Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords

by Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz (EOS)

presented by Scott Brinker and Jerry Kung

Motivation

- Free for users:
 - Google Search
 - Gmail
 - Google Maps
 - Google Scholar
 - Google Groups
 - Google Images
 - Google Books

Sponsored search auctions

Notable features of the market

- Every search on a keyword is a new auction
 - Well, in our highly stylized theory it is
- Submit single bids that can be changed at any time
- Pay-per-click (PPC) as the "unit" being purchased
- Advertisements ranked according to bid *
- Assumption: click-through rate depends only on position (and perhaps quality of advertiser)

* And "quality score" with Google

** Externalities imposed by relative placement of other ads; see Immorlica (2009)

Evolution of market institutions

- Early Internet advertising: "impressions" (1994)
 - CPM (cost-per-thousand)
- Generalized first-price auctions by Overture (1997)
 - Shift to PPC model
 - But GFP encouraged frequent bid changes
 - No pure strategy equilibrium

A problem with first-price auctions

Example: 3 advertisers with click values of \$10, \$4, and \$22 ad slots receiving 200 and 100 clicks-per-hourInspires an infinite loop bidding war...

Advertiser 1: \$2.01	\$2.03	\$2.03	 \$2.99	\$2.99	\$2.02	\$2.02
Advertiser 2: \$2.02	\$2.02	\$2.04	 \$2.98	\$2.01	\$2.01	\$2.03

The cycle resets when the profit on slot 2 for advertiser 2 — $\sim 100 \text{ x} (\$4 - \$2)$ — is around the same as the profit from slot 1 — $\sim 200 \text{ x} (\$4 - \$3)$.

Evolution of market institutions

- Early Internet advertising: "impressions" (1994)
 - CPM (cost-per-thousand)
- Generalized first-price auctions by Overture (1997)
 - Shift to PPC model
 - But GFP encouraged frequent bid changes
 - No pure strategy equilibrium
- Generalized second-price auctions by Google (2002)
 - Yahoo!, Microsoft both adopted this model too
 - Looks kind of like VCG at first glance...

GSP vs. VCG — bid vs. externality

Example: 3 advertisers with click values of \$10, \$4, and \$22 ad slots receiving 200 and 100 clicks-per-hourIf advertisers were to bid truthfully...

<u>GSP</u>

- Advertiser 1 gets slot 1
 - Payment: 200 x \$4 = \$800
 - Payoff: \$1,200
- Advertiser 2 gets slot 2
 - Payment: 100 x \$2 = \$200
 - Payoff: \$200

Total revenue: **\$1,000**

<u>VCG</u>

- Advertiser 1 gets slot 1
 - Payment: (100 x \$4) + (100 x \$2) = \$600
 - Payoff: \$1,400
- Advertiser 2 gets slot 2
 - Payment: 100 x \$2 = \$200
 - Payoff: \$200

Total revenue: **\$800**

The Rules of GSP

N: slots for ads

K: bidders (advertisers)

 α_i : clicks per period received in slot *i*

 s_k : value per click to advertiser k

 b_k : advertiser k's bid

 $b^{(j)}$ and g(j): bid and identity of the *j*-th highest advertiser

Allocation: g(1) is highest bidder, g(2) is 2nd highest, etc.

Payment: g(i) pays $p^{(i)} = \alpha_i b^{(i+1)}$ for $i \in \{1, ..., \min\{N, K\}\}$ * **

Payoff: g(i) receives payoff of $\alpha_i (s_{g(i)} - b^{(i+1)})$

** If $(N \ge K)$ then $p^{(K)} = 0$ in theory; in practice, search engines charge a reserve price

^{*} In practice, advertiser *i* is charged ($b^{(i+1)}$ + \$0.01) per click

GSP compared to VCG

- Allocation rule remains the same
- Payment under GSP:

 $p^{(i)} = \alpha_i b^{(i+1)}$

• Payment under VCG:

 $p^{V,(i)} = (\alpha_i - \alpha_{(i+1)})b^{(i+1)} + p^{V,(i+1)}$

- Payment of last advertiser allocated a spot is the same
- If all advertisers bid same amount under both mechanisms: $p^{(i)} \ge p^{\vee,(i)}$

Truth-telling: a dominant strategy?

- Under VCG, yes
- Under **GSP**, no

Example:

3 advertisers with click values \$10, \$4, and \$22 ad slots receiving 200 and 199 clicks-per-hourIf all advertisers bid truthfully, advertiser 1's payoff:

 $(\$10 - \$4) \times 200 = \$1,200$

If advertiser 1 shades his bid to \$3, his payoff is:

 $(\$10 - \$2) \times 199 = \$1,592$

Why not change to VCG?

- VCG may be hard to explain to ad buyers
- Switching to VCG has enormous transition costs
 - Lower revenue for the same bids $(p^{(i)} \ge p^{\vee,(i)})$
 - Ad buyers may be slow to stop shading bids
- Importance of strategy-proofness?
- Under GSP, payment is still independent of bid, but may not get outcome that maximizes utility so not DSIC

More assumptions

- All values are common knowledge
- Stable bids are best responses to each other
- Bids form an equilibrium in simultaneous-move, one-shot complete-information game
- Simple strategies to increase payoff?

Locally envy-free Nash equilibria

- Locally envy-free equilibrium: no player can improve her payoff by exchanging positions with the bid above
- Locally: only compare to immediately preceding position

For any
$$i \le \min[N + 1, K]$$
:
 $\alpha_i s_{g(i)} - p^{(i)} \ge \alpha_{i-1} s_{g(i)} - p^{(i-1)}$

- Motivated by a notion of spitefulness
 - Not explicit in payoff function

Connection to matching

Set of **locally** envy-free equilibria maps to stable twosided matching:

Connection to matching

Set of **locally** envy-free equilibria maps to stable two-sided matching

But can there still be a blocking pair?

One locally envy-free equilibrium

- Strategy profile *B**, locally envy-free equilibrium
- Position and payment equal to VCG dominant strategy
- The best locally envy-free equilibrium for advertisers

Same example: 3 advertisers with click values of \$10, \$4, and \$2 2 ad slots receiving 200 and 100 clicks-per-hour

<i>b</i> ₁ * = \$10	<i>p</i> ₁ = \$600	$\alpha_1 s_1 = \$2,000$	payoff = \$1,200
$b_2^* = \$600/200 = \3	<i>p</i> ₂ = \$200	$\alpha_2 s_2 = 400	payoff = \$200
b ₃ * = \$200/100 = \$2	p ₃ = \$0	$\alpha_{3}s_{3} = \$0$	payoff = \$0

Note that advertisers 2 and 3 are indifferent between remaining in their existing positions and swapping with the advertiser one position above.

Advertiser-specific factors

- Advertiser CTR factor β_k independent of position
- Different impact on equilibria for Google vs. Yahoo! *

Yahoo!:
$$\alpha_i \beta_{g(i)} (s_{g(i)} - b^{(i+1)}) \ge \alpha_j \beta_{g(i)} (s_{g(i)} - b^{(j+1)})$$

Divide both sides by $\beta_{g(i)}$, no impact on equilibria

Google: γ_k "quality score" (mix of β_k and other factors) k's rank = $\gamma_k b_k$ determines ordering $\alpha_i \beta_{g(i)} (s_{g(i)} - \gamma_{g(i+1)} b_{(i+1)} / \gamma_{g(i)}) \ge \alpha_j \beta_{g(i)} (s_{g(i)} - \gamma_{g(j+1)} b_{(i+1)} / \gamma_{g(i)})$

^{*} Yahoo! and Microsoft/Bing now use their own quality score factors too

Interesting questions

- Can advertisers "learn" each other's values?
- Is there opportunity for collusion?
 - What about third-party agencies?
- Are the simplifying click-model assumptions too simple?
- Are there key strategic dimensions that are missing?
 - Offer, creative, "broad match," etc.
 - Are advertisers really "risk neutral?"
- If Google charges for API usage, would GFP be better?

Thank you!