1.20 1.80
0.83 1.00 1.03 1.14 1.13 1.14 1.14 1.14 1.14 1.16 1.75
0.69 0.75 0.93 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.39
0.93 1.00 1.33 1.47 1.55 1.55 1.55 1.55 1.55 1.55 1.69
0.82 1.02 1.16 1.27 1.39 1.3~5 1.44 1.45 1.45 1.39 1.70
0.83 0.95 1.05 1.04 1.07 1.08 1.20 1.18 1.23 1.53 1.98

i t i t i i i i i i

0.82 0.94 1.10 1.18 1.25 1.26 1.29 1.30 1.31 1.35 1.79

References

[1] P.M. Kogge, The Architecture of Pipelined Computers. New York: [9]
McGraw-Hill, 1981.

[2] D.W. Anderson, F. J. Sparacio, and R. M. Tomasulo, "The IBM
System/360 Model 91: Machine Philosophy and Instruction-
Handling," IBM Journal of Research and Development, pp. 8-24, [10]
January 1967.

[3] J.E. Smith and A. R. Pleszkun, "Implementation of Precise Inter-
rupts in Pipelined Processors," Proc. 12th Annual Symposium on [11]
Computer Architecture, pp. 36-44, June 1985.

[4] R. M Russel, "The CRAY-1 Computer System," CACM, vol. 21, [12]
pp. 63-72, January 1978.

[5] J.E. Smith, "A Study of Branch Prediction Strategies," Proc. 8th [13]
International Symposium on Computer Architecture, pp. 135-148,
May 1981.

[6] J . K . F . Lee and A. J. Smith, "Branch Prediction Strategies and [14]
Branch Target Buffer Design," IEEE Computer, vol. 17, pp. 6-22,
January 1984.

[15]
[7] P .Y .T . Hsu and E. S. Davidson, "Highly Concurrent Scalar Pro-

cessing," Proc. 13th Annual Symposium on Computer Architecture,
pp. 386-395, June 1986.

[8] A. Pleszkun, J. Goodman, W. C. Hsu, R. Joersz, G. Bier, P. Woest,
and P. Schecter, "WISQ: A Restartable Architecture Using
Queues," in Proc. 14th Annual Symposium on Computer Architec-
ture, Pittsburgh, PA, June, 1987.

J. Hennessy, N. Jouppi, F. Baskett, T. Gross, and J. Gill,
"Hardware/Software Tradeoffs for Increased Performance," Proc.
Int. Symp. on Arch. Support for Prog. Lang. and Operating Sys., pp.
2-11, March 1982.

R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple
Arithmetic Units," IBM Journal of Research and Development, pp.
25-33, January 1967.

CRAY-1 Computer Systems, Hardware Reference Manual. Chip-
pewa Falls, WI: Cray Research, Inc., 1982.

N. Pang and J. E. Smith, "CRAY-1 Simulation Tools," Tech. Re-
port ECE-83-11, University of Wisconsin-Madison, Dec. 1983.

S. Weiss and J. E. Smith, "Instruction Issue Logic for Pipelined
Supercomputers," Proc. 11th Annual Symposium on Computer Ar-
chitecture, pp. 110-118, June 1984.

F. H. McMahon, FORTRAN CPU Performance Analysis. Lawrence
Livermore Laboratories, 1972.

W. Hwu and Y. N Patt, "HPSm, a High Performance Restricted
Data Flow Architecture Having Minimal Functionality," Proc. 13th
Annual Symposium on Computer Architecture, pp. 297-307, June
1986.

34

