Optimizing Scrip Systems

or: mo' money, mo' problems? or: paying with Kash

paper by: Kash, Friedman, Halpern, 2009 presented 10/5/09

What good is money?

why might we want to introduce a scrip system?

- dictate initial distribution / control policy
- "double coincidence of wants" ease transactions
- control flows within a system

The Great Capitol Hill Baby Sitting Co-op

proof? of an optimum quantity of money?

- 150 couples institute coupon system precautionary savings ensue more coupons injected market crashes
- with strong assumptions, (Hens et al) experiments suggest optimum quantity
- too many hoarders? Or, not a closed model?

Major results from Kash et al

- Theoretical:
 - 1. monotonicity of best reply: if all others play threshold, you should play threshold
 - 2. concentration phenomenon: an entropy-maximizing distribution as n->infinity (n is agents of a given type)
- Simulation:
 - 1. collusion doesn't hurt
 - 2. hoarders and altruists can cause crashes

The model (Complete)

- There are *N* agents
- A type set T
- Frequencies of types f_t
- A type $t = (\alpha_t, \beta_t, \gamma_t, \delta_t, \rho_t, \chi_t)$
- A game is described by G(T, f, h, n,m) where

– h = base number

– n = number of replicas for each base and type

– m= average money M/N

Decoding types

The Model (Simplified)

- Just consider only one type:
 - N agents
 - Randomly choose agent *P* to *request* service
 - Probability of being able to satisfy request, **B**
 - Choose randomly among volunteers agent ${\it V}$
 - Payoff of V, -α
 - Payoff of P, +1
 - Total utility of a player:

 $\sum \delta^t u_{t}$

5 agents in the system

Agent A is chosen to request for a service.

Now we will form a set of volunteers for satisfying this request.

Every other agent has probability β of being able to satisfy the request.

Agents **E**, **C** and **D** are selected as **capable** of serving a request

Now agents will have to decide if they want to volunter

Agent **C** decides to be a volunteer. This decision is based on his particular **strategy**.

The transaction is completed in the subsequent phase

 $S_c^r = \{Volunteer\}$

Agent **C** was selected to satisfy the request uniformly from the set.

Agent **A** gets **1\$** for having his request satisfied and **B** gets –**α**

Strategies?

- Consider an agent *j*
 - Money : **x**_i dollars
 - Round : *r*
- How to decide if to be a volunteer ?
- <u>Threshold strategies</u> **S**_k (k-comfort level)
 - $-IF x_j < k$ then volunteer
 - *S*₀ = never volunteer
- Others?

The two arguments

- Existence of approximate equilibrium in the model
 - Existence of ε -best replies
- *Concentration phenomenon* of wealth distribution
 - The distribution of money converges (quickly) to a specific distribution, given a **big** enough agent set, and a **long** enough process
 - When playing threshold strategies

The distribution d*

• Wealth per agent type converges to

$$d^*(t,i) = \frac{f_t \cdot \lambda_i \cdot q(t,i)}{\sum_{j=0}^{k_t} \lambda_j \cdot q(t,j)}$$

 d(t,i) = The fraction of agents of type t that have i dollars

The Volunteer's Dilemma

- If *no*, his money does not change
- If yes, agent agrees to
 - Pay an amount *a*t
 - Receive a discounted γ_t in the future
- The decision is based on the estimation on how long will it take (say J) to finally *spend* the 1\$

$$a_t \leq \delta_t^J \cdot \gamma_t$$

Optimal Threshold Policy $a_t \leq \delta_t^J \cdot \gamma_t$

- The maximum *comfort level k* defines the optimal threshold policy
- *J(k)* is the mean time in which an agent is *depleted* of money, if starting with *k* dollars

Equilibrium through an MDP

- The evolution of the model can be described by a Markov Chain
- States are agent money savings
- Agent optimal response can be modeled through an MDP :

- *P*_u = probability of earning a dollar at each round

- *P*_d = probability of making a request at each round

ε-best replies

 Given an agent of type t, then for *large* enough agent populations and a large enough type discount, the optimal threshold policy is an ε-best reply to all others playing threshold strategies

Theorem 5.1. For all games $G = (T, \vec{f}, h, m, n)$, all vectors \vec{k} of thresholds, and all $\varepsilon > 0$, there exist n_{ε}^* and $\delta_{\varepsilon,n}^*$ such that for all $n > n_{\varepsilon}^*$, types $t \in T$, and $\delta_t > \delta_{\varepsilon,n}^*$, an optimal threshold policy for $\mathcal{P}_{G,\vec{S}(\vec{k}),t}$ is an ε -best reply to the strategy profile $\vec{S}(\vec{k})_{-i}$ for every agent i of type t.

Monotonicity

The *best-reply* function is *non-decreasing* in *k*.
When all others increase their *thresholds*, one does not improve by lowering his own threshold

 <u>Last "piece"</u>: There *exists* a *threshold vector* such that the best reply is strictly higher than this vector

Lemma 5.3. For all games $G = (T, \vec{f}, h, m, n)$, there exists a $\delta^* < 1$ such that if $\delta_t > \delta^*$ for all t, there is a vector \vec{k} of thresholds such that $BR_G(\vec{k}) > \vec{k}$.

Main theorem – Existence of equilibrium

• There exists a non-trivial equilibrium where all agents play threshold strategies

Theorem 5.2. For all games $G = (T, \vec{f}, h, m, 1)$ and all ϵ , there exist n_{ϵ}^* and $\delta_{\epsilon,n}^*$ such that, if $n > n_{\epsilon}^*$ and $\delta_t > \delta_{\epsilon,n}^*$ for all t, then there exists a nontrivial vector \vec{k} of thresholds that is an ϵ -Nash equilibrium. Moreover, there exists a greatest such vector.

• Other equilibria?

Some equations

- Total amount of agents = h*n
- Agents of type $t = f_t * h * n$
- Total amount of money M = h*n*m

Simulations: hoarders

- Hoarders (defined here as non-volunteers) can cause system to break down
- Non-monetary strategy to discourage hoarder? Forced volunteerism?
- Response is to increase m (although babysitters example shows downside, if hoarding strategy is fleeting)

Simulations: altruists

• A little altruism is good; too much can cause a crash

Simulations: sybils

- Only modest gains for sybils if no other agents act as sybils
- However, self-reinforcing process as number of sybils grows, so does incentive to sybilize can lead to crash

Simulations: collusion

- Colluders keep money in the system do not reduce utility work done by colluding group must = work paid for - net zero
- Implications for loans?