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ABSTRACT
Due to the open, anonymous nature of many P2P networks,
new identities - or sybils - may be created cheaply and in
large numbers. Given a reputation system, a peer may at-
tempt to falsely raise its reputation by creating fake links
between its sybils. Many existing reputation mechanisms
are not resistant to these types of strategies.

Using a static graph formulation of reputation, we at-
tempt to formalize the notion of sybilproofness. We show
that there is no symmetric sybilproof reputation function.
For nonsymmetric reputations, following the notion of repu-
tation propagation along paths, we give a general asymmet-
ric reputation function based on flow and give conditions for
sybilproofness.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Design, Theory

Keywords
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1. INTRODUCTION
The large scale of many P2P networks and other online

communities make it difficult for peers or users to assess the
“trustworthiness” of other users, since a typical user’s past
history includes only a small fraction of the entire commu-
nity. A common approach to this problem is the creation
of a reputation system within the community. A reputa-
tion system attempts to aggregate the peers or users’ collec-
tive experiences in order to allow a user to form an opinion
about someone with whom he has not previously interacted
[8]. Further, reputation may be used to assess and reward
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“good” behavior, for example, a peer or user with high repu-
tation may be rewarded with preferred queueing or preferred
partnering.

In recent years, many people have come up with reputa-
tion mechanisms for various applications [4, 5, 9, 7, 1], see
also citations in [6]. However, much of this work has been
ad-hoc - creating specific reputation mechanisms to combat
some particular collection of adversarial strategies. In con-
trast, we would like to explore what conditions a reputation
function must satisfy in order to be robust to adversarial
strategies. This may allow a move towards defining a gen-
eral class of robust reputation mechanisms. In this paper,
we focus on the sybil attack.

In an online environment, new identities may be created
with minimal cost, and users are not tied to unique identi-
fiers. Therefore, a single user may create enough sybils to
constitute a large fraction of the community [2]. In partic-
ular, a user may strategically create sybils for the purpose
of boosting his own reputation. One example of this is the
“link spamming” attack to PageRank [7] - when a single user
attempts to boost his reputation by creating a large number
of duplicate identities, who all recommend him.

Like many others [4, 9], we base our analysis on the trust
network (or “web of trust”) that may be constructed be-
tween users, where edges represent direct trust (i.e. the
outcome of actual interactions). To aid analysis, we restrict
our attention to reputation mechanisms that depend only
the current structure of the trust graph. In section two, we
summarize our main results. In section 3, we define such a
reputation function on a trust graph, and define the notion
of sybilproofness in this framework. In section 4, we dis-
cuss conditions for sybilproofness. In the case of symmetric
reputation functions (i.e. functions invariant to graph iso-
morphism), we show that no sybilproof mechanism exists.
In the asymmetric case, we give a generalized flow-based
reputation function and give some conditions for sybilproof-
ness in that case. In section 5, we conclude with some open
questions in this area.

2. OVERVIEW OF RESULTS
While there has been much work related to reputation

systems, many of these systems fail to be sybilproof. For
example, in the well-known reputation system EigenTrust
[5], users can typically increase their reputation values by
creating complete subgraphs of sybils. Maximum flow from
a fixed node s is another possible reputation function where
a user may increase its relative rank via a sybil strategy.
If we regard the edge values as capacities, then the maxi-



mum flow from s to a node i is the maximum amount of
flow we can push from s to i while respecting all capacity
constraints. To see that max flow isn’t sybilproof, notice
that for any node i, several paths may contribute to i’s rep-
utation. Nodes that lie along those paths may have a worse
reputation than i, and may be able to worsen the reputa-
tion of i by cutting off the path to i (for example, the node
may split into two nodes, one taking all incoming links, one
taking all outgoing links). Therefore, a node may be able
to improve his rank with a sybil strategy. In this paper, we
only consider sybil strategies where a user is only concerned
with raising his own reputation. One might additionally
consider “badmouthing” strategies where a user attempts
to lower the reputation of others, without necessarily raising
his own reputation. However, we conjecture that there is no
reputation function which guards against all badmouthing
strategies.

Related work includes [6], which has similar motivations.
Our primary interest in this paper is to provide condi-

tions for which a reputation function is sybilproof. We show
that symmetric reputation functions cannot be sybilproof,
where a symmetric function is one which is invariant under
a renaming of the nodes (i.e. it depends only on the edge
structure of the graph). A sketch of the proof is as follows:
If some node i doesn’t have the highest possible reputation
in a graph G, he can create a group of sybils, formed into
an exact copy of G. (Note that we do not put restrictions
on the number of sybils i may create, or on i’s knowledge of
the overall graph.) A symmetric function cannot distinguish
between a node in the “original” graph and its correspond-
ing node in the sybil copy, so for each node in the original
part of the graph, there is some node in the sybil copy with
the same reputation. Therefore, some sybil must have the
highest reputation in the new graph. We can use a similar
argument to show that symmetric reputation functions can-
not be sybilproof even when we bound the number of allow-
able sybils by a constant. Intuitively, symmetric reputation
functions fail to be sybilproof because a symmetric function
cannot distinguish between groups of sybils and real nodes.
In contrast, asymmetric reputation functions may assume
that some specified nodes are trusted, and propagate trust
from those nodes.

We also construct a formula for a class of asymmetric
reputation functions. We build these functions from a real-
valued function on paths, g, and a generalized addition op-
erator ⊕. Like many existing reputation mechanisms [4, 9],
this formulation employs the notion of transitive trust. This
is the idea that if a user A trusts B, and B trusts C, then
A may trust C to some extent, even if A hasn’t previously
interacted with C. Since direct trust is represented in the
graph as directed edges, the notion of transitive trust exactly
corresponds to propagation of trust along paths. Intuitively,
g describes how trust propagates along a path, and ⊕ de-
scribes how to aggregate the trust among several paths. We
show that when g and ⊕ satisfy certain properties, no user
may increase his own reputation value with a sybil strat-
egy. Furthermore, when we propagate trust along only a
single “maximum” path, no user can improve his relative
rank. Under some additional conditions for g, we show that
f sybilproof implies that f propagates trust along a single
path.

3. PROBLEM FORMULATION
We represent a network as a directed graph G = (V, E),

with users (some of whom may be sybils) represented as
nodes, and interactions between a pair of users i, j ∈ V rep-
resented as directed edges e ∈ E between i and j with edge
values c(e) ∈ representing the outcomes of actual trans-
actions. For this paper, we assume that c(e) corresponds
positively with positive transactions (so higher values cor-
respond to higher trust). For example, c(i, j) might be the
number of times i successfully downloaded a file from j, or it
may be a rating that i personally assigns to j. is the col-
lection of all such graphs, with a node set V a finite subset
of = {0, 1, 2, . . .} and edge set E a subset of V × V .

Given a graph G = (V, E) we define the reputation to be a
mapping on a graph associating each node with a real value.

Definition 1. A reputation function f is a real valued
function on that maps nodes of a graph to real values. We
say that a node i in a graph G has reputation f(G)i ∈ .

In a sybil strategy, a user is allowed to create arbitrarily
many sybil nodes and fake edges between sybils. If U ′ is the
collection of sybils, and i /∈ U ′, we require that any edge
between i and U ′ represent real transactions, since i is not
a member of the sybil group.

Definition 2. Given a graph G = (V, E) and a user i ∈ V ,
we say that a graph G′ = (V ′, E′) along with a subset U ′ ⊆
V ′ is a sybil strategy for user i in the network G = (V, E)
if i ∈ U ′ and that collapsing U ′ into a single node with label
i in G′ yields G. We can refer to U ′ as the sybils of i, and
denote a sybil strategy by (G′, U ′).

Note that in this formulation, if there is an edge (j, i) ∈
E with value c(j, i) = α, we allow in the sybil strategy
of i the splitting of the edge to (j, u1), . . . , (j, uk) (with
u1, . . . , uk sybils of i). However, we must split the value
additively, so that c(j, u1) + . . . + c(j, uk) = α. Likewise,
for any edge (i, j) with value α, we allow splitting of the
edge to (u1, j), . . . , (uk, j) in a sybil strategy for i, such that
c(u1, j) + . . . + c(uk, j) = α.

Reputations are often used to distinguish between users,
and in many applications, users care more about relative
reputation values than the actual values. Therefore, we say
that a sybil strategy (G′, U ′) for node i in G is successful, if
some sybil has a better relative rank than i in G.

Since i may use any of his sybils to perform transactions in
the future, a sybil strategy is successful if at least one sybil
has higher rank. Thus, a reputation function is sybilproof if
no successful sybil strategies are possible.

Definition 3. A reputation function f is (rank) sybil-
proof if for all graphs G = (V, E), and all users i ∈ V ,
there is no sybil strategy for i, (G′, U ′), with G′ = (V ′, E′)
such that for some u ∈ U ′, ∃j ∈ V such that f(G)j > f(G)i

and f(G′)u ≥ f(G′)j .

If f is rank sybilproof, then we will typically say that
f is sybilproof. Note that in this definition, we allow a
user to create arbitrarily many sybils. Though the cost of
new identities is typically low in many settings, it is usually
nonzero, so it is reasonable to consider cases where no user
can create more than K sybils, for some K. This may allow
a wider set of available reputation functions, as the set of
K-sybilproof functions contain all sybilproof functions.



Definition 4. We say that a reputation function is K-
sybilproof if it is sybilproof over all possible sybil strategies
(G′, U ′), with |U ′| ≤ K.

Finally, in some settings, users may care more about their
actual reputation values than their relative rank. For ex-
ample, there are cases when users may earn specific rewards
based on their reputation values. (e.g. Epinions paying
users royalties based on their reputations [4]) To deal with
these cases, we define the following:

Definition 5. A reputation function f is value sybilproof
if for all graphs G = (V, E) and all users i ∈ V there is no
sybil strategy for i, (G′, U ′) such that for some u ∈ U ′,
f(G)i < f(G′)u.

4. REPUTATION FUNCTIONS
In this section, we describe two types of reputation func-

tions - symmetric and asymmetric - and give conditions for
sybilproofness.

4.1 Symmetric Reputations
If anonymity is preserved within a reputation system for

all users, it is sensible that under any renaming of the nodes,
a reputation function should return the same values. More
formally,

Definition 6. A reputation function f is symmetric if
given a graph isomorphism σ, for all graphs G = (V, E) with
image G′ under σ, and all nodes i ∈ V , f(G)i = f(G′)σ(i)

In this treatment, the edge values encapsulate all infor-
mation about actual interactions, so reputation should be
determined only by the structure of the graph and the edge
values. Therefore, two isomorphic graphs yield the same
reputations.

Unfortunately, no symmetric reputation function is sybil-
proof, or even k-sybilproof for any k ≥ 2. We may ignore
the trivial reputation function which assigns to every node
the same value, since it is trivially symmetric and sybil-
proof (but clearly unsatisfying as a reputation function can-
didate).

Theorem 1. There is no symmetric sybilproof nontrivial
reputation function

Proof. Given a graph G = (V, E), and a nontrivial global
reputation function f , let i ∈ V be a node which doesn’t
have the highest reputation in V . f is nontrivial, so we can
find a G such that such a node exists. Note that for any f , G,
since V is finite, there always exists a node i ∈ V that attains
the maximum value of f(G)i among nodes in V . Consider
the sybil strategy of i, (G′, U ′) such that G ⊆ G′ and for all
nodes j, there is an additional copy of j, j′ ∈ V ′, such that
for all edges (j, k) ∈ E with edge value c(j, k), there is an
edge (j′, k′) ∈ E′ with value c(j, k). In other words, G′ is a
disjoint union of two copies of G. If U ′ = i ∪ {j′ | j ∈ V },
then by symmetry, there is some u ∈ U ′ that attains the
maximal reputation: f(G′)u ≥ f(G′)j for all j ∈ V .

Not only is a symmetric reputation function not sybil-
proof, the above proof shows that if G is such that not all
nodes have the same reputation value, any node that doesn’t
have the highest possible value has a successful sybil strat-
egy.

To show the impossibility of k-sybilproofness, we assume
a k-sybilproof function exists, and rather than creating the
duplicate graph in one step as in the above proof, we create
it over many steps, applying k-sybilproofness at each step.
We then get a contradiction at the final step by applying
symmetry.

Theorem 2. There is no nontrivial symmetric
k-sybilproof reputation function for any constant k > 1.

Proof. It suffices to show the result for k = 2. For a
contradiction, suppose a symmetric 2-sybilproof nontrivial
reputation function f exists. Let G = (V, E) be a net-
work, where there is some user u ∈ V such that there
exists a v ∈ V with f(G)v > f(G)u. Let n = |V |, and
WLOG, let V = {0, . . . , n − 1}. There exist graphs G1 =
(V1, E1), . . . , Gn = G = (V, E), where Gi−1 is constructed
from Gi by contracting nodes i − 2 and i − 1 and rela-
belling it i − 2. We can relabel the vertices in Gi so that
Vi = {n, . . . , n+ i−1} so that vertex j is relabelled as n+ j,
and let G∗

i = G ∪ Gi. From the proof of Theorem 1, there
is a node v ∈ Gn such that f(G∗

n)v is maximal over Vn. We
can relabel the nodes so that v = 2n − 1.

By construction, G∗
i is a sybil strategy in G∗

i−1 for node
n + i − 2 for each i = 1, . . . , n, and G∗

1 is a sybil strategy
in G for node u. Since f is sybilproof, node n ∈ G1 cannot
have the highest reputation in V1, and by induction, for each
i, node n + i − 1 cannot have the highest reputation in Vi.
Therefore, f(G∗

n)v is not maximal over Vn, a contradiction.
Thus, if f is a symmetric nontrivial reputation function, it
cannot be 2-sybilproof.

A parallel argument shows an similar result for value sybil-
proof reputation functions. However, we need to exclude
certain pathological reputation functions. One simple crite-
ria which is satisfied by all nontrivial reputation functions
is based on the following construction: Given a graph G de-
fine its B-extension with respect to i, Bi(G) to be the graph
which is constructed by taking a copy of G and contracting
the node i ∈ V with its double in the copy of G.

Definition 7. A reputation function f is B-Nontrivial
if there exists a graph G = (V, E) and i, j ∈ G such that
f(G)j > f(G)i and ∃v ∈ V ′ such that f(G′)v > f(G′)i,
where G′ is the B-extension of B with respect to i.

Theorem 3. If a reputation function f is B-nontrivial
then it cannot be value sybilproof, or k-value sybilproof.

Note that PageRank is B-nontrivial, so this shows that
symmetric variants of PageRank are not sybilproof or value
sybilproof.

4.2 Asymmetric Reputations
To construct an asymmetric sybilproof reputation func-

tion, note that we can easily break symmetry by comput-
ing reputation values with respect to some fixed node in
the graph. This may be useful when we can identify some
trusted user, or when each user computes separately the
reputations of other users with respect to themselves.

Once we have a fixed root node s, we may allow reputation
to propagate along paths outward from s. Similar ideas also
motivated the flow-based reputation systems described in [3,
9]. Given a fixed graph G = (V, E) and a root node s ∈ V ,
let i be the set of all collections of edge-disjoint paths from



s to i in G. We allow an edge of value α+β to split into two
parallel edges with values α, β at will. Let g be a function
from paths to real numbers, and let ⊕ be an “addition”-like
operator on real numbers.

Given root node s, G = (V, E) and i ∈ V , i *= s, define

(fs(G))i := max
s,i∈ i

P∈ s,i

g(P )

We set fs(G)s = ∞.
Reputation propagates along disjoint paths in some man-

ner (described by the function g), and then the reputa-
tion values are aggregated by ⊕. If we regard edge val-
ues as edge capacities, flow-based reputation functions may
be considered. For example, one can show that maximum
flow falls under this category of functions, if we let g(P ) =
min{c(e)|e ∈ P} and ⊕ = +. Many flow variants are in-
cluded in this class, such as maximum generalized flow (the
case where flow leaks along an edge), or the variation on
max flow preferring closer nodes used in [3]. Other possible
functions in this framework include the maximum capacity
path and 1/#hops for the minimum hop path.

Given some restrictions on g,⊕, we can show that fs is
value sybilproof:

Theorem 4. If fs as defined above satisfies the following
properties,

(a) (Diminishing returns) For all s− i paths P , if an s− j
path P ′ is an extension of P , then g(P ′) ≤ g(P ).

(b) (Monotonicity) ⊕ is nondecreasing, and g is nonde-
creasing with respect to the edge values.

(c) (No splitting) Given a single s− i path P , if we split P
into two s− i paths P1, P2, then g(P1)⊕g(P2) ≤ g(P ).

for all graphs G = (V, E), s ∈ V , and all i ∈ V , then fs is
value sybilproof.

Proof. Let G = (V, E) be a graph, let s ∈ V , and i ∈
V, i *= s. Let (G′, U ′) be a sybil strategy for i with respect
to fs, with collection of sybils U ′. For u ∈ U ′, there is
some collection of disjoint s − u paths in G′ such that
fs(G′)u = P∈ g(P ). For each P ∈ , let P ′ be the
subpath starting from s and ending at the first node in U ′

appearing along the path. By (a), g(P ′) ≥ g(P ), and by the
definition of a sybil strategy, P ′ must correspond to some
s− i path in G. Let ′ = {P ′ | P ∈ }. ′ forms an edge
disjoint collection of s − i paths in G. So, by the definition
of fs,

fs(G)i ≥
P ′∈ ′

g(P ′) ≥
P∈

g(P ) = fs(G′)u

If i = s, fs(G)i = ∞, so fs(G′)u cannot have a higher
value for any sybil strategy (G′, U ′), and u ∈ U ′.

For fs satisfying the above conditions, in any graph G
with base node s, no node i can increase his reputation value,
fs(G)i. However, a node may still be able to improve his
rank if he can sufficiently lower the reputation values for cer-
tain other nodes. A node i may not improve by this method
if the only nodes who may be affected by i’s sybil strategies
have lower reputation than i, since lowering their reputa-
tion doesn’t affect i’s rank. Thus, propagating reputation
only along a maximum g-valued single path gives a sybil-
proof function. ⊕ = max gives this single path reputation
function, so we have the following:

Theorem 5. If fs satisfies the above properties and ad-
ditionally, ⊕ = max, then fs is sybilproof. Conversely, if
g is such that for all paths P , there exists a strictly longer
path P ′, P ⊂ P ′, such that g(P ) = g(P ′), then fs sybilproof
implies that ⊕ = max.

Proof. By theorem 4, there is no sybil strategy to in-
crease one’s own reputation value, so it suffices to show that
there is no sybil strategy to reduce the reputation value of
higher ranked users. By the definition of a sybil strategy,
and the monotonicity of ⊕, at worst, a node i can affect a
node j by removing all the s − j paths that pass through
i. However, i may only affect j’s reputation value if i lies
along the s − j path P with maximum value g(P ) over all
s − j paths in G. If P ′ is an s − i path contained in P ,
fs(G)i ≥ g(P ′), but fs(G)j ≤ g(P ′), so fs(G)j ≤ fs(G)i,
and i cannot increase his rank by by lowering j’s reputation
value.

For the other direction, suppose ⊕ > max. Let paths
P1, . . . , Pk be the minimal set of paths such that g(P1) ⊕
. . . ⊕ g(Pk) > max(g(P1), . . . , g(Pk)). Note that k > 1,
since g(P1) = max(g(P1)). For convenience, let g(P1) ≥
g(P2) . . . ≥ g(Pk), so

v = g(P1) ⊕ . . . ⊕ g(Pk) > g(P1)

Since this set is minimal,

g(P2) ⊕ . . . ⊕ g(Pk) = max(g(P2), . . . , g(Pk)) ≤ g(P1) < v

By assumption on g, there exists a strictly longer path P ′
1

such that P1 is a subpath of P ′
1 and g(P ′

1) = g(P1). Let G
be the graph such that s and i have k parallel s − i paths:
P ′

1, P2, . . . , Pk. There is some node j on P ′
1 such that the

only s − j path is P1. By no splitting rule, fs(G)j = g(P1).
fs(G)i ≥ g(P ′

1) ⊕ . . . ⊕ g(Pk) > g(P1). Consider the sybil
strategy for j where j splits into two nodes, one accepting all
incoming arcs to j, and the other accepting all outgoing arcs
from j. In this new graph G′, i is only connected to s via
P2, . . . , Pk, so fs(G′)i = g(P2)⊕. . .⊕g(Pk) = g(P2) ≤ g(P1).
The sybil node for j accepting all incoming arcs clearly has
the same reputation as j, and for all other nodes, their repu-
tation may not increase. Therefore, this sybil strategy gives
j a strictly higher rank, so fs is not sybilproof. Therefore,
⊕ ≤ max.

Suppose ⊕ < max. Then, for some collection of disjoint
paths P1, . . . , Pk with g(P1) ≥ . . . ≥ g(Pk), g(P1) ⊕ . . . ⊕
g(Pk) < g(P1). Therefore, when we maximize over all collec-
tions of disjoint paths, we only choose collections with only
one path, so replacing ⊕ with max gives the same function.
Therefore, ⊕ = max.

Note that we cannot entirely remove the requirement on g
in Theorem 5. For example, consider the case where c(e) = 1
for all e, g(P ) = 1

hop length of P if P is composed only of edges
with capacity 1, and v1 ⊕ . . .⊕ vk = max(v1, . . . , vk)+ ε(#vi

that attain the maximum value), for ε some infinitesimal
value. One can check that this yields a sybilproof fs, and
clearly, ⊕ *= max.

5. CONCLUSIONS
We have presented a possible framework for assessing a

reputation mechanism’s robustness to sybils. We have shown
that no nonconstant, symmetric reputation function exists.



Further, we have given a collection of flow-based asymmet-
ric reputation functions which are sybilproof, under some
conditions.

There are many open questions related to this direction of
work. For one, the flow-based reputation function defined
on section 4.2 is unlikely to be the most general formula-
tion of an asymmetric reputation function. Finding a more
general formulation, along with necessary and sufficient con-
ditions for sybilproofness would be useful. Furthermore, in
this paper, we have focused strictly on a static graph model
of reputation. One possible generalization of this frame-
work is to allow reputation functions to depend on the state
of the network at previous time steps as well as the cur-
rent state of the network. It would also be interesting to
extend the analysis here to explore necessary requirements
for sybilproofness in a dynamic reputation model.
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