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Sponsored Search 
Auctions: Recap

• Advertisers ranked and chosen to positions by score = biwi  
(wi = weight associated with advertiser i, bi = advertiser i’s bid)

• Separable click-through rate: 
• P(click ad i|view ad i) = pi (advertiser-specific)
• P(view ad i| slot j) = αj  (slot-specific)
• Click-through rate = P(click ad i|slot j) = piαj

• Explored various scoring and pricing rules, assuming strategic 
behavior of bidders!

• Most studied: GSPs
• Measures of desirability:  efficiency, revenue-maximization
• Also explored effect of expressiveness vs. simplification
• Assumed no externalities …
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A New Model for User’s 
Behavior

• Ordered Search

• Users browse from top to bottom
• Make clicking decisions slot by slot
• Implicit assumption: first ad always read
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Externalities

• Idea: value of acquiring slot in sponsored search list 
highly depends on who else is shown in the other 
sponsored positions

• Two types: 
• Position Externalities

• Your iPod ad is under an Apple store ad

• Information Externalities
• Your diet pill ad is under an ad warning about the diet pill

• Depart from separable click-through rate models
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Sponsored Search 
Auctions with 

Markovian Users
Aggarwal et al
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Aggarwal et al: big picture

• Model for user behavior:  Markovian user model
• Considers negative externalities from positions (no 

information externalities)
• Based on this user model

• characterizes efficient assignment
• gives algorithm to find it
• efficient assignment not GSP, but has some desirable 

properties of GSP (allows for intuitive bidding) and 
can be made IC with VCG payment

• Focuses on how to allocate ads to slots efficiently/to 
max revenue  given the bids: no equilibrium analysis
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Markovian User Model

• Recall separable click-through rate model: 
! P(click ad i| slot j) = piαj ; where αj  decreasing in position

• Motivation:
• Model process such that decreasing αj arises naturally
• Each ad effects user’s clicking on that ad as well as looking at 

other ads
• Formulation:  user as Markov Process

• n bidders ß = {1,…, n} , k positions
• For each bidder, begin scanning ads from the top down. When 

position j is reached: 
! pi = probability that a user will click on ad i, given he looks at it 
! qi = probability that a user will look at the next ad in a list, given 

that he looks at ad i
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Markovian User Model (2)

• Compare with separable click-through rate model: 
• αj  = ∏i’єA qi’ ; where A is set of ads above position j

• No longer separable, but reduces to same expression 
as separable model in the first slot, where α1  =1 and 
click-through rate = pi

• Position externality: qi  introduces tradeoff between 
probability of clicking an add (pi) and the ad’s effect 
on slot below it (qi )  
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Optimal Assignment

• Expected Cost per Thousand: ei = pibi  = value of an 
“impression” = how much bidder values user looking at ad i

• What is “best/optimal assignment” ?
! Given bid bi for ad i, find  assignment of ads (x1, x2, …, xk ) with 

corresponding pxi and qxi such that
!  ! max  {ex1 + qx1 (ex2 + qx2(ex3 + qx3( … +qx(k-1)(exk ))))}

• Interpretation:  If assume that bidders are truthful in 
reporting values as bids (vi= bi), then want to maximize 
overall expected value of assignment to bidders
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Properties of Optimal 
Assignment (1)

• Adjusted ecpm (a-ecpm) = ei /(1-qi)

• Proof sketch: swap argument
• Suppose not: consider ai and ai’  of ads in optimal 

assignment positions j and j+1 such that ai  < ai’ 

• Compare contributions of positions j to n to 
efficiency for both orders of i and i’ in slots j and j+1

• Contradiction

1.1 Related Work. Sponsored search has been an ac-
tive area of research in the last several years after the early
papers explored the foundational models [12, 4, 29, 21]. In
general, the motivation for the work that followed is that
sponsored search in practice is much more complex than as
described by the first models. Some papers have taken on
the effect of advertiser budgets [8, 25, 2], as well as analyz-
ing bidder strategy and dynamics [7, 27, 9, 13, 32, 31, 22].
There have also been several papers offering extensions to
GSP, or entirely new models and mechanisms [3, 20, 23, 14,
26, 24, 1].

Only very recently are alternate user models that break the
separability assumption starting to receive some attention.
Ghosh and Mahdian [15] study a very general model and
show hardness results for the allocation (winner determina-
tion) problem; they also give algorithms for several special
cases, but none of those imply the algorithms discussed in
this work. Craswell et al. [11] give an empirical study of
several user click models. The “cascade” model, which was
found to fit the data the best, is a special case of the model
we study here (with pi = 1− qi and the events being mutu-
ally exclusive). Gunawardana and Meek [17] performed an
empirical study of ad aggregators with the goal of detect-
ing the affect of an ad on the other ads on the page. Their
findings were consistent with our model; i.e., the presence
of an ad can have a significant affect on the ads below it.
Athey and Ellison [6] present a model where users have an
inherent need, and click until that need is filled (or there is
little chance of it getting filled). They analyze user behav-
ior, advertiser bidding strategies and Bayesian equilibria in
their model.

Independently of our work, Mahdian and Kempe [18] study
the same model we do here. They also provide an O(n log n+
nk) dynamic program for allocation; however at that point
they generalize to the case of position-dependent continua-
tion probabilities and provide an approximation algorithm
for this case, whereas we go on to study deeper structural
and incentive properties in the original model.

1.2 Outline. In Section 2 we define our model formally.
In Section 3, we establish several properties of optimal as-
signments in this model, including our main technical result
that position and click probability will be monotone in bid
and match our intuition. We give our algorithm for finding
an optimal assignment in Section 4 which gives the truthful
auction via VCG pricing, and conclude in Section 5.

2. Markov User Click Model

We consider a sponsored search auction with n bidders B =
{1, . . . , n} and k positions. We will also refer to “ad i,”
meaning the advertisement submitted by bidder i. Each
bidder i ∈ B has two parameters, pi and qi. The click-
through-rate pi is the probability that a user will click on ad
i, given that they look at it. The continuation probability
qi is the probability that a user will look at the next ad in
a list, given that they look at ad i.

Each bidder submits a bid bi to the auction, representing
the amount that they value a click. The quantity pibi then
represents the value of an “impression,” i.e., how much they

value a user looking at their ad. This is commonly referred
to as their “ecpm.”2 Throughout, we will use the notation
ei = pibi for convenience.

Given an assignment (x1, . . . , xk) of bidders to the k po-
sitions, the user looks at the first ad x1, clicks on it with
probability px1 , and then continues looking with probability
qx1 .

3 This is repeated with the second bidder, etc., until the
last ad is reached, or some continuation test has failed. Thus
the overall expected value of the assignment to the bidders
is

ex1 + qx1(ex2 + qx2(ex3 + qx3(. . . qxn�−1(exn)))).

The goal of the auctioneer is to compute an assignment of
ads to positions that maximizes the overall expected value.
Given this assignment, prices can be computed using VCG [30,
10, 16]: for each assigned bidder we compute the change in
others’ value if that bidder were to disappear. This assures
truthful reporting of bids under a profit-maximizing utility
function.

3. Properties of Optimal Assignments

We will start analyzing some basic properties of the opti-
mal assignment. Our insights will allow us to give our main
results regarding monotonicity of position and click proba-
bility, as well as an efficient algorithm for finding this as-
signment.

3.1 Adjusted ECPM. It turns out that the quantity
ei/(1− qi), which we will refer to as the “adjusted ecpm (a-
ecpm),” plays a central role in this model. Intuitively, this
quantity is the impression value adjusted by the negative ef-
fect this bid has on the ads below it. We use ai = ei/(1−qi)
for convenience. The following theorem4 tells us how to as-
sign a set of k selected ads to the k positions:

Theorem 1. In the most efficient assignment, the ads
that are placed are sorted in decreasing order of adjusted
ecpm ai = ei/(1− qi).

Proof. Suppose not. Then in the ranking there are two
consecutive ads i and i

� in positions j and j + 1 where

ei

1− qi
<

ei�

1− qi�
. (1)

The contribution of positions j . . . n to the efficiency of the
ranking (given that position j is reached) is

ei + qi(ei� + qi� ê)

2The acronym ecpm stands for“expected cost per thousand”
impressions, where M is the roman numeral for one thou-
sand. We will drop the factor of one thousand and refer to
pibi as the “ecpm.”
3The click event and the continuation event could in princi-
ple have some correlation, and all our results will still hold.
However since we only consider expected value, we never use
this correlation explicitly in our analysis.
4Interestingly, this theorem essentially follows from a classi-
cal result on optimizing database queries [19].
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Illustrative Example

• Theorem 1 tells how to sort the ads to select, but doesn’t tell 
which k ads to select

• Ranking by ecpm doesn’t yield optimal assignment
• (2,1): efficiency = $2 + 0.2($1) = $2.20

• Ranking by a-ecpm doesn’t yield optimal assignment
• (3,1): efficiency = $0.85 + 0.8($1) = $1.65

• Optimal Assignment is (1,2): efficiency = $1 + 0.75($2) = 
$2.50 

Bidder ei qi ai  = ei/ (1-qi )

1 $1.00 0.75 4
2 $2.00 0.20 2.5
3 $0.85 0.80 4.25
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Properties of Optimal Assignment (2) 
Bidder dominance

• While having higher a-ecpm alone doesn’t allow a bidder 
to dominate another, having both higher a-ecpm and ecpm 
does suffice

• Intuition: for a special case, if ai = ei for all i, then 
assignment reduces to GSP

where ê is the efficiency of positions j + 2 . . . k given that
position j + 2 is reached. If i and i� are switched, then the
contribution would change to

ei� + qi�(ei + qiê),

and nothing else would change. So since the former is the
most efficient assignment, we have

ei + qi(ei� + qi� ê) > ei� + qi�(ei + qiê)

and so

ei(1− qi�) ≥ ei�(1− qi).

This contradicts (1).

While this theorem tells us how to sort the ads selected, it
does not tell us which k ads to select. One is tempted to say
that choosing the top k ads by a-ecpm would do the trick;
however the following example proves otherwise:

Example 1. Suppose we have three bidders and two slots,
and the bidders have the following parameters:

Bidder ei qi ai = ei/(1− qi)
1 $1 .75 4
2 $2 .2 2.5
3 $0.85 .8 4.25

Let’s consider some possible assignments and their efficiency.
If we use simple ranking by ecpm ei, we get the assignment
(2, 1), which has efficiency $2 + .2($1) = $2.20. If we use
simple ranking by a-ecpm ai we get the assignment (3, 1) with
efficiency $0.85 + .8($1) = $1.65. It turns out that the opti-
mal assignment is (1, 2) with efficiency $1+ .75($2) = $2.50.
The assigned bidders are ordered by a-ecpm in the assign-
ment, but are not the top 2 bidders by a-ecpm.

Now suppose we have the same set of bidders, but now we
have three slots. The optimal assignment in this case is
(3, 1, 2); note how bidder 3 goes from being unassigned to
being assigned the first position.

3.2 Notation for Assignments. Theorem 1 implies that
the optimal assignment can be described by the set of as-
signed bidders, since this set will always be sorted by a-ecpm.
For a set X of bidders, let e(X) be the efficiency of an assign-
ment that places only the set X, regardless of the number of
bidders in X; i.e., if X = {1, 2, 3, . . . , n�} and wlog is sorted
by a-ecpm, then

e(X) = e1 + q1(e2 + q2(e3 + q3(. . . qn�−1(en�)))).

Similarly, let q(X) be the overall continuation probability
of the set X of ads: q(X) = Πi�∈Xqi� . If X = ∅ we have
e(X) = 0 and q(X) = 1.

Throughout the paper, we will also make use of the nota-
tion (A, x, B, C, y, . . . ) for a particular assignment, where
uppercase letters denote sets of bidders and lowercase let-
ters denote single bidders. This denotes a solution where the

order of the bidders is as given, and where the order within
a set is by a-ecpm (breaking ties using a lexicographic order
on bidders). So in this example, the solution would put all
the bidders of A first in a-ecpm order, followed by bidder
x, followed by the bidders of B in a-ecpm order, etc. Note
that this notation could express suboptimal solutions (for
the particular set of bidders) if the elements are not in order
of ecpm. We use e(·) and q(·) to denote the efficiency and
continuation probability of such solutions.

3.3 Bidder Dominance. In classical sponsored search
with simple ranking, a bidder j can dominate another bid-
der i by having higher ecpm; i.e., bidder j will always appear
whenever i does, and in a higher position. Example 1 above
shows that having a higher ecpm (or a-ecpm) does not allow
a bidder to dominate another bidder in our new model. How-
ever, we show in this section that if she has higher ecpm and
a-ecpm, then this does suffice. This is not only interesting
in its own right, it is essential for proving deeper structural
properties in later sections.

Theorem 2. For all bidders i in an optimal assignment,
if some bidder j is not in the assignment, and aj ≥ ai and
ej ≥ ei, then we may substitute j for i, and the assignment
is no worse.

Proof. Consider some bidder i that appears in an op-
timal assignment, and some j that does not appear in the
assignment, such that ej ≥ ei and aj ≥ ai. Let (X, i, Y ) be
the optimal assignment, where X is the sequence of bidders
above i and Y is the sequence below i. The efficiency of
the assignment (X, i, Y ) is e(X) + q(X)(ei + qie(Y )). The
efficiency of the assignment (X, j, Y ) is e(X) + q(X)(ej +
qje(Y )). Suppose qj ≥ qi; then clearly (X, j, Y ) is as effi-
cient as (X, i, Y ) since ej ≥ ei, and the theorem is proven.
Thus we assume that qi > qj for the remainder of the proof.
Note that aj ≥ ai is equivalent to:

ej − ei ≥ ei(qi − qj)
1− qi

(2)

Now consider the assignment (X, Y ), with efficiency e(X)+
q(X)e(Y ). Since (X, i, Y ) is optimal, we get

e(X) + q(X)e(Y ) ≤ e(X) + q(X)(ei + qie(Y )),

i.e., e(Y ) ≤ ei/(1− qi). Combining this with (2), and using
the fact that qi > qj , we get ej − ei ≥ e(Y )(qi − qj) which
can be rewritten as

ej + qje(Y ) ≥ ei + qie(Y ).

This implies that the solution (X, j, Y ) is as efficient as
(X, i, Y ).

3.4 Subset Substructure in Optimal Assignments.

In this section we give a theorem that shows some subset
structure between optimal assignments to different numbers
of slots. This theorem is used to prove position monotonic-
ity, and is an essential ingredient of our algorithm. Let
OPT(C, j) denote the set of all optimal solutions for filling
j positions with bidders from the set C.

Monday, November 9, 2009



• Subset structure between optimal assignments to different 
numbers of slots

• OPT(C, j) = set of all optimal solutions for filling j positions 
with bidders from C

• Optimal solution S є OPT(C, j) = set of agents assigned to 
slots 1-j

• Intuition:  for each additional number of slots, find a 
proper position to insert another bidder into sequence of 
bidders assigned

Properties of Optimal Assignment (3)
Subset Substructure in Optimal 

Assignments

Theorem 3. Let j ∈ {1, . . . , k} be some number of posi-

tions, and let C be an arbitrary set of bidders. Then, for

all S ∈ OPT(C, j − 1), there is some S� ∈ OPT(C, j) where

S� ⊃ S.

Proof. We proceed by induction on j, the base case j =

1 being simple. Let S be some solution in OPT(C, j−1), and

let S�
be the solution in OPT(C, j) with the most bidders

in common with S. We will refer to an ad being “above”

another ad if it has higher a-ecpm. Let x be the highest

bidder in S�
.

If x does not appear in S, then we claim that the solution

(x, S) must be in OPT(C, j): Once x is chosen for S�
, taking

any set in OPT(C \x, j− 1) for the remaining positions will

result in an optimal solution; the set S is such a set, since by

assumption it does not include x, and is in OPT(C, j − 1).

But if (x, S) ∈ OPT(C, j) the theorem is proven, so we may

assume x ∈ S.

Let A be the set of ads in S above x, and so we can write

S = (A, x, Q) and S�
= (x, Q�

). We claim Q� ⊃ Q. To see

this, consider the set L of all ads that have lower a-ecpm

than x. By the optimality of S, we have Q ∈ OPT(L, j�
)

for j�
= j − |A| − 1 < j. By induction there is a Q�� ∈

OPT(L, j − 1) where Q�� ⊃ Q. Thus we must have Q� ⊃ Q
since S�

is the solution with the most bidders in common

with S. Decompose Q�
as Q�

= (B + X, D, z, E) where

• z is the lowest ad in S�
that does not appear in S,

• E is the set of ads below z in S�
(this can be empty),

• D is the maximal set of ads immediately above z in S�

that also appear in S (this can be empty),

• X are the remaining ads in S�
that do not appear in

S,

• B are the remaining ads (besides x) that appear in

both S and S�
.

Let B�
= B ∪ x. Note that by the definitions above we may

write S = (A, B�, D, E). We have e(S) = e(A, B�, D, E) ≥
e(B�

+X, D, E) since S ∈ OPT(C, j−1) and |(B�
+X, D, E)| =

j − 1. Decomposing this a bit gives

e(A, B�, D) + q(A)q(B�
)q(D)e(E)

≥ e(B�
+ X) + q(B�

)q(X)e(D, E). (3)

We also note that

e(S�
) = e(B�

+ X, D, z, E)

= e(B�
+ X) + q(B�

)q(X)e(D, z, E). (4)

Let S��
= (A, B�, D, z, E). The remainder of the proof will

show that e(S��
) ≥ e(S�

), which implies the theorem since

|S��| = j, S�� ⊃ S and S� ∈ OPT(C, j). We can rewrite

e(S��
) as follows:

e(S��
) = e(A, B�, D) + q(A)q(B�

)q(D)e(z, E)

≥ e(B�
+ X) + q(B�

)q(X)e(D, E)

+ q(A)q(B�
)q(D)(e(z, E)− e(E)) (5)

= e(S�
)− q(B�

)q(X)(e(D, E)− e(D, z, E))

+ q(A)q(B�
)q(D)(e(z, E)− e(E)) (6)

In the above, (5) follows from (3), and (6) follows from (4).

Rearranging, and using

e(D, E)− e(D, z, E) = q(D)(e(E)− e(z, E)),

we get

e(S��
)− e(S�

)=q(B�
)q(D)(q(A)− q(X))(e(z, E)− e(E)).

We know that e(z, E) ≥ e(E) since otherwise e(B�
+X, D, E) >

e(B�
+ X, D, z, E) = e(S�

), and this cannot be since S� ∈
OPT(C, j). We claim that q(A) ≥ q(X), which would imply

e(S��
) ≥ e(S�

) and thus complete the proof. This is trivially

true if A = X = ∅. Since |A| = |X| by the definitions above,

we can assume both A and X are non-empty. consider some

y ∈ A and y� ∈ X. We have y /∈ S�
by the definition of A.

Since S�
is the solution in OPT(C, j) with the most bidders

in common with S�
, we must not be able to substitute y for

y�
in S, and thus by Lemma 2 we must have that ey� > ey

or ay� > ay. But by the definitions of A and X, we have

ay ≥ ax ≥ ay� . Therefore ey� > ey. The previous two in-

equalities imply qy > qy� . Since y and y�
were arbitrary and

|A| = |X|, this gives q(A) > q(X).

3.5 Monotonicity of Position and Click Probabil-
ity. In this section we give our main theorem regarding the

structure of the optimal assignments in the Markovian click

model: that position and click probability are monotonic in

a bidder’s bid, with all other bids fixed. This is a funda-

mental property that makes the bidder’s interaction with

the system intuitive, and allows the bidder to adjust her bid

intelligently without global knowledge of the other bids.

Theorem 4. As a bidder increases her bid (keeping all

other bids fixed):

(a) the probability of her receiving a click in the optimal

solution does not decrease, and

(b) her position in the optimal solution does not go down.

Proof. As bidder x increases her bid bx with all other

bids fixed, the value of a particular solution S = (A, x, B)

increases linearly as q(A)px · bx + [e(A) + q(A)qxe(B)]. (So-

lutions not involving x stay constant.)

Let S1, . . . , Sk denote the sequence of optimal solutions that

occurs as bx increases from 0. Solution S1 is the best solution

not involving x, and Sk is the best solution that puts x in

the first position. By the fact that each solution increases

linearly by the term q(A)px ·bx, which is the probability that

x receives a click in that solution, it must be the case that

for a new solution to become optimal it gives x a higher click
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Properties of Optimal Assignment (4)
Monotonicity of Position/Click Probs

• Optimal assignment supports intuitive Bidding
• higher bids translate to higher positions and more 

clicks
• Allows bidder to adjust bid intelligently without 

global knowledge of other bids

Theorem 3. Let j ∈ {1, . . . , k} be some number of posi-

tions, and let C be an arbitrary set of bidders. Then, for

all S ∈ OPT(C, j − 1), there is some S� ∈ OPT(C, j) where

S� ⊃ S.

Proof. We proceed by induction on j, the base case j =

1 being simple. Let S be some solution in OPT(C, j−1), and

let S�
be the solution in OPT(C, j) with the most bidders

in common with S. We will refer to an ad being “above”

another ad if it has higher a-ecpm. Let x be the highest

bidder in S�
.

If x does not appear in S, then we claim that the solution

(x, S) must be in OPT(C, j): Once x is chosen for S�
, taking

any set in OPT(C \x, j− 1) for the remaining positions will

result in an optimal solution; the set S is such a set, since by

assumption it does not include x, and is in OPT(C, j − 1).

But if (x, S) ∈ OPT(C, j) the theorem is proven, so we may

assume x ∈ S.

Let A be the set of ads in S above x, and so we can write

S = (A, x, Q) and S�
= (x, Q�

). We claim Q� ⊃ Q. To see

this, consider the set L of all ads that have lower a-ecpm

than x. By the optimality of S, we have Q ∈ OPT(L, j�
)

for j�
= j − |A| − 1 < j. By induction there is a Q�� ∈

OPT(L, j − 1) where Q�� ⊃ Q. Thus we must have Q� ⊃ Q
since S�

is the solution with the most bidders in common

with S. Decompose Q�
as Q�

= (B + X, D, z, E) where

• z is the lowest ad in S�
that does not appear in S,

• E is the set of ads below z in S�
(this can be empty),

• D is the maximal set of ads immediately above z in S�

that also appear in S (this can be empty),

• X are the remaining ads in S�
that do not appear in

S,

• B are the remaining ads (besides x) that appear in

both S and S�
.

Let B�
= B ∪ x. Note that by the definitions above we may

write S = (A, B�, D, E). We have e(S) = e(A, B�, D, E) ≥
e(B�

+X, D, E) since S ∈ OPT(C, j−1) and |(B�
+X, D, E)| =

j − 1. Decomposing this a bit gives

e(A, B�, D) + q(A)q(B�
)q(D)e(E)

≥ e(B�
+ X) + q(B�

)q(X)e(D, E). (3)

We also note that

e(S�
) = e(B�

+ X, D, z, E)

= e(B�
+ X) + q(B�

)q(X)e(D, z, E). (4)

Let S��
= (A, B�, D, z, E). The remainder of the proof will

show that e(S��
) ≥ e(S�

), which implies the theorem since

|S��| = j, S�� ⊃ S and S� ∈ OPT(C, j). We can rewrite

e(S��
) as follows:

e(S��
) = e(A, B�, D) + q(A)q(B�

)q(D)e(z, E)

≥ e(B�
+ X) + q(B�

)q(X)e(D, E)

+ q(A)q(B�
)q(D)(e(z, E)− e(E)) (5)

= e(S�
)− q(B�

)q(X)(e(D, E)− e(D, z, E))

+ q(A)q(B�
)q(D)(e(z, E)− e(E)) (6)

In the above, (5) follows from (3), and (6) follows from (4).

Rearranging, and using

e(D, E)− e(D, z, E) = q(D)(e(E)− e(z, E)),

we get

e(S��
)− e(S�

)=q(B�
)q(D)(q(A)− q(X))(e(z, E)− e(E)).

We know that e(z, E) ≥ e(E) since otherwise e(B�
+X, D, E) >

e(B�
+ X, D, z, E) = e(S�

), and this cannot be since S� ∈
OPT(C, j). We claim that q(A) ≥ q(X), which would imply

e(S��
) ≥ e(S�

) and thus complete the proof. This is trivially

true if A = X = ∅. Since |A| = |X| by the definitions above,

we can assume both A and X are non-empty. consider some

y ∈ A and y� ∈ X. We have y /∈ S�
by the definition of A.

Since S�
is the solution in OPT(C, j) with the most bidders

in common with S�
, we must not be able to substitute y for

y�
in S, and thus by Lemma 2 we must have that ey� > ey

or ay� > ay. But by the definitions of A and X, we have

ay ≥ ax ≥ ay� . Therefore ey� > ey. The previous two in-

equalities imply qy > qy� . Since y and y�
were arbitrary and

|A| = |X|, this gives q(A) > q(X).

3.5 Monotonicity of Position and Click Probabil-
ity. In this section we give our main theorem regarding the

structure of the optimal assignments in the Markovian click

model: that position and click probability are monotonic in

a bidder’s bid, with all other bids fixed. This is a funda-

mental property that makes the bidder’s interaction with

the system intuitive, and allows the bidder to adjust her bid

intelligently without global knowledge of the other bids.

Theorem 4. As a bidder increases her bid (keeping all

other bids fixed):

(a) the probability of her receiving a click in the optimal

solution does not decrease, and

(b) her position in the optimal solution does not go down.

Proof. As bidder x increases her bid bx with all other

bids fixed, the value of a particular solution S = (A, x, B)

increases linearly as q(A)px · bx + [e(A) + q(A)qxe(B)]. (So-

lutions not involving x stay constant.)

Let S1, . . . , Sk denote the sequence of optimal solutions that

occurs as bx increases from 0. Solution S1 is the best solution

not involving x, and Sk is the best solution that puts x in

the first position. By the fact that each solution increases

linearly by the term q(A)px ·bx, which is the probability that

x receives a click in that solution, it must be the case that

for a new solution to become optimal it gives x a higher click
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Computing Optimal 
Assignment

1. Optimal Assignment using Dynamic Programming
• Sort ads in decreasing order of a-ecpm: O(n log n)
• F(i,j) = efficiency obtained (given you reach slot j) by 

filling slots (j…k) with bidders from set {i,…,n}

! F(i,j) = max(F(i+1, j+1) qi + ei , F(i+1, j))

• Solving for F(1,1) yields optimal assignment: O(nk)
• Overall: O(n log n + nk)
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Computing Optimal 
Assignment (2)

2. Near-linear time algorithm (in place of dynamic programming)
• Oracle: for any j, j’ є ß, return bidder j ≤ y ≤ j’ that 

maximizes f(qy, ey) for an arbitrary linear function f : O(log2n)
• Algorithm constructs solution Si є OPT(ß, i) for i = 1,…,k. 

Final one Sk is the overall optimum.  Make O(k2) calls to 
oracle

• Overall: O(n logn + k2log2n)

Using VCG pricing -> truthful mechanism for sponsored search 
with Markovian users

4. Computing the Optimal Assignment

In this section we give algorithms for computing the optimal

assignment of bidders to positions using the structural prop-

erties we proved in the previous section. We begin with a

simple dynamic program that gives an O(n log n + nk) time

algorithm. We then show how our insights from the previous

sections give a faster O(n log n + k
2
log

2
n) time algorithm.

4.1 Optimal Assignment using Dynamic Program-

ming. The algorithm proceeds as follows. First, sort the

ads in decreasing order of a-ecpm in time O(n log n). Then,

let F (i, j) be the efficiency obtained (given that you reach

slot j) by filling slots (j, . . . , k) with bidders from the set

{i, . . . , n}. We get the following recurrence:

F (i, j) = max(F (i + 1, j + 1)qi + ei, F (i + 1, j)).

Solving this recurrence for F (1, 1) yields the optimal assign-

ment, and can be done in O(nk) time.

4.2 Near-linear Time Algorithm. Let B = {1, . . . , n}
be the set of bidders, sorted by a-ecpm. Suppose we had

an oracle that told us, for any j, j
� ∈ B, the bidder y with

j ≤ y ≤ j
�
that maximizes f(qy, ey) for an arbitrary linear

function f . We will later show how to construct this oracle,

but first we describe our algorithm that uses this oracle.

Our algorithm will construct a solution Si ∈ OPT(B, i) for

all i = 1, . . . , k, the final one Sk being the overall optimum.

By Theorem 3, we may assume that Si+1 ⊃ Si. Using this

fact, our algorithm builds Si+1 from Si by simply finding

arg maxx/∈Si
e(Si ∪ {x}). To perform this max, the algo-

rithm first guesses (i.e., searches exhaustively for) the a-

ecpm rank of the new bidder x among the bidders in Si;

this a number � from 1 to i + 1. Let {s1, . . . , si} be the el-

ements of Si sorted by decreasing a-ecpm. The new bidder

x has a-ecpm between s�−1 and s�, and so e(Si ∪ {x}) =

e(s1, . . . , s�−1) + q(s1, . . . , s�−1)(ex + qxe(s�, . . . , si)). Since

e(Si ∪ {x}) is linear in (qx, ex), we may appeal to the ora-

cle to find the bidder x that maximizes e(Si ∪ {x}) among

all bidders with a-ecpm between that of s�−1 and s�. We

make i + 1 calls to this oracle for each i, and thus O(k
2
)

calls overall. To get the coefficients of e(Si ∪ {x}) to pass to

the oracle, we precompute the quantities q(s1, . . . , sp) and

e(sp, . . . , si) for all p. (This can be done in O(k) time per i,

for O(k
2
) time overall.)

It remains to show how to implement the oracle. We first

preprocess the sequence [1, . . . , n] of bidders as follows. We

consider the dyadic intervals [α2
β
+1, . . . , (α+1)2

β
] for each

possible α, β, for a total of O(n) intervals. Note that any

subsequence [j, . . . , j
�
] is made up of at most O(log n) such

intervals. For each such interval, we will make a data struc-

ture that can find max f(qx, ex) over bidders in that inter-

val in O(log n) time. So overall, given [j, . . . , j
�
], the oracle

takes the max of O(log n) calls to the data structure, and

completes in O(log
2
n) time.

The data structure we compute for a particular interval

[α2
β

+ 1, . . . , (α + 1)2
β
] is simply the convex hull of the

points (qx, ex) in two-dimensional space defined by bidders

x in the interval. We can compute all these convex hulls

in O(n log n) time by successively merging convex hulls for

increasing β. Given the convex hull (with the points sorted

in order of qx for example), a simple binary search can find

the point maximizing f(qx, ex) in O(log n) time.

This gives,

Theorem 5. Consider the auction with n Markovian bid-
ders and k slots. There is an optimal assignment which can
be determined in O(n log n + k

2
log

2
n) time.

It follows that using VCG pricing with this optimal assign-

ment, we obtain a truthful mechanism for sponsored search

with Markovian users.

5. Concluding Remarks

We approached sponsored search auctions as a three party

process by modeling the behavior of users first and then

designing suitable mechanisms to affect the game theory be-

tween the advertiser and the search engine. This formal

approach shows an intricate connection between the user

models and the mechanisms.

There are some interesting open issues to understand about

our model and mechanism. For example, in order to im-

plement our mechanism, the search engine needs to devise

methods to estimate the parameters of our model, in par-

ticular, qi’s. This is a challenging statistical and machine

learning problem. Also, we could ask how much improve-

ment in efficiency and/or revenue is gained by using our

model as opposed to VCG without using our model.

More powerful models will also be of great interest. One

small extension of our model is to make the continuation

probability qi a function of location as well, which makes

the optimization problem more difficult. We can also gen-

eralize the Markov model to handle arbitrary configurations

of ads on a web page (not necessarily a search results page),

or to allow various other user states (such as navigating a

landing page). Finally, since page layout can be performed

dynamically, we could ask what would happen if the layout

of a web page were a part of the mechanism; i.e., a function

of the bids.
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Discussion: limitations

• Statistical and machine learning problem: need to 
find a good way to find model parameters, especially 
qi’s

• Open problem: initialization for new users coming in 
• qi can depend on location
• Model extension for general layouts
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Two Types of 
Externalities

• Position Externalities
• User tires of the search

•    = Pr(Continue | View j + 
Don’t Click j)

• User finds what she 
looks for

•    = Pr(Continue | View j + 
Click j)

• Information Externalities
•   = { j: link j received a click}

•          = Pr(Click j | View j + Click H)

•              = Base-line Click-through rates

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
2

Here we will focus on two

types of externalities:

Information Externalities. An ad imposes information exter-

nalities on others by providing a user who has clicked on his link

with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This

2
Note we abstract away order information; i.e., we assume a user’s

behavior depends on past clicks, but not on the order in which the

clicks were made.

can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
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with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-
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is given by:
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By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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behavior depends on past clicks, but not on the order in which the

clicks were made.

can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model
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depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-
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The same search objective may be expressed by different queries,
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all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-
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to identify the model described above we need some variation on
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and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were
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clicked on has satisfied his search need. We capture the first effect
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that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
2

Here we will focus on two

types of externalities:

Information Externalities. An ad imposes information exter-

nalities on others by providing a user who has clicked on his link

with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search
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that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and
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We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
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nalities on others by providing a user who has clicked on his link

with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the
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Example: Externalities

• Two ads: A1, A2

• Pr(click on A1) =

• Pr(click on A2) = 

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
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Here we will focus on two
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Information Externalities. An ad imposes information exter-

nalities on others by providing a user who has clicked on his link

with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the
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click history of users as they browse through the sponsored links
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with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if
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We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
2

Here we will focus on two

types of externalities:

Information Externalities. An ad imposes information exter-

nalities on others by providing a user who has clicked on his link

with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.
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We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.
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search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

= Pr(Continue | View j + Don’t Click j)

= Pr(Continue | View j + Click j)

= Pr(Click j | View j + Click H)
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Representation of an Event

• A pair of tuples

• First tuple = the ads displayed

• Second tuple = the ads clicked 

•                         = Event when j and k were 
displayed and only k was clicked.

estimates for conditional click-through rates would still be consis-
tent.

Let the three most effective sponsored search advertisers for a
given keyword be denoted by j, k and l. In our database, when
a user submits a query, he sees a sponsored list displaying ads of
at least two advertisers among j, k and l in some specific order.
The user may click none, one or more of these links, also in some
specific order. We denote such an event by a pair of tuples, each
of three elements from the set {j, k, l, ∅}. The first tuple denotes
the advertisers that were displayed and the second tuple denotes
the advertisers that were clicked. If a slot is left empty, or an ad-
vertiser is not clicked, we use the symbol ∅ to mark this in the
tuple. If, for example, only advertisers j and k were displayed (in
the first two slots) and only k was clicked, we denote this event by
{j, k, ∅; k, ∅, ∅}.

We will now derive the distribution of observables in our model.
As an example, consider the event {j, k, l; j, ∅, ∅}. Such an ob-
servation is consistent with three search paths: first, the user may
have clicked on j and then decided to stop searching. Second, the
user may have clicked on j, continued searching, felt that slot k
was not appealing and then decided to stop searching. Finally, the
user may have clicked on j, continued searching, felt that slot k
was not worth-clicking, still decided to keep searching and finally
considered l unappealing as well. As such, the probability of the
observable {j, k, l; j, ∅, ∅} is:

Prob ({j, k, l; j, ∅, ∅}) = Fj(1− γj) +

Fjγj(1− Fk({j}))(1− λk) +

Fjγj(1− Fk({j}))λk(1− Fl({j})).

One can analogously compute that:

Prob ({j, k, ∅; ∅, ∅, ∅}) = (1− Fj)(1− λj) +

(1− Fj)λj(1− Fk),

Prob ({j, k, ∅; j, ∅, ∅}) = Fj(1− γj) + Fjγj(1− Fk({j})),
Prob ({j, k, ∅; k, ∅, ∅}) = (1− Fj)γjFk,

Prob ({j, k, ∅; j, k, ∅}) = FjγjFk({j}),
Prob ({j, k, l; k, ∅, ∅}) = (1− Fj)λjFk(1− γk) +

(1− Fj)λjFkγk(1− Fl({k})),
Prob ({j, k, l; l, ∅, ∅}) = (1− Fj)λj(1− Fk)λkFl,

Prob ({j, k, l; j, k, ∅}) = FjγjFk({j})(1− γk) +

FjγjFk({j}γk(1− Fl({j, k})),
Prob ({j, k, l; j, l, ∅}) = Fjγj(1− Fk({j})λkFl({j}),
Prob ({j, k, l; k, l, ∅}) = (1− Fj)λjFkγkFl({k}),
Prob ({j, k, l; j, k, l}) = FjγjFk({j})γkFl({j, k}).

The above equations fully describe the distribution of observ-
ables of our model when the the mainline slots display at least 2 of
the 3 advertisers we consider for each keyword. The lemma below
proves that our ordered search model is fully identified, that is, it
shows that different vectors of parameters are never observationally
equivalent. To simplify exposition, let’s denote for all j:

Fj ≡ (Fj , Fj({k}), Fj({l}), Fj({k, l}), F ≡ (Fj ,Fk,Fl);

and:

θj ≡ (γj , λj), θ ≡ (θj , θk, θl).

LEMMA 1. The ordered search model with Sponsored Search
lists of size 2 and 3 is identified, that is, for any two vector of pa-
rameters (F, θ) and (F�, θ�), if the above equations take the same
values, then (F, θ) = (F�, θ�).

keyword advertisers # of obs.

ipod
(A): store.apple.com
(B): cellphoneshop.net
(C): nextag.com

8,398

diet pill
(A): pricesexposed.net
(B): dietpillvalueguide.com
(C): certiphene.com

4,652

avg antivirus
(A): Avg-Hq.com
(B): avg-for-free.com
(C): free-avg-download.com

1,336

Table 1: Keywords and Advertisers

2.2 Data Description
Our data consists of impression and clicking records associated

to queries that contained the keywords ipods, diet pills and avg
antivirus in Microsoft’s Live Search. We chose these keywords be-
cause, first, a user that searches for any of them has a well defined
objective and, second, because they are highly advertised. Within
each of these keywords, we selected the three most popular adver-
tisers (in number of clicks) and considered all impressions in which
at least two of these advertisers are displayed.3

For the keyword ipod, the Apple Store (www.store.apple.com)
is the most important advertiser, followed by the online retailer
of electronics Cell Phone Shop (www.cellphoneshop.net) and by
the price research website Nextag (www.nextag.com). All the 8398
ipod observations in our sample refer to impressions that happened
between August 1st and November 1st of 2007.

The most popular advertisers for diet pills are, first, the meta-
search website Price Exposed (pricesexposed.net), followed by the
diet pills retailer dietpillvalueguide.com and then by certiphene.com
(which only sells the diet pill certiphene). All 4,652 impressions
considered happened between August 1st and October 1st of 2007.

For avg antivirus, the most popular advertiser is the official AVG
website, followed by the unofficial distributers of the AVG antivirus
avg-for-free.com and free-avg-download.com. The 1,336 observa-
tions range from September 1st to November 1st of 2007. The
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click-through rates are decreasing for most of the queries: among
the clicks associated to diet pill, 56.73% occurred in the first slot,
34.04% in the second and 9.21% in the third. For ipod, the concen-

3Regarding the impressions that contain only two of the three se-
lected advertisers in the mainline slots, we only kept those logs
which display our selected advertisers in the first two positions. By
doing this, we can disregard the advertisers on slot 3 and below
without biasing our estimates.
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various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
2

Here we will focus on two

types of externalities:

Information Externalities. An ad imposes information exter-

nalities on others by providing a user who has clicked on his link

with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This

2
Note we abstract away order information; i.e., we assume a user’s

behavior depends on past clicks, but not on the order in which the

clicks were made.

can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the
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behavior depends on past clicks, but not on the order in which the
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and
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have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

= Pr(Continue | View j + Don’t Click j)

= Pr(Continue | View j + Click j)

= Pr(Click j | View j + Click H)

estimates for conditional click-through rates would still be consis-
tent.

Let the three most effective sponsored search advertisers for a
given keyword be denoted by j, k and l. In our database, when
a user submits a query, he sees a sponsored list displaying ads of
at least two advertisers among j, k and l in some specific order.
The user may click none, one or more of these links, also in some
specific order. We denote such an event by a pair of tuples, each
of three elements from the set {j, k, l, ∅}. The first tuple denotes
the advertisers that were displayed and the second tuple denotes
the advertisers that were clicked. If a slot is left empty, or an ad-
vertiser is not clicked, we use the symbol ∅ to mark this in the
tuple. If, for example, only advertisers j and k were displayed (in
the first two slots) and only k was clicked, we denote this event by
{j, k, ∅; k, ∅, ∅}.

We will now derive the distribution of observables in our model.
As an example, consider the event {j, k, l; j, ∅, ∅}. Such an ob-
servation is consistent with three search paths: first, the user may
have clicked on j and then decided to stop searching. Second, the
user may have clicked on j, continued searching, felt that slot k
was not appealing and then decided to stop searching. Finally, the
user may have clicked on j, continued searching, felt that slot k
was not worth-clicking, still decided to keep searching and finally
considered l unappealing as well. As such, the probability of the
observable {j, k, l; j, ∅, ∅} is:

Prob ({j, k, l; j, ∅, ∅}) = Fj(1− γj) +

Fjγj(1− Fk({j}))(1− λk) +

Fjγj(1− Fk({j}))λk(1− Fl({j})).

One can analogously compute that:

Prob ({j, k, ∅; ∅, ∅, ∅}) = (1− Fj)(1− λj) +

(1− Fj)λj(1− Fk),

Prob ({j, k, ∅; j, ∅, ∅}) = Fj(1− γj) + Fjγj(1− Fk({j})),
Prob ({j, k, ∅; k, ∅, ∅}) = (1− Fj)γjFk,

Prob ({j, k, ∅; j, k, ∅}) = FjγjFk({j}),
Prob ({j, k, l; k, ∅, ∅}) = (1− Fj)λjFk(1− γk) +

(1− Fj)λjFkγk(1− Fl({k})),
Prob ({j, k, l; l, ∅, ∅}) = (1− Fj)λj(1− Fk)λkFl,

Prob ({j, k, l; j, k, ∅}) = FjγjFk({j})(1− γk) +

FjγjFk({j}γk(1− Fl({j, k})),
Prob ({j, k, l; j, l, ∅}) = Fjγj(1− Fk({j})λkFl({j}),
Prob ({j, k, l; k, l, ∅}) = (1− Fj)λjFkγkFl({k}),
Prob ({j, k, l; j, k, l}) = FjγjFk({j})γkFl({j, k}).

The above equations fully describe the distribution of observ-
ables of our model when the the mainline slots display at least 2 of
the 3 advertisers we consider for each keyword. The lemma below
proves that our ordered search model is fully identified, that is, it
shows that different vectors of parameters are never observationally
equivalent. To simplify exposition, let’s denote for all j:

Fj ≡ (Fj , Fj({k}), Fj({l}), Fj({k, l}), F ≡ (Fj ,Fk,Fl);

and:

θj ≡ (γj , λj), θ ≡ (θj , θk, θl).

LEMMA 1. The ordered search model with Sponsored Search
lists of size 2 and 3 is identified, that is, for any two vector of pa-
rameters (F, θ) and (F�, θ�), if the above equations take the same
values, then (F, θ) = (F�, θ�).

keyword advertisers # of obs.

ipod
(A): store.apple.com
(B): cellphoneshop.net
(C): nextag.com

8,398

diet pill
(A): pricesexposed.net
(B): dietpillvalueguide.com
(C): certiphene.com

4,652

avg antivirus
(A): Avg-Hq.com
(B): avg-for-free.com
(C): free-avg-download.com

1,336

Table 1: Keywords and Advertisers

2.2 Data Description
Our data consists of impression and clicking records associated

to queries that contained the keywords ipods, diet pills and avg
antivirus in Microsoft’s Live Search. We chose these keywords be-
cause, first, a user that searches for any of them has a well defined
objective and, second, because they are highly advertised. Within
each of these keywords, we selected the three most popular adver-
tisers (in number of clicks) and considered all impressions in which
at least two of these advertisers are displayed.3

For the keyword ipod, the Apple Store (www.store.apple.com)
is the most important advertiser, followed by the online retailer
of electronics Cell Phone Shop (www.cellphoneshop.net) and by
the price research website Nextag (www.nextag.com). All the 8398
ipod observations in our sample refer to impressions that happened
between August 1st and November 1st of 2007.

The most popular advertisers for diet pills are, first, the meta-
search website Price Exposed (pricesexposed.net), followed by the
diet pills retailer dietpillvalueguide.com and then by certiphene.com
(which only sells the diet pill certiphene). All 4,652 impressions
considered happened between August 1st and October 1st of 2007.

For avg antivirus, the most popular advertiser is the official AVG
website, followed by the unofficial distributers of the AVG antivirus
avg-for-free.com and free-avg-download.com. The 1,336 observa-
tions range from September 1st to November 1st of 2007. The
sample provided by Microsoft AdWords displays impressions asso-
ciated to different keywords with varying intensities through time.
This is why ranges differ across the selected keywords; and we have
no reason to expect such differences might affect the estimates of
our model.

All keywords possess a leading advertiser that occupies the first
position in most of the observations. For ipod, the Apple Store
occupies the first slot in roughly 77% of the cases, while the Cell
Phone Shop appears in 22% of the observations. The situation is
reversed when we look at the second slot: the Cell Phone Shop
is there in almost 70% of the observations, while the Apple Store
and Nextag appear respectively in 17% and 13% of the cases. As
table 2 below makes clear, advertising for diet pills or avg antivirus
display a similar pattern.

For all the keywords considered, approximately one out of four
impressions got at least one click (25.26% for ipods, 24.24% for
diet pills and 35.55% for avg antivirus). As one should expect,
click-through rates are decreasing for most of the queries: among
the clicks associated to diet pill, 56.73% occurred in the first slot,
34.04% in the second and 9.21% in the third. For ipod, the concen-

3Regarding the impressions that contain only two of the three se-
lected advertisers in the mainline slots, we only kept those logs
which display our selected advertisers in the first two positions. By
doing this, we can disregard the advertisers on slot 3 and below
without biasing our estimates.

Separable Model:

Ordered Search Model:

2.3.4 Addressing Endogeneity
One might question the consistency of our estimates by arguing

that the variation on slot allocations may be endogeneous, that is,

advertisers may change their bids (to alter their positions) as a re-

sponse to different groups of users (that browse the web in different

time periods). We believe on the contrary that a significant source

of variation is due to the allocation procedure itself. Microsoft Ad-

Center applies a randomization procedure that perturbs submitted

bids and (non-deterministically) changes the slot allocations. This

makes the variation exogenous.

2.4 Model Validation
It’s commonly assumed, by both the search engines and the lit-

erature on keyword auctions, that the users’ clicking behavior fol-

lows a separable click-through rate model. According to this sim-

ple model, the probability that advertiser j gets a click when she

occupies slot k is given by:

Prob(advertiser j gets a click on slot k) = s
k · fj ,

where s
k

is the slot-specific click-through rate and fj is the advertiser-

specific click-through rate. It then follows that, according to this

model, the probability of any clicking log {j, k, l; c1
, c

2
, c

3} is

given by:

Prob
�
{j, k, l; c1

, c
2
, c

3}
�

= (s1
fj)

Ij (1− s
1
fj)
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3
fl)

1−Il ,

where Ij is an indicator function that equals 1 if and only if link j

was clicked.

We applied the separable click-through rate model to the same

data base used to estimate the ordered search model. After normal-

izing s
1 = 1 (which is necessary for identification), we obtained

the results shown in Table 5. Note that, as one would expect, the

estimates of advertiser-specific click-through rates in the separable

model, fA, fB and fC , are roughly equal to the baseline click-

through rates of the ordered search model.

This subsection is devoted to comparing the ordered search model

(to simplify, ordered model) from this paper with the widely used

separable click-through rate model (separable model from now on).

Although having less parameters, the separable model cannot be

written as a constrained version of the ordered model. This is

because the separable model specifies a slot-specific term s
k

into

click-though rates that does not depend on who occupies the previ-

ous slots. As such, unlike the ordered model, the separable model

disregards externalities between advertisers, but, on the other hand,

allows for slot-specific effects not contemplated by the ordered

model.

To compare these models, we contrasted the probabilities of click-

ing logs implied by each model to raw moments computed from

our data base. The ordered model has more parameters than the

separable model, and so it should come as no surprise that it pro-

vides a better fit for the data. This is a drawback from purely

non-parametrical comparisons; and in future work we shall ad-

dress these concerns by applying non-nested hypotheses testing

techniques (as in [17]).

Table 6 below present our results. To save space, the event ‘user

clicks on advertiser J occupying the first slot’ is denoted simply

by J and the event ‘user clicks on advertiser J occupying the sec-

ond slot given that he also clicked on advertiser K occupying the

first slot’ is denoted by J |K. Finally, the event ‘user clicks on ad-

vertiser J occupying the second slot given that he did not click on

advertiser K occupying the first slot’ is denoted by J | ∼ K. The

columm labeled ‘realized CTR’ gives the empirical distribution of

these events, while the columms ‘ordered’ and ‘separable’ present

the probabilities predicted by the ordered and the separable models,

respectively.

Let’s analyze table 6, whose left side is constructed based on

clicking logs associated to the keyword ipod. Among the events

considered, the ordered model predictions are at least as good as

the separable models predictions (as measured by their deviations

to the empirical distribution) in 14 out of 15 events (as indicated by
�

). More importantly, the only event in which the separable model

performs better than the ordered model (B| ∼ C) may be found

in less than 1% of the sample (as C occupies the first slot in only

0.88% of the observations - see table 2).

The same pattern is observed for the keywords diet pills and avg
antivirus. As table 6 shows, the ordered model provides better pre-

dictions for 14 out of the 15 events considered. Further, the cases in

which the separable model performs better (C| ∼ B and B| ∼ C,

respectively) occur in less than 2% of the observations for both

keywords.

The 15 events considered span all possible clicking histories for

the first 2 slots. As a consequence, by applying Bayes rule to the

predictions displayed on table 6 and 7, one can derive the implied

probabilities for any clicking log involving only slots 1 and 2. Thus,

from the discussion above, we can safely conclude that the predic-

tions of the ordered model outperform those of the separable model

for all keywords considered.

3. EQUILIBRIUM ANALYSIS
We’ll now analyze how advertisers bid given that users do or-

dered search. We return to a model with a set of N advertisers de-

noted by Aj , j ∈ {1, ..., n} and K. Each advertiser Aj has a value

of vAj per click. Search engines use the following generalization

of the second-price auction to sell sponsored links: first, each ad-

vertiser Aj submits a single bid bAj representing his willingness to

pay per click. Then each advertiser’s bid is mulitplied by a weight

wAj that solely depends on his characteristics, producing a score

sAj = wAj · bAj . Next, advertisers are ranked in decreasing order

of their scores and the j
th

highest ranked advertiser gets the j
th

highest slot. When an advertiser receives a click, he is charged a

price equal to the smallest bid he could have submitted that would

have allowed him to maintain his position in the sponsored list. La-

beling advertisers such that Ai denotes the advertiser ranked in the

i’th slot, we see that advertiser Aj pays pAj where:

pAj · wAj = bAj+1 · wj+1 which gives pAj =
bAj+1 · wAj+1

wAj

.

The total payment of advertiser Aj is then pAj · q
j
, where q

j

is the total number of clicks of slot j.
5

To simplify the analysis,

we’ll take the ordered search model of the previous section and as-

sume that baseline and conditional click-through rates are the same

for each advertiser, that is, we assume that FAj = FAj (H) for

any click history H . Although our empirical exercise suggests that

baseline and conditional click-through rates indeed differ, this as-

sumption is necessary to bring tractability to our theoretical model

of bidding. Further, as we will argue later, our main theoretical con-

clusions remain valid under the more general ordered search model

of the previous section.

With this assumption in hand, the total number of clicks of the

5
Note q

j
is actually a function of the entire assignment of advertis-

ers to slots preceeding j; we denote it by q
j

to simplify notation.

sk, slot specific CTR; fj, advertiser specific CTR
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Representation: all 
possible events

estimates for conditional click-through rates would still be consis-
tent.

Let the three most effective sponsored search advertisers for a
given keyword be denoted by j, k and l. In our database, when
a user submits a query, he sees a sponsored list displaying ads of
at least two advertisers among j, k and l in some specific order.
The user may click none, one or more of these links, also in some
specific order. We denote such an event by a pair of tuples, each
of three elements from the set {j, k, l, ∅}. The first tuple denotes
the advertisers that were displayed and the second tuple denotes
the advertisers that were clicked. If a slot is left empty, or an ad-
vertiser is not clicked, we use the symbol ∅ to mark this in the
tuple. If, for example, only advertisers j and k were displayed (in
the first two slots) and only k was clicked, we denote this event by
{j, k, ∅; k, ∅, ∅}.

We will now derive the distribution of observables in our model.
As an example, consider the event {j, k, l; j, ∅, ∅}. Such an ob-
servation is consistent with three search paths: first, the user may
have clicked on j and then decided to stop searching. Second, the
user may have clicked on j, continued searching, felt that slot k
was not appealing and then decided to stop searching. Finally, the
user may have clicked on j, continued searching, felt that slot k
was not worth-clicking, still decided to keep searching and finally
considered l unappealing as well. As such, the probability of the
observable {j, k, l; j, ∅, ∅} is:

Prob ({j, k, l; j, ∅, ∅}) = Fj(1− γj) +

Fjγj(1− Fk({j}))(1− λk) +

Fjγj(1− Fk({j}))λk(1− Fl({j})).

One can analogously compute that:

Prob ({j, k, ∅; ∅, ∅, ∅}) = (1− Fj)(1− λj) +

(1− Fj)λj(1− Fk),

Prob ({j, k, ∅; j, ∅, ∅}) = Fj(1− γj) + Fjγj(1− Fk({j})),
Prob ({j, k, ∅; k, ∅, ∅}) = (1− Fj)γjFk,

Prob ({j, k, ∅; j, k, ∅}) = FjγjFk({j}),
Prob ({j, k, l; k, ∅, ∅}) = (1− Fj)λjFk(1− γk) +

(1− Fj)λjFkγk(1− Fl({k})),
Prob ({j, k, l; l, ∅, ∅}) = (1− Fj)λj(1− Fk)λkFl,

Prob ({j, k, l; j, k, ∅}) = FjγjFk({j})(1− γk) +

FjγjFk({j}γk(1− Fl({j, k})),
Prob ({j, k, l; j, l, ∅}) = Fjγj(1− Fk({j})λkFl({j}),
Prob ({j, k, l; k, l, ∅}) = (1− Fj)λjFkγkFl({k}),
Prob ({j, k, l; j, k, l}) = FjγjFk({j})γkFl({j, k}).

The above equations fully describe the distribution of observ-
ables of our model when the the mainline slots display at least 2 of
the 3 advertisers we consider for each keyword. The lemma below
proves that our ordered search model is fully identified, that is, it
shows that different vectors of parameters are never observationally
equivalent. To simplify exposition, let’s denote for all j:

Fj ≡ (Fj , Fj({k}), Fj({l}), Fj({k, l}), F ≡ (Fj ,Fk,Fl);

and:

θj ≡ (γj , λj), θ ≡ (θj , θk, θl).

LEMMA 1. The ordered search model with Sponsored Search
lists of size 2 and 3 is identified, that is, for any two vector of pa-
rameters (F, θ) and (F�, θ�), if the above equations take the same
values, then (F, θ) = (F�, θ�).

keyword advertisers # of obs.

ipod
(A): store.apple.com
(B): cellphoneshop.net
(C): nextag.com

8,398

diet pill
(A): pricesexposed.net
(B): dietpillvalueguide.com
(C): certiphene.com

4,652

avg antivirus
(A): Avg-Hq.com
(B): avg-for-free.com
(C): free-avg-download.com

1,336

Table 1: Keywords and Advertisers

2.2 Data Description
Our data consists of impression and clicking records associated

to queries that contained the keywords ipods, diet pills and avg
antivirus in Microsoft’s Live Search. We chose these keywords be-
cause, first, a user that searches for any of them has a well defined
objective and, second, because they are highly advertised. Within
each of these keywords, we selected the three most popular adver-
tisers (in number of clicks) and considered all impressions in which
at least two of these advertisers are displayed.3

For the keyword ipod, the Apple Store (www.store.apple.com)
is the most important advertiser, followed by the online retailer
of electronics Cell Phone Shop (www.cellphoneshop.net) and by
the price research website Nextag (www.nextag.com). All the 8398
ipod observations in our sample refer to impressions that happened
between August 1st and November 1st of 2007.

The most popular advertisers for diet pills are, first, the meta-
search website Price Exposed (pricesexposed.net), followed by the
diet pills retailer dietpillvalueguide.com and then by certiphene.com
(which only sells the diet pill certiphene). All 4,652 impressions
considered happened between August 1st and October 1st of 2007.

For avg antivirus, the most popular advertiser is the official AVG
website, followed by the unofficial distributers of the AVG antivirus
avg-for-free.com and free-avg-download.com. The 1,336 observa-
tions range from September 1st to November 1st of 2007. The
sample provided by Microsoft AdWords displays impressions asso-
ciated to different keywords with varying intensities through time.
This is why ranges differ across the selected keywords; and we have
no reason to expect such differences might affect the estimates of
our model.

All keywords possess a leading advertiser that occupies the first
position in most of the observations. For ipod, the Apple Store
occupies the first slot in roughly 77% of the cases, while the Cell
Phone Shop appears in 22% of the observations. The situation is
reversed when we look at the second slot: the Cell Phone Shop
is there in almost 70% of the observations, while the Apple Store
and Nextag appear respectively in 17% and 13% of the cases. As
table 2 below makes clear, advertising for diet pills or avg antivirus
display a similar pattern.

For all the keywords considered, approximately one out of four
impressions got at least one click (25.26% for ipods, 24.24% for
diet pills and 35.55% for avg antivirus). As one should expect,
click-through rates are decreasing for most of the queries: among
the clicks associated to diet pill, 56.73% occurred in the first slot,
34.04% in the second and 9.21% in the third. For ipod, the concen-

3Regarding the impressions that contain only two of the three se-
lected advertisers in the mainline slots, we only kept those logs
which display our selected advertisers in the first two positions. By
doing this, we can disregard the advertisers on slot 3 and below
without biasing our estimates.
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estimates for conditional click-through rates would still be consis-
tent.

Let the three most effective sponsored search advertisers for a
given keyword be denoted by j, k and l. In our database, when
a user submits a query, he sees a sponsored list displaying ads of
at least two advertisers among j, k and l in some specific order.
The user may click none, one or more of these links, also in some
specific order. We denote such an event by a pair of tuples, each
of three elements from the set {j, k, l, ∅}. The first tuple denotes
the advertisers that were displayed and the second tuple denotes
the advertisers that were clicked. If a slot is left empty, or an ad-
vertiser is not clicked, we use the symbol ∅ to mark this in the
tuple. If, for example, only advertisers j and k were displayed (in
the first two slots) and only k was clicked, we denote this event by
{j, k, ∅; k, ∅, ∅}.

We will now derive the distribution of observables in our model.
As an example, consider the event {j, k, l; j, ∅, ∅}. Such an ob-
servation is consistent with three search paths: first, the user may
have clicked on j and then decided to stop searching. Second, the
user may have clicked on j, continued searching, felt that slot k
was not appealing and then decided to stop searching. Finally, the
user may have clicked on j, continued searching, felt that slot k
was not worth-clicking, still decided to keep searching and finally
considered l unappealing as well. As such, the probability of the
observable {j, k, l; j, ∅, ∅} is:

Prob ({j, k, l; j, ∅, ∅}) = Fj(1− γj) +

Fjγj(1− Fk({j}))(1− λk) +

Fjγj(1− Fk({j}))λk(1− Fl({j})).

One can analogously compute that:

Prob ({j, k, ∅; ∅, ∅, ∅}) = (1− Fj)(1− λj) +

(1− Fj)λj(1− Fk),

Prob ({j, k, ∅; j, ∅, ∅}) = Fj(1− γj) + Fjγj(1− Fk({j})),
Prob ({j, k, ∅; k, ∅, ∅}) = (1− Fj)γjFk,

Prob ({j, k, ∅; j, k, ∅}) = FjγjFk({j}),
Prob ({j, k, l; k, ∅, ∅}) = (1− Fj)λjFk(1− γk) +

(1− Fj)λjFkγk(1− Fl({k})),
Prob ({j, k, l; l, ∅, ∅}) = (1− Fj)λj(1− Fk)λkFl,

Prob ({j, k, l; j, k, ∅}) = FjγjFk({j})(1− γk) +

FjγjFk({j}γk(1− Fl({j, k})),
Prob ({j, k, l; j, l, ∅}) = Fjγj(1− Fk({j})λkFl({j}),
Prob ({j, k, l; k, l, ∅}) = (1− Fj)λjFkγkFl({k}),
Prob ({j, k, l; j, k, l}) = FjγjFk({j})γkFl({j, k}).

The above equations fully describe the distribution of observ-
ables of our model when the the mainline slots display at least 2 of
the 3 advertisers we consider for each keyword. The lemma below
proves that our ordered search model is fully identified, that is, it
shows that different vectors of parameters are never observationally
equivalent. To simplify exposition, let’s denote for all j:

Fj ≡ (Fj , Fj({k}), Fj({l}), Fj({k, l}), F ≡ (Fj ,Fk,Fl);

and:

θj ≡ (γj , λj), θ ≡ (θj , θk, θl).

LEMMA 1. The ordered search model with Sponsored Search
lists of size 2 and 3 is identified, that is, for any two vector of pa-
rameters (F, θ) and (F�, θ�), if the above equations take the same
values, then (F, θ) = (F�, θ�).

keyword advertisers # of obs.

ipod
(A): store.apple.com
(B): cellphoneshop.net
(C): nextag.com

8,398

diet pill
(A): pricesexposed.net
(B): dietpillvalueguide.com
(C): certiphene.com

4,652

avg antivirus
(A): Avg-Hq.com
(B): avg-for-free.com
(C): free-avg-download.com

1,336

Table 1: Keywords and Advertisers

2.2 Data Description
Our data consists of impression and clicking records associated

to queries that contained the keywords ipods, diet pills and avg
antivirus in Microsoft’s Live Search. We chose these keywords be-
cause, first, a user that searches for any of them has a well defined
objective and, second, because they are highly advertised. Within
each of these keywords, we selected the three most popular adver-
tisers (in number of clicks) and considered all impressions in which
at least two of these advertisers are displayed.3

For the keyword ipod, the Apple Store (www.store.apple.com)
is the most important advertiser, followed by the online retailer
of electronics Cell Phone Shop (www.cellphoneshop.net) and by
the price research website Nextag (www.nextag.com). All the 8398
ipod observations in our sample refer to impressions that happened
between August 1st and November 1st of 2007.

The most popular advertisers for diet pills are, first, the meta-
search website Price Exposed (pricesexposed.net), followed by the
diet pills retailer dietpillvalueguide.com and then by certiphene.com
(which only sells the diet pill certiphene). All 4,652 impressions
considered happened between August 1st and October 1st of 2007.

For avg antivirus, the most popular advertiser is the official AVG
website, followed by the unofficial distributers of the AVG antivirus
avg-for-free.com and free-avg-download.com. The 1,336 observa-
tions range from September 1st to November 1st of 2007. The
sample provided by Microsoft AdWords displays impressions asso-
ciated to different keywords with varying intensities through time.
This is why ranges differ across the selected keywords; and we have
no reason to expect such differences might affect the estimates of
our model.

All keywords possess a leading advertiser that occupies the first
position in most of the observations. For ipod, the Apple Store
occupies the first slot in roughly 77% of the cases, while the Cell
Phone Shop appears in 22% of the observations. The situation is
reversed when we look at the second slot: the Cell Phone Shop
is there in almost 70% of the observations, while the Apple Store
and Nextag appear respectively in 17% and 13% of the cases. As
table 2 below makes clear, advertising for diet pills or avg antivirus
display a similar pattern.

For all the keywords considered, approximately one out of four
impressions got at least one click (25.26% for ipods, 24.24% for
diet pills and 35.55% for avg antivirus). As one should expect,
click-through rates are decreasing for most of the queries: among
the clicks associated to diet pill, 56.73% occurred in the first slot,
34.04% in the second and 9.21% in the third. For ipod, the concen-

3Regarding the impressions that contain only two of the three se-
lected advertisers in the mainline slots, we only kept those logs
which display our selected advertisers in the first two positions. By
doing this, we can disregard the advertisers on slot 3 and below
without biasing our estimates.

slot ipod diet pill

first

(A): 6,460 (76.92%)

(B): 1,864 (22.20%)

(C): 74 (0.88%)

(A): 1,912 (41.10%)

(B): 908 (19.52%)

(C): 1,832 (39.38%)

second

(A): 1,438 (17.12%)

(B): 5,826 (69.37%)

(C): 1,134 (13.50%)

(A): 1,848 (39.72%)

(B): 1,988 (42.73%)

(C): 816 (17.54%)

third

(A): 26 (0.31%)

(B): 22 (0.26%)

(C): 950 (11.31%)

(other): 7,400 (88.12%)

(A): 472 (10.15%)

(B): 692 (14.88%)

(C): 668 (14.36%)

(other): 2,820 (60.62%)

antivirus

first

(A): 1,233 (92.29%)

(B): 71 (5.31%)

(C): 32 (2.40%)

second

(A): 88 (6.59%)

(B): 674 (50.45%)

(C): 574 (42.96%)

third

(A): 9 (0.67%)

(B): 21 (1.57%)

(C): 355 (26.57%)

(other): 951 (71.18%)

Table 2: Distribution of Advertisers per Slot

slot ipod diet pill antivirus
first 1,572 (74.08%) 640 (56.73%) 205 (43.15%)

second 524 (24.69%) 384 (34.04%) 259 (54.52%)

third 30 (1.41%) 104 (9.21%) 11 (2.31%)

total 2,122 (100%) 1,128 (100%) 475 (100%)

Table 3: Distribution of Clicks per Slot

tration of clicks in the first slot is even higher, as one can see from

table 3. The keyword avg antivirus is an interesting exception, as

most of the clicks happened in the second slot (54.5%).

2.3 Estimation Results
At this stage, it is not possible to tell whether a high click-through

rate in the first slot is simply due to users’ behavior or is the effect

of very high quality advertisers. In the same vein, what explains the

very low click-through rate in the third slot for ipod? Is it because

advertisers are bad matches for the users’ search or is it the result

of search externalities imposed by the links in the first two slots?

In order to evaluate externalities, we must estimate the param-

eters of our model. We do this with the well-established maxi-
mum likelihood method, which selects values for the parameters

that maximize the probability of the sample. First we must derive

an expression, called the log-likelihood, for the (log of) probabil-

ity of the sample given the parameters of the model.
4

Our log-

likelihood function is:

log L =
�

n

log
�
Prob

�
{jn, kn, ln; c1

n, c2
n, c3

n}
��

,

where the probability of observations {jn, kn, ln; c1
n, c2

n, c3
n} is given

by the equations in Section 2.1.

Next we estimate the parameters to be those that maximize the

log-likelihood. Before discussing our estimation results, we need

4
It is common to use the log of the probability as opposed to the

probability itself to simplify the algebra. As log is a monotone

function, maximizing the log-likelihood corresponds to maximiz-

ing the likelihood.

to make one important observation. The conditional click-through

rate of some advertiser j, Fj({k}), is the probability that a random

user clicks on ad j given that this user clicked on advertiser k’s

link and kept searching until he read j’s link. Note that Fj({k})
abstracts from position externalities, as this is the probability that a

user that read the ad gives a click on it. We have three reasons to

think that conditional click-through rates should differ from base-

line click-through rates. First, link k may offer low prices for ipods,

in which case, even if the user keeps browsing the sponsored list af-

ter clicking on k (an event of probability γk), he will be less likely

to click on j or on any other link. This is the negative externality
effect, which pushes, let’s say Fj({k}), to be less than Fj . Sec-

ond, link k may increase the users’ willingness to click on j, which

may happen if, for example, link k is a meta-search website. In this

case, Fj({k}) is greater than Fj , which corresponds to a positive
externality effect.

These first two reasons for Fj to depart from Fj({k}) relate to

information externalities. There is a third reason, though, not re-

lated to externalities but to the structure of our data, that may ex-

plain why Fj �= Fj({k}): the group of users that make at least one

click may be fundamentally different from the total pool of users

that perform searches on Microsoft Live. As such, the conditional

click-through rate Fj({k}) reflects the probability of j getting a

click among a quite selected group of users. It is natural to think

that these users click more often on sponsored links than a common

user; and this should push Fj({k}) to be higher than Fj . We call

this the selection effect.

As a consequence, we can safely interpret estimates such that

Fj > Fj({k}) as evidence that advertiser k imposes a negative

externality on advertiser j. Nevertheless, if Fj < Fj({k}), as we

don’t observe any users’ characteristics, we can’t tell apart positive

externalities from purely selection effect. We need to keep this is

mind in order to interpret the estimation results.

One can directly test whether the selection effect is driving our

estimates by looking at the continuation probabilities λj and γj .

Clearly, absent any selection effect and granted j is not a meta-

search website, λj , the probability that a user keeps browsing after

not clicking on j, is expected to be higher than γj , the probability

that a user keeps browsing after clicking on j. The reason for this

is that users may only fulfill their search needs if they do click on

j, in which case they are not expected to return to the results page.

As a consequence, having λj significantly lower than γj is strong

evidence in favor of the selection effect, as the subgroup of users

that indeed make clicks is much more likely to patronize sponsored

search.

We are now able to discuss our estimation results, which are dis-

played at Table 3. We find that for the three search terms we investi-

gated, selection effects were ubiquitous. Nonetheless, we observed

significant negative externalities in two of them (ipod and avg an-
tivirus). For the third keyword (diet pills), we observed that con-

ditional click-through-rates were higher than the base-line click-

through-rates, although it is not possible to determine whether to

attribute this to the selection effect or to positive externalities. In

the following subsections, we discuss the results for each keyword

in detail.

2.3.1 ipod Results
For this keyword, the lead advertiser (the Apple Store) has a

very high click-through rate: 21%. Its competitors, the Cell Phone

Shop and Nextag, have 8.7% and 10.4%, respectively. These es-

timates can be interpreted as the probability that the first slot gets

a click when it is occupied by one of these three advertisers. The

difference between the Apple Store click-through rate and that of

slot ipod diet pill

first

(A): 6,460 (76.92%)

(B): 1,864 (22.20%)

(C): 74 (0.88%)

(A): 1,912 (41.10%)

(B): 908 (19.52%)

(C): 1,832 (39.38%)

second

(A): 1,438 (17.12%)

(B): 5,826 (69.37%)

(C): 1,134 (13.50%)

(A): 1,848 (39.72%)

(B): 1,988 (42.73%)

(C): 816 (17.54%)

third

(A): 26 (0.31%)

(B): 22 (0.26%)

(C): 950 (11.31%)

(other): 7,400 (88.12%)

(A): 472 (10.15%)

(B): 692 (14.88%)

(C): 668 (14.36%)

(other): 2,820 (60.62%)

antivirus

first

(A): 1,233 (92.29%)

(B): 71 (5.31%)

(C): 32 (2.40%)

second

(A): 88 (6.59%)

(B): 674 (50.45%)

(C): 574 (42.96%)

third

(A): 9 (0.67%)

(B): 21 (1.57%)

(C): 355 (26.57%)

(other): 951 (71.18%)

Table 2: Distribution of Advertisers per Slot

slot ipod diet pill antivirus
first 1,572 (74.08%) 640 (56.73%) 205 (43.15%)

second 524 (24.69%) 384 (34.04%) 259 (54.52%)

third 30 (1.41%) 104 (9.21%) 11 (2.31%)

total 2,122 (100%) 1,128 (100%) 475 (100%)

Table 3: Distribution of Clicks per Slot

tration of clicks in the first slot is even higher, as one can see from

table 3. The keyword avg antivirus is an interesting exception, as

most of the clicks happened in the second slot (54.5%).

2.3 Estimation Results
At this stage, it is not possible to tell whether a high click-through

rate in the first slot is simply due to users’ behavior or is the effect

of very high quality advertisers. In the same vein, what explains the

very low click-through rate in the third slot for ipod? Is it because

advertisers are bad matches for the users’ search or is it the result

of search externalities imposed by the links in the first two slots?

In order to evaluate externalities, we must estimate the param-

eters of our model. We do this with the well-established maxi-
mum likelihood method, which selects values for the parameters

that maximize the probability of the sample. First we must derive

an expression, called the log-likelihood, for the (log of) probabil-

ity of the sample given the parameters of the model.
4

Our log-

likelihood function is:

log L =
�

n

log
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where the probability of observations {jn, kn, ln; c1
n, c2

n, c3
n} is given

by the equations in Section 2.1.

Next we estimate the parameters to be those that maximize the

log-likelihood. Before discussing our estimation results, we need

4
It is common to use the log of the probability as opposed to the

probability itself to simplify the algebra. As log is a monotone

function, maximizing the log-likelihood corresponds to maximiz-

ing the likelihood.

to make one important observation. The conditional click-through

rate of some advertiser j, Fj({k}), is the probability that a random

user clicks on ad j given that this user clicked on advertiser k’s

link and kept searching until he read j’s link. Note that Fj({k})
abstracts from position externalities, as this is the probability that a

user that read the ad gives a click on it. We have three reasons to

think that conditional click-through rates should differ from base-

line click-through rates. First, link k may offer low prices for ipods,

in which case, even if the user keeps browsing the sponsored list af-

ter clicking on k (an event of probability γk), he will be less likely

to click on j or on any other link. This is the negative externality
effect, which pushes, let’s say Fj({k}), to be less than Fj . Sec-

ond, link k may increase the users’ willingness to click on j, which

may happen if, for example, link k is a meta-search website. In this

case, Fj({k}) is greater than Fj , which corresponds to a positive
externality effect.

These first two reasons for Fj to depart from Fj({k}) relate to

information externalities. There is a third reason, though, not re-

lated to externalities but to the structure of our data, that may ex-

plain why Fj �= Fj({k}): the group of users that make at least one

click may be fundamentally different from the total pool of users

that perform searches on Microsoft Live. As such, the conditional

click-through rate Fj({k}) reflects the probability of j getting a

click among a quite selected group of users. It is natural to think

that these users click more often on sponsored links than a common

user; and this should push Fj({k}) to be higher than Fj . We call

this the selection effect.

As a consequence, we can safely interpret estimates such that

Fj > Fj({k}) as evidence that advertiser k imposes a negative

externality on advertiser j. Nevertheless, if Fj < Fj({k}), as we

don’t observe any users’ characteristics, we can’t tell apart positive

externalities from purely selection effect. We need to keep this is

mind in order to interpret the estimation results.

One can directly test whether the selection effect is driving our

estimates by looking at the continuation probabilities λj and γj .

Clearly, absent any selection effect and granted j is not a meta-

search website, λj , the probability that a user keeps browsing after

not clicking on j, is expected to be higher than γj , the probability

that a user keeps browsing after clicking on j. The reason for this

is that users may only fulfill their search needs if they do click on

j, in which case they are not expected to return to the results page.

As a consequence, having λj significantly lower than γj is strong

evidence in favor of the selection effect, as the subgroup of users

that indeed make clicks is much more likely to patronize sponsored

search.

We are now able to discuss our estimation results, which are dis-

played at Table 3. We find that for the three search terms we investi-

gated, selection effects were ubiquitous. Nonetheless, we observed

significant negative externalities in two of them (ipod and avg an-
tivirus). For the third keyword (diet pills), we observed that con-

ditional click-through-rates were higher than the base-line click-

through-rates, although it is not possible to determine whether to

attribute this to the selection effect or to positive externalities. In

the following subsections, we discuss the results for each keyword

in detail.

2.3.1 ipod Results
For this keyword, the lead advertiser (the Apple Store) has a

very high click-through rate: 21%. Its competitors, the Cell Phone

Shop and Nextag, have 8.7% and 10.4%, respectively. These es-

timates can be interpreted as the probability that the first slot gets

a click when it is occupied by one of these three advertisers. The

difference between the Apple Store click-through rate and that of
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At this stage, it is not possible to tell whether a high click-through

rate in the first slot is simply due to users’ behavior or is the effect

of very high quality advertisers. In the same vein, what explains the

very low click-through rate in the third slot for ipod? Is it because

advertisers are bad matches for the users’ search or is it the result

of search externalities imposed by the links in the first two slots?

In order to evaluate externalities, we must estimate the param-

eters of our model. We do this with the well-established maxi-
mum likelihood method, which selects values for the parameters

that maximize the probability of the sample. First we must derive

an expression, called the log-likelihood, for the (log of) probabil-
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rate of some advertiser j, Fj({k}), is the probability that a random

user clicks on ad j given that this user clicked on advertiser k’s

link and kept searching until he read j’s link. Note that Fj({k})
abstracts from position externalities, as this is the probability that a

user that read the ad gives a click on it. We have three reasons to

think that conditional click-through rates should differ from base-

line click-through rates. First, link k may offer low prices for ipods,

in which case, even if the user keeps browsing the sponsored list af-

ter clicking on k (an event of probability γk), he will be less likely

to click on j or on any other link. This is the negative externality
effect, which pushes, let’s say Fj({k}), to be less than Fj . Sec-

ond, link k may increase the users’ willingness to click on j, which

may happen if, for example, link k is a meta-search website. In this

case, Fj({k}) is greater than Fj , which corresponds to a positive
externality effect.

These first two reasons for Fj to depart from Fj({k}) relate to

information externalities. There is a third reason, though, not re-

lated to externalities but to the structure of our data, that may ex-

plain why Fj �= Fj({k}): the group of users that make at least one

click may be fundamentally different from the total pool of users

that perform searches on Microsoft Live. As such, the conditional

click-through rate Fj({k}) reflects the probability of j getting a

click among a quite selected group of users. It is natural to think

that these users click more often on sponsored links than a common

user; and this should push Fj({k}) to be higher than Fj . We call

this the selection effect.

As a consequence, we can safely interpret estimates such that

Fj > Fj({k}) as evidence that advertiser k imposes a negative

externality on advertiser j. Nevertheless, if Fj < Fj({k}), as we

don’t observe any users’ characteristics, we can’t tell apart positive

externalities from purely selection effect. We need to keep this is

mind in order to interpret the estimation results.

One can directly test whether the selection effect is driving our

estimates by looking at the continuation probabilities λj and γj .

Clearly, absent any selection effect and granted j is not a meta-

search website, λj , the probability that a user keeps browsing after

not clicking on j, is expected to be higher than γj , the probability

that a user keeps browsing after clicking on j. The reason for this

is that users may only fulfill their search needs if they do click on

j, in which case they are not expected to return to the results page.

As a consequence, having λj significantly lower than γj is strong

evidence in favor of the selection effect, as the subgroup of users

that indeed make clicks is much more likely to patronize sponsored

search.

We are now able to discuss our estimation results, which are dis-

played at Table 3. We find that for the three search terms we investi-

gated, selection effects were ubiquitous. Nonetheless, we observed

significant negative externalities in two of them (ipod and avg an-
tivirus). For the third keyword (diet pills), we observed that con-

ditional click-through-rates were higher than the base-line click-

through-rates, although it is not possible to determine whether to

attribute this to the selection effect or to positive externalities. In

the following subsections, we discuss the results for each keyword

in detail.

2.3.1 ipod Results
For this keyword, the lead advertiser (the Apple Store) has a

very high click-through rate: 21%. Its competitors, the Cell Phone

Shop and Nextag, have 8.7% and 10.4%, respectively. These es-

timates can be interpreted as the probability that the first slot gets

a click when it is occupied by one of these three advertisers. The

difference between the Apple Store click-through rate and that of
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Estimation Resultsits competitors is significant at the 1% level. As such, in the ipod

case, the lead advertiser (who occupies the top position in 76% of

the observations – see Table 2) is also the most effective in attract-

ing clicks.

Our estimates detect that Apple Store imposes a negative exter-

nality on the Cell Phone Shop (as FB = 0.08 > 0.04 = FB({A}),

and the difference is significant at 5%) and on Nextag (as FC =
0.10 > 0.04 = FC({A}), and the difference is significant at 5%).

This means that the information provided by the Apple Store web-

site reduced by half the appeal to a random user of the links to the

Cell Phone Shop or the Nextag. The lack of observations in which

users click on Nextag and then click on Apple Store or the Cell

Phone Shop prevents us from being able to estimate γC ,FA({C}),

FA({B, C}), FB({C}) and FB({A, C}).

The selection effect indeed seems to play a role in our estimates.

Looking at the ipod results, one can see that γ’s are higher than

λ’s for at least two advertisers: for the Apple Store, γA = 0.94 >
0.76 = λA (although the difference is not significant) and for the

Cell Phone Shop, γB = 1 > 0.62 = λB (significant at 15%). This

suggests that users that make one click in a sponsored link are more

likely to keep browsing the sponsored list. As the results presented

above point out, though, the selection effect wasn’t strong enough

to shadow the negative externalities that the Apple Store imposes

on its competitors.

2.3.2 diet pill Results

Alike the ipod case, the leading advertiser for diet pill is also the

most effective in terms of attracting users: the click-through rate

of pricesexposed.net, roughly 21%, is significantly (at 1% level)

higher than that of its competitors (15% for dietpillvalueguide.com

and 5% for certiphene.com).

We didn’t find evidence of negative information externalities among

diet pill advertisers. For pricesexposed.net, the click-through rate

jumps from roughly 21% to 31% if certiphene.com was previously

clicked; and the difference is significant at 10%. The same happens

with dietpillvalueguide.com: its click-through rate goes from 15%

to either 66% (in case certiphene.com got a click) or to 33% (in

case certiphene.com and pricesexposed.net had clicks); and both

differences are significant at 5%.

Interestingly, the click-through rate of certiphene.com jumps from

5% to 8% (difference significant at 5%) if dietpillvalueguide.com

was previously clicked by the user. Since dietpillvalueguide.com

is a website specialized in comparing diet products, one can think

that positive reviews of the Certiphene pills might explain this dif-

ference (positive externality).

As discussed above, we cannot rule out that the selection effect

explains this difference, though. Indeed, our estimates imply that

users are more likely to keep browsing the sponsored links if they

clicked on certiphene.com: γC = 1 > 0.57 = λC (significant at

5%).

2.3.3 avg antivirus Results

Unlike the previous keywords, the leading advertiser for avg

antivirus is not the one with highest CTR. In fact, Avg-Hq.com

has the lowest CTR (15%), while avg-for-free.com and free-avg-

download.com have a 20% and 21% CTRs, respectively (higher

than Avg-Hq.com’s CTR at a 15% confidence level).

Our estimates detect that avg-for-free.com imposes a negative

externality on Avg-Hq.com, as FA = 0.15 > 0 = FA({B})
(significant at 5%). As in the ipod case, the lack of observations

in which users click on free-avg-download.com and then click on

Avg-Hq.com or avg-for-free.com makes it impossible to estimate

γC , FA({C}), FA({B, C}), FB({C}) and FB({A, C}).

keyword ipod diet pill antivirus

FA
0.210

(0.005)

0.210

(0.008)

0.151

(0.010)

FA({B}) 0.250

(0.038)

0.232

(0.032)

0.00

(0.074)

FA({C}) —
0.317

(0.065)
—

FA({B, C}) —
0.664

(0.075)
—

FB
0.087

(0.006)

0.150

(0.009)

0.206

(0.038)

FB({A}) 0.030

(0.022)

0.146

(0.034)

0.364

(0.050)

FB({C}) —
0.663

(0.080)
—

FB({A, C}) —
0.334

(0.083)
—

FC
0.104

(0.012)

0.051

(0.004)

0.215

(0.042)

FC({A}) 0.040

(0.032)

0.052

(0.017)

0.242

(0.042)

FC({B}) 0.095

(0.032)

0.088

(0.029)

0.121

(0.889)

FC({A, B}) 0.327

(0.190)

0.664

(0.089)

0.125

(0.699)

λA
0.676

(0.056)

0.760

(0.064)

1.0

(0.217)

λB
0.627

(0.042)

0.673

(0.057)

0.183

(0.049)

λC
1.00

(0.057)

0.579

(0.037)

0.424

(0.201)

γA
1.00

( 0.777)

0.940

(0.195)

1.00

(0.231)

γB
1.00

( 0.820)

1.00

(0.743)

0.686

(0.902)

γC —
1.00

(0.892)
—

Table 4: Estimates of the Ordered Search Model

keyword ipod diet pill antivirus

fA
0.216

(0.005)

0.205

(0.008)

0.144

(0.009)

fB
0.085

(0.004)

0.164

(0.009)

0.256

(0.036)

fC
0.107

(0.011)

0.057

(0.004)

0.253

(0.038)

s1 1.00

—

1.00

—

1.00

—

s2 0.676

(0.036)

0.671

(0.037)

0.961

(0.136)

s3 0.400

(0.072)

0.699

(0.056)

0.144

(0.043)

Table 5: Estimates of the Separable CTR Model

its competitors is significant at the 1% level. As such, in the ipod

case, the lead advertiser (who occupies the top position in 76% of

the observations – see Table 2) is also the most effective in attract-

ing clicks.

Our estimates detect that Apple Store imposes a negative exter-

nality on the Cell Phone Shop (as FB = 0.08 > 0.04 = FB({A}),

and the difference is significant at 5%) and on Nextag (as FC =
0.10 > 0.04 = FC({A}), and the difference is significant at 5%).

This means that the information provided by the Apple Store web-

site reduced by half the appeal to a random user of the links to the

Cell Phone Shop or the Nextag. The lack of observations in which

users click on Nextag and then click on Apple Store or the Cell

Phone Shop prevents us from being able to estimate γC ,FA({C}),

FA({B, C}), FB({C}) and FB({A, C}).

The selection effect indeed seems to play a role in our estimates.

Looking at the ipod results, one can see that γ’s are higher than

λ’s for at least two advertisers: for the Apple Store, γA = 0.94 >
0.76 = λA (although the difference is not significant) and for the

Cell Phone Shop, γB = 1 > 0.62 = λB (significant at 15%). This

suggests that users that make one click in a sponsored link are more

likely to keep browsing the sponsored list. As the results presented

above point out, though, the selection effect wasn’t strong enough

to shadow the negative externalities that the Apple Store imposes

on its competitors.

2.3.2 diet pill Results

Alike the ipod case, the leading advertiser for diet pill is also the

most effective in terms of attracting users: the click-through rate

of pricesexposed.net, roughly 21%, is significantly (at 1% level)

higher than that of its competitors (15% for dietpillvalueguide.com

and 5% for certiphene.com).

We didn’t find evidence of negative information externalities among

diet pill advertisers. For pricesexposed.net, the click-through rate

jumps from roughly 21% to 31% if certiphene.com was previously

clicked; and the difference is significant at 10%. The same happens

with dietpillvalueguide.com: its click-through rate goes from 15%

to either 66% (in case certiphene.com got a click) or to 33% (in

case certiphene.com and pricesexposed.net had clicks); and both

differences are significant at 5%.

Interestingly, the click-through rate of certiphene.com jumps from

5% to 8% (difference significant at 5%) if dietpillvalueguide.com

was previously clicked by the user. Since dietpillvalueguide.com

is a website specialized in comparing diet products, one can think

that positive reviews of the Certiphene pills might explain this dif-

ference (positive externality).

As discussed above, we cannot rule out that the selection effect

explains this difference, though. Indeed, our estimates imply that

users are more likely to keep browsing the sponsored links if they

clicked on certiphene.com: γC = 1 > 0.57 = λC (significant at

5%).

2.3.3 avg antivirus Results

Unlike the previous keywords, the leading advertiser for avg

antivirus is not the one with highest CTR. In fact, Avg-Hq.com

has the lowest CTR (15%), while avg-for-free.com and free-avg-

download.com have a 20% and 21% CTRs, respectively (higher

than Avg-Hq.com’s CTR at a 15% confidence level).

Our estimates detect that avg-for-free.com imposes a negative

externality on Avg-Hq.com, as FA = 0.15 > 0 = FA({B})
(significant at 5%). As in the ipod case, the lack of observations

in which users click on free-avg-download.com and then click on

Avg-Hq.com or avg-for-free.com makes it impossible to estimate

γC , FA({C}), FA({B, C}), FB({C}) and FB({A, C}).
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various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
2

Here we will focus on two

types of externalities:

Information Externalities. An ad imposes information exter-

nalities on others by providing a user who has clicked on his link

with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-
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gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose
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In addition, we summarize any user specific bias towards a link
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. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if
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We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on
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(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
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with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This

2
Note we abstract away order information; i.e., we assume a user’s
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

= Pr(Continue | View j + Don’t Click j)

= Pr(Continue | View j + Click j)

= Pr(Click j | View j + Click H)
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Making Sense of the 
information externalities

• Fj > Fj({k}): 

• k has a negative externality effect on j

• Fj < Fj({k}):

• k has positive externality effect on j

• or evidence for the selection effect

various reasons. First, as the work of [5] demonstrates, position
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quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be
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Given such a model, the users will typically not click on all
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click history of users as they browse through the sponsored links
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By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.
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A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on
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with probability FA2 . Thus, the probability she clicks on ad A1 is
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This behavior extends to multiple advertisers in the natural way.
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We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

= Pr(Click j | View j + Click H)
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Selection effect

• “the group of users that make at least one click 
may be fundamentally different from the total 
pool of users that perform searches on 
Microsoft Live.”

• The selection effect:
• Fj < Fj({k}) - same as positive externalities

• λi < γi 

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
2

Here we will focus on two

types of externalities:

Information Externalities. An ad imposes information exter-

nalities on others by providing a user who has clicked on his link

with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This

2
Note we abstract away order information; i.e., we assume a user’s

behavior depends on past clicks, but not on the order in which the

clicks were made.

can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
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with information regarding the search – e.g., prices or product re-
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links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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behavior depends on past clicks, but not on the order in which the

clicks were made.

can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
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Information Externalities. An ad imposes information exter-

nalities on others by providing a user who has clicked on his link

with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

= Pr(Continue | View j + Don’t Click j)

= Pr(Continue | View j + Click j)

= Pr(Click j | View j + Click H)
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Estimation Resultsits competitors is significant at the 1% level. As such, in the ipod

case, the lead advertiser (who occupies the top position in 76% of

the observations – see Table 2) is also the most effective in attract-

ing clicks.

Our estimates detect that Apple Store imposes a negative exter-

nality on the Cell Phone Shop (as FB = 0.08 > 0.04 = FB({A}),

and the difference is significant at 5%) and on Nextag (as FC =
0.10 > 0.04 = FC({A}), and the difference is significant at 5%).

This means that the information provided by the Apple Store web-

site reduced by half the appeal to a random user of the links to the

Cell Phone Shop or the Nextag. The lack of observations in which

users click on Nextag and then click on Apple Store or the Cell

Phone Shop prevents us from being able to estimate γC ,FA({C}),

FA({B, C}), FB({C}) and FB({A, C}).

The selection effect indeed seems to play a role in our estimates.

Looking at the ipod results, one can see that γ’s are higher than

λ’s for at least two advertisers: for the Apple Store, γA = 0.94 >
0.76 = λA (although the difference is not significant) and for the

Cell Phone Shop, γB = 1 > 0.62 = λB (significant at 15%). This

suggests that users that make one click in a sponsored link are more

likely to keep browsing the sponsored list. As the results presented

above point out, though, the selection effect wasn’t strong enough

to shadow the negative externalities that the Apple Store imposes

on its competitors.

2.3.2 diet pill Results

Alike the ipod case, the leading advertiser for diet pill is also the

most effective in terms of attracting users: the click-through rate

of pricesexposed.net, roughly 21%, is significantly (at 1% level)

higher than that of its competitors (15% for dietpillvalueguide.com

and 5% for certiphene.com).

We didn’t find evidence of negative information externalities among

diet pill advertisers. For pricesexposed.net, the click-through rate

jumps from roughly 21% to 31% if certiphene.com was previously

clicked; and the difference is significant at 10%. The same happens

with dietpillvalueguide.com: its click-through rate goes from 15%

to either 66% (in case certiphene.com got a click) or to 33% (in

case certiphene.com and pricesexposed.net had clicks); and both

differences are significant at 5%.

Interestingly, the click-through rate of certiphene.com jumps from

5% to 8% (difference significant at 5%) if dietpillvalueguide.com

was previously clicked by the user. Since dietpillvalueguide.com

is a website specialized in comparing diet products, one can think

that positive reviews of the Certiphene pills might explain this dif-

ference (positive externality).

As discussed above, we cannot rule out that the selection effect

explains this difference, though. Indeed, our estimates imply that

users are more likely to keep browsing the sponsored links if they

clicked on certiphene.com: γC = 1 > 0.57 = λC (significant at

5%).

2.3.3 avg antivirus Results

Unlike the previous keywords, the leading advertiser for avg

antivirus is not the one with highest CTR. In fact, Avg-Hq.com

has the lowest CTR (15%), while avg-for-free.com and free-avg-

download.com have a 20% and 21% CTRs, respectively (higher

than Avg-Hq.com’s CTR at a 15% confidence level).

Our estimates detect that avg-for-free.com imposes a negative

externality on Avg-Hq.com, as FA = 0.15 > 0 = FA({B})
(significant at 5%). As in the ipod case, the lack of observations

in which users click on free-avg-download.com and then click on

Avg-Hq.com or avg-for-free.com makes it impossible to estimate

γC , FA({C}), FA({B, C}), FB({C}) and FB({A, C}).

keyword ipod diet pill antivirus

FA
0.210

(0.005)

0.210

(0.008)

0.151

(0.010)

FA({B}) 0.250

(0.038)

0.232

(0.032)

0.00

(0.074)

FA({C}) —
0.317

(0.065)
—

FA({B, C}) —
0.664

(0.075)
—

FB
0.087

(0.006)

0.150

(0.009)

0.206

(0.038)

FB({A}) 0.030

(0.022)

0.146

(0.034)

0.364

(0.050)

FB({C}) —
0.663

(0.080)
—

FB({A, C}) —
0.334

(0.083)
—

FC
0.104

(0.012)

0.051

(0.004)

0.215

(0.042)

FC({A}) 0.040

(0.032)

0.052

(0.017)

0.242

(0.042)

FC({B}) 0.095

(0.032)

0.088

(0.029)

0.121

(0.889)

FC({A, B}) 0.327

(0.190)

0.664

(0.089)

0.125

(0.699)

λA
0.676

(0.056)

0.760

(0.064)

1.0

(0.217)

λB
0.627

(0.042)

0.673

(0.057)

0.183

(0.049)

λC
1.00

(0.057)

0.579

(0.037)

0.424

(0.201)

γA
1.00

( 0.777)

0.940

(0.195)

1.00

(0.231)

γB
1.00

( 0.820)

1.00

(0.743)

0.686

(0.902)

γC —
1.00

(0.892)
—

Table 4: Estimates of the Ordered Search Model

keyword ipod diet pill antivirus

fA
0.216

(0.005)

0.205

(0.008)

0.144

(0.009)

fB
0.085

(0.004)

0.164

(0.009)

0.256

(0.036)

fC
0.107

(0.011)

0.057

(0.004)

0.253

(0.038)

s1 1.00

—

1.00

—

1.00

—

s2 0.676

(0.036)

0.671

(0.037)

0.961

(0.136)

s3 0.400

(0.072)

0.699

(0.056)

0.144

(0.043)

Table 5: Estimates of the Separable CTR Model

its competitors is significant at the 1% level. As such, in the ipod

case, the lead advertiser (who occupies the top position in 76% of

the observations – see Table 2) is also the most effective in attract-

ing clicks.

Our estimates detect that Apple Store imposes a negative exter-

nality on the Cell Phone Shop (as FB = 0.08 > 0.04 = FB({A}),

and the difference is significant at 5%) and on Nextag (as FC =
0.10 > 0.04 = FC({A}), and the difference is significant at 5%).

This means that the information provided by the Apple Store web-

site reduced by half the appeal to a random user of the links to the

Cell Phone Shop or the Nextag. The lack of observations in which

users click on Nextag and then click on Apple Store or the Cell

Phone Shop prevents us from being able to estimate γC ,FA({C}),

FA({B, C}), FB({C}) and FB({A, C}).

The selection effect indeed seems to play a role in our estimates.

Looking at the ipod results, one can see that γ’s are higher than

λ’s for at least two advertisers: for the Apple Store, γA = 0.94 >
0.76 = λA (although the difference is not significant) and for the

Cell Phone Shop, γB = 1 > 0.62 = λB (significant at 15%). This

suggests that users that make one click in a sponsored link are more

likely to keep browsing the sponsored list. As the results presented

above point out, though, the selection effect wasn’t strong enough

to shadow the negative externalities that the Apple Store imposes

on its competitors.

2.3.2 diet pill Results

Alike the ipod case, the leading advertiser for diet pill is also the

most effective in terms of attracting users: the click-through rate

of pricesexposed.net, roughly 21%, is significantly (at 1% level)

higher than that of its competitors (15% for dietpillvalueguide.com

and 5% for certiphene.com).

We didn’t find evidence of negative information externalities among

diet pill advertisers. For pricesexposed.net, the click-through rate

jumps from roughly 21% to 31% if certiphene.com was previously

clicked; and the difference is significant at 10%. The same happens

with dietpillvalueguide.com: its click-through rate goes from 15%

to either 66% (in case certiphene.com got a click) or to 33% (in

case certiphene.com and pricesexposed.net had clicks); and both

differences are significant at 5%.

Interestingly, the click-through rate of certiphene.com jumps from

5% to 8% (difference significant at 5%) if dietpillvalueguide.com
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2.3.3 avg antivirus Results
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keyword ipod diet pill antivirus

FA
0.210

(0.005)

0.210

(0.008)

0.151

(0.010)

FA({B}) 0.250

(0.038)

0.232

(0.032)

0.00

(0.074)

FA({C}) —
0.317

(0.065)
—

FA({B, C}) —
0.664

(0.075)
—

FB
0.087

(0.006)

0.150

(0.009)

0.206

(0.038)

FB({A}) 0.030

(0.022)

0.146

(0.034)

0.364

(0.050)

FB({C}) —
0.663

(0.080)
—

FB({A, C}) —
0.334

(0.083)
—

FC
0.104

(0.012)

0.051

(0.004)

0.215

(0.042)

FC({A}) 0.040

(0.032)

0.052

(0.017)

0.242

(0.042)

FC({B}) 0.095

(0.032)

0.088

(0.029)

0.121

(0.889)

FC({A, B}) 0.327

(0.190)

0.664

(0.089)

0.125

(0.699)

λA
0.676

(0.056)

0.760

(0.064)

1.0

(0.217)

λB
0.627

(0.042)

0.673

(0.057)

0.183

(0.049)

λC
1.00

(0.057)

0.579

(0.037)

0.424

(0.201)

γA
1.00

( 0.777)

0.940

(0.195)

1.00

(0.231)

γB
1.00

( 0.820)

1.00

(0.743)

0.686

(0.902)

γC —
1.00

(0.892)
—

Table 4: Estimates of the Ordered Search Model

keyword ipod diet pill antivirus

fA
0.216

(0.005)

0.205

(0.008)

0.144

(0.009)

fB
0.085

(0.004)

0.164

(0.009)

0.256

(0.036)

fC
0.107

(0.011)

0.057

(0.004)

0.253

(0.038)

s1 1.00

—

1.00

—

1.00

—

s2 0.676

(0.036)

0.671

(0.037)

0.961

(0.136)

s3 0.400

(0.072)

0.699

(0.056)

0.144

(0.043)

Table 5: Estimates of the Separable CTR Model

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
2

Here we will focus on two

types of externalities:

Information Externalities. An ad imposes information exter-

nalities on others by providing a user who has clicked on his link

with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This

2
Note we abstract away order information; i.e., we assume a user’s

behavior depends on past clicks, but not on the order in which the

clicks were made.

can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all

the ads of the list, as it is costly both in terms of time and cog-

nitive effort to go through a website and assimilate its content.

For this reason, users only click on a link if it looks good enough

to compensate for its browsing cost. Moreover, users typically

change their willingness to incur this browsing cost as they col-

lect new information through their search, and hence the decision

about whether to continue reading ads naturally depends on the

click history of the user. To formalize these ideas, we denote the

click history of users as they browse through the sponsored links

by H = {j : link j received a click}.
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views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s baseline click-through rate,

Fj , and his conditional click-through rate, Fj(H), H �= ∅, indi-

cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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behavior depends on past clicks, but not on the order in which the

clicks were made.

can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on
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with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.
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We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users
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more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).
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tiser (which translates into her click-through rate) fundamentally
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ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

various reasons. First, as the work of [5] demonstrates, position

bias is present in organic search. In particular [5] compares a se-

quential search model with four other models (including the sep-

arable model) and concludes that sequential search provides the

best fit to the click logs they have considered. Secondly, sequential

search is further substantiated as a natural way to browse through a

list of ads by the eye-tracking experiments of Joachims et al. [10],

where it is observed that users search and click in a top down man-

ner. Moreover, as the value per click of each advertiser tends to be

correlated with its relevance, ordered search is a good heuristic for

users (see [3]).

Given such a model, the users will typically not click on all
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with information regarding the search – e.g., prices or product re-

views. This, in turn, affects the user’s willingness to click on all

links displayed below in the sponsored search list. To make these

points formally, let’s denote the expected quality of slot j by uj .

In order to save on browsing costs, a searcher with click history H

clicks on link j only if its perceived quality exceeds some optimal

threshold, which we denote by TH . We set H = {∅} if no links

were previously clicked (no extra information gathered through

search), H = {j} if only link j was clicked and H = {j, k} if

links j and k were clicked in this order. We let the clicking thresh-

old TH on the ad’s perceived quality depend on the information

gathered by the searcher in his previous clicks, but assume that TH

is not affected by the precise order of clicks. That is, we impose

that T{j,k} = T{k,j}.

In addition, we summarize any user specific bias towards a link

by the random term εij
. Hence, a user with click history H that

reaches the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiossincractic preference parameters εij
are

independetly and identically distributed accross bidders and adver-

tisers, with a cumulative distribution function F . Thus, the proba-

bility that a searcher i with click history H gives a click on link j

is given by:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

By virtue of browsing from the top, users have no previous clicks

when they analyze the first slot. Hence, if advertiser j occupies the

first position, his chance of getting a click, which we call click-
through rate, is Fj ≡ Fj({∅}).
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cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities

on other ads by virtue of its position in the ordered search list. This
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can happen in one of two manners: first, the user may tire of the

search if the ads he has read appear to be poorly related to the search

term; second, the user may leave the search if an ad he has read and

clicked on has satisfied his search need. We capture the first effect

with a parameter, λj , that indicates the probability a user keeps

browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, γj ,

that indicates the probability a user keeps browsing the sponsored

links after clicking link j. The parameters λj and γj are referred

to as the continuation probabilities of ad j and jointly capture its

position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model

the position externalities may depend on both the advertiser and

clicking behavior of the user.

We model the user behavior for a given sponsored list using the

above parameters as follows. She reads the first ad A1 in the list

and clicks on it with probability FA1 . Conditional on clicking on

A1, she reads the second ad A2 with probability γA1 and clicks

on it with probability FA2({A1}). Conditional on not clicking on

A1, she reads the second ad with probability λA1 and clicks on it

with probability FA2 . Thus, the probability she clicks on ad A1 is

simply FA1 while the probability she clicks on ad A2 is

(1− FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification
We will now describe the structure of our data and discuss the

identification of the model described above. In this version we

have included in our data set all the impression logs in which users

searched for ipods, diet pills or antivirus. We will incorporate

more keywords in a future version of this work. Within each of

these queries, we selected the impressions in which the three most

clicked advertisers are displayed in the mainline slots (which are

the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-

tiser (which translates into her click-through rate) fundamentally

depends on the search objective of the user (for example, the pur-

chase of an ipod). As a consequence, a model of user behav-

ior makes most sense when restricted to a single search objective.

Accordingly, our data set only contains clicking logs of advertis-

ers displayed along the results of some specific search objective.

The same search objective may be expressed by different queries,

though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are

all different ways of expressing the same search objective. Hence,

we include in our data set all click logs with our target keyword in

the search query.

Second, we only analyzed, within each query, the three most ef-

fective advertisers. The reason for this is two-fold. First, in order

to identify the model described above we need some variation on

clicking histories that only the most popular advertisers jointly ex-

hibit (we will formalize this observation in Lemma 1 below). There

was an insufficient number of observations with variation for the

four most popular advertisers. Second, the number of parameters

in our model grows exponentially with the number of advertisers,

and so it becomes more difficult, experimentally, to track and main-

tain the parameters.

Third, our ordered model makes the implicit assumption that all

users read the first sponsored link before dropping the sponsored

search results. In fact, as the eye tracking experiments in [10] at-

test, these are the most visible links to the users. Even if this were

not the case, our model would still capture negative externalities,

as baseline click-through rates would be underestimated, while the

= Pr(Continue | View j + Don’t Click j)

= Pr(Continue | View j + Click j)

= Pr(Click j | View j + Click H)
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its competitors is significant at the 1% level. As such, in the ipod

case, the lead advertiser (who occupies the top position in 76% of

the observations – see Table 2) is also the most effective in attract-

ing clicks.

Our estimates detect that Apple Store imposes a negative exter-

nality on the Cell Phone Shop (as FB = 0.08 > 0.04 = FB({A}),

and the difference is significant at 5%) and on Nextag (as FC =
0.10 > 0.04 = FC({A}), and the difference is significant at 5%).

This means that the information provided by the Apple Store web-

site reduced by half the appeal to a random user of the links to the

Cell Phone Shop or the Nextag. The lack of observations in which

users click on Nextag and then click on Apple Store or the Cell

Phone Shop prevents us from being able to estimate γC ,FA({C}),

FA({B, C}), FB({C}) and FB({A, C}).

The selection effect indeed seems to play a role in our estimates.

Looking at the ipod results, one can see that γ’s are higher than

λ’s for at least two advertisers: for the Apple Store, γA = 0.94 >
0.76 = λA (although the difference is not significant) and for the

Cell Phone Shop, γB = 1 > 0.62 = λB (significant at 15%). This

suggests that users that make one click in a sponsored link are more

likely to keep browsing the sponsored list. As the results presented

above point out, though, the selection effect wasn’t strong enough

to shadow the negative externalities that the Apple Store imposes

on its competitors.

2.3.2 diet pill Results

Alike the ipod case, the leading advertiser for diet pill is also the

most effective in terms of attracting users: the click-through rate

of pricesexposed.net, roughly 21%, is significantly (at 1% level)

higher than that of its competitors (15% for dietpillvalueguide.com

and 5% for certiphene.com).

We didn’t find evidence of negative information externalities among

diet pill advertisers. For pricesexposed.net, the click-through rate

jumps from roughly 21% to 31% if certiphene.com was previously

clicked; and the difference is significant at 10%. The same happens

with dietpillvalueguide.com: its click-through rate goes from 15%

to either 66% (in case certiphene.com got a click) or to 33% (in

case certiphene.com and pricesexposed.net had clicks); and both

differences are significant at 5%.

Interestingly, the click-through rate of certiphene.com jumps from

5% to 8% (difference significant at 5%) if dietpillvalueguide.com

was previously clicked by the user. Since dietpillvalueguide.com

is a website specialized in comparing diet products, one can think

that positive reviews of the Certiphene pills might explain this dif-

ference (positive externality).

As discussed above, we cannot rule out that the selection effect

explains this difference, though. Indeed, our estimates imply that

users are more likely to keep browsing the sponsored links if they

clicked on certiphene.com: γC = 1 > 0.57 = λC (significant at

5%).

2.3.3 avg antivirus Results

Unlike the previous keywords, the leading advertiser for avg

antivirus is not the one with highest CTR. In fact, Avg-Hq.com

has the lowest CTR (15%), while avg-for-free.com and free-avg-

download.com have a 20% and 21% CTRs, respectively (higher

than Avg-Hq.com’s CTR at a 15% confidence level).

Our estimates detect that avg-for-free.com imposes a negative

externality on Avg-Hq.com, as FA = 0.15 > 0 = FA({B})
(significant at 5%). As in the ipod case, the lack of observations

in which users click on free-avg-download.com and then click on

Avg-Hq.com or avg-for-free.com makes it impossible to estimate

γC , FA({C}), FA({B, C}), FB({C}) and FB({A, C}).
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its competitors is significant at the 1% level. As such, in the ipod

case, the lead advertiser (who occupies the top position in 76% of

the observations – see Table 2) is also the most effective in attract-

ing clicks.

Our estimates detect that Apple Store imposes a negative exter-

nality on the Cell Phone Shop (as FB = 0.08 > 0.04 = FB({A}),

and the difference is significant at 5%) and on Nextag (as FC =
0.10 > 0.04 = FC({A}), and the difference is significant at 5%).

This means that the information provided by the Apple Store web-

site reduced by half the appeal to a random user of the links to the

Cell Phone Shop or the Nextag. The lack of observations in which

users click on Nextag and then click on Apple Store or the Cell

Phone Shop prevents us from being able to estimate γC ,FA({C}),

FA({B, C}), FB({C}) and FB({A, C}).

The selection effect indeed seems to play a role in our estimates.

Looking at the ipod results, one can see that γ’s are higher than

λ’s for at least two advertisers: for the Apple Store, γA = 0.94 >
0.76 = λA (although the difference is not significant) and for the

Cell Phone Shop, γB = 1 > 0.62 = λB (significant at 15%). This

suggests that users that make one click in a sponsored link are more

likely to keep browsing the sponsored list. As the results presented

above point out, though, the selection effect wasn’t strong enough

to shadow the negative externalities that the Apple Store imposes

on its competitors.

2.3.2 diet pill Results

Alike the ipod case, the leading advertiser for diet pill is also the

most effective in terms of attracting users: the click-through rate

of pricesexposed.net, roughly 21%, is significantly (at 1% level)

higher than that of its competitors (15% for dietpillvalueguide.com

and 5% for certiphene.com).

We didn’t find evidence of negative information externalities among

diet pill advertisers. For pricesexposed.net, the click-through rate

jumps from roughly 21% to 31% if certiphene.com was previously

clicked; and the difference is significant at 10%. The same happens

with dietpillvalueguide.com: its click-through rate goes from 15%

to either 66% (in case certiphene.com got a click) or to 33% (in

case certiphene.com and pricesexposed.net had clicks); and both

differences are significant at 5%.

Interestingly, the click-through rate of certiphene.com jumps from

5% to 8% (difference significant at 5%) if dietpillvalueguide.com

was previously clicked by the user. Since dietpillvalueguide.com

is a website specialized in comparing diet products, one can think

that positive reviews of the Certiphene pills might explain this dif-

ference (positive externality).

As discussed above, we cannot rule out that the selection effect

explains this difference, though. Indeed, our estimates imply that

users are more likely to keep browsing the sponsored links if they

clicked on certiphene.com: γC = 1 > 0.57 = λC (significant at

5%).

2.3.3 avg antivirus Results

Unlike the previous keywords, the leading advertiser for avg

antivirus is not the one with highest CTR. In fact, Avg-Hq.com

has the lowest CTR (15%), while avg-for-free.com and free-avg-

download.com have a 20% and 21% CTRs, respectively (higher

than Avg-Hq.com’s CTR at a 15% confidence level).

Our estimates detect that avg-for-free.com imposes a negative

externality on Avg-Hq.com, as FA = 0.15 > 0 = FA({B})
(significant at 5%). As in the ipod case, the lack of observations

in which users click on free-avg-download.com and then click on

Avg-Hq.com or avg-for-free.com makes it impossible to estimate

γC , FA({C}), FA({B, C}), FB({C}) and FB({A, C}).
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its competitors is significant at the 1% level. As such, in the ipod

case, the lead advertiser (who occupies the top position in 76% of

the observations – see Table 2) is also the most effective in attract-

ing clicks.

Our estimates detect that Apple Store imposes a negative exter-

nality on the Cell Phone Shop (as FB = 0.08 > 0.04 = FB({A}),

and the difference is significant at 5%) and on Nextag (as FC =
0.10 > 0.04 = FC({A}), and the difference is significant at 5%).

This means that the information provided by the Apple Store web-

site reduced by half the appeal to a random user of the links to the

Cell Phone Shop or the Nextag. The lack of observations in which

users click on Nextag and then click on Apple Store or the Cell

Phone Shop prevents us from being able to estimate γC ,FA({C}),

FA({B, C}), FB({C}) and FB({A, C}).

The selection effect indeed seems to play a role in our estimates.

Looking at the ipod results, one can see that γ’s are higher than

λ’s for at least two advertisers: for the Apple Store, γA = 0.94 >
0.76 = λA (although the difference is not significant) and for the

Cell Phone Shop, γB = 1 > 0.62 = λB (significant at 15%). This

suggests that users that make one click in a sponsored link are more

likely to keep browsing the sponsored list. As the results presented

above point out, though, the selection effect wasn’t strong enough

to shadow the negative externalities that the Apple Store imposes

on its competitors.

2.3.2 diet pill Results

Alike the ipod case, the leading advertiser for diet pill is also the

most effective in terms of attracting users: the click-through rate

of pricesexposed.net, roughly 21%, is significantly (at 1% level)

higher than that of its competitors (15% for dietpillvalueguide.com

and 5% for certiphene.com).

We didn’t find evidence of negative information externalities among

diet pill advertisers. For pricesexposed.net, the click-through rate

jumps from roughly 21% to 31% if certiphene.com was previously

clicked; and the difference is significant at 10%. The same happens

with dietpillvalueguide.com: its click-through rate goes from 15%

to either 66% (in case certiphene.com got a click) or to 33% (in

case certiphene.com and pricesexposed.net had clicks); and both

differences are significant at 5%.

Interestingly, the click-through rate of certiphene.com jumps from

5% to 8% (difference significant at 5%) if dietpillvalueguide.com

was previously clicked by the user. Since dietpillvalueguide.com

is a website specialized in comparing diet products, one can think

that positive reviews of the Certiphene pills might explain this dif-

ference (positive externality).

As discussed above, we cannot rule out that the selection effect

explains this difference, though. Indeed, our estimates imply that

users are more likely to keep browsing the sponsored links if they

clicked on certiphene.com: γC = 1 > 0.57 = λC (significant at

5%).

2.3.3 avg antivirus Results

Unlike the previous keywords, the leading advertiser for avg

antivirus is not the one with highest CTR. In fact, Avg-Hq.com

has the lowest CTR (15%), while avg-for-free.com and free-avg-

download.com have a 20% and 21% CTRs, respectively (higher

than Avg-Hq.com’s CTR at a 15% confidence level).

Our estimates detect that avg-for-free.com imposes a negative

externality on Avg-Hq.com, as FA = 0.15 > 0 = FA({B})
(significant at 5%). As in the ipod case, the lack of observations

in which users click on free-avg-download.com and then click on

Avg-Hq.com or avg-for-free.com makes it impossible to estimate

γC , FA({C}), FA({B, C}), FB({C}) and FB({A, C}).
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its competitors is significant at the 1% level. As such, in the ipod

case, the lead advertiser (who occupies the top position in 76% of

the observations – see Table 2) is also the most effective in attract-

ing clicks.

Our estimates detect that Apple Store imposes a negative exter-

nality on the Cell Phone Shop (as FB = 0.08 > 0.04 = FB({A}),

and the difference is significant at 5%) and on Nextag (as FC =
0.10 > 0.04 = FC({A}), and the difference is significant at 5%).

This means that the information provided by the Apple Store web-

site reduced by half the appeal to a random user of the links to the

Cell Phone Shop or the Nextag. The lack of observations in which

users click on Nextag and then click on Apple Store or the Cell

Phone Shop prevents us from being able to estimate γC ,FA({C}),

FA({B, C}), FB({C}) and FB({A, C}).

The selection effect indeed seems to play a role in our estimates.

Looking at the ipod results, one can see that γ’s are higher than

λ’s for at least two advertisers: for the Apple Store, γA = 0.94 >
0.76 = λA (although the difference is not significant) and for the

Cell Phone Shop, γB = 1 > 0.62 = λB (significant at 15%). This

suggests that users that make one click in a sponsored link are more

likely to keep browsing the sponsored list. As the results presented

above point out, though, the selection effect wasn’t strong enough

to shadow the negative externalities that the Apple Store imposes

on its competitors.

2.3.2 diet pill Results

Alike the ipod case, the leading advertiser for diet pill is also the

most effective in terms of attracting users: the click-through rate

of pricesexposed.net, roughly 21%, is significantly (at 1% level)

higher than that of its competitors (15% for dietpillvalueguide.com

and 5% for certiphene.com).

We didn’t find evidence of negative information externalities among

diet pill advertisers. For pricesexposed.net, the click-through rate

jumps from roughly 21% to 31% if certiphene.com was previously

clicked; and the difference is significant at 10%. The same happens

with dietpillvalueguide.com: its click-through rate goes from 15%

to either 66% (in case certiphene.com got a click) or to 33% (in

case certiphene.com and pricesexposed.net had clicks); and both

differences are significant at 5%.

Interestingly, the click-through rate of certiphene.com jumps from

5% to 8% (difference significant at 5%) if dietpillvalueguide.com

was previously clicked by the user. Since dietpillvalueguide.com

is a website specialized in comparing diet products, one can think

that positive reviews of the Certiphene pills might explain this dif-

ference (positive externality).

As discussed above, we cannot rule out that the selection effect

explains this difference, though. Indeed, our estimates imply that

users are more likely to keep browsing the sponsored links if they

clicked on certiphene.com: γC = 1 > 0.57 = λC (significant at

5%).

2.3.3 avg antivirus Results

Unlike the previous keywords, the leading advertiser for avg

antivirus is not the one with highest CTR. In fact, Avg-Hq.com

has the lowest CTR (15%), while avg-for-free.com and free-avg-

download.com have a 20% and 21% CTRs, respectively (higher

than Avg-Hq.com’s CTR at a 15% confidence level).

Our estimates detect that avg-for-free.com imposes a negative

externality on Avg-Hq.com, as FA = 0.15 > 0 = FA({B})
(significant at 5%). As in the ipod case, the lack of observations

in which users click on free-avg-download.com and then click on

Avg-Hq.com or avg-for-free.com makes it impossible to estimate

γC , FA({C}), FA({B, C}), FB({C}) and FB({A, C}).
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Model Validation (2)
ipod diet pills avg antivirus

Prob. realized
CTR ordered separable realized

CTR ordered separable realized
CTR ordered separable

A 0.21 0.21� 0.22 0.23 0.21� 0.21 0.15 0.15� 0.14
B 0.09 0.09� 0.09 0.15 0.15� 0.16 0.17 0.21� 0.26
C 0.05 0.10� 0.11 0.03 0.05� 0.06 0.22 0.22� 0.25
A|B 0.26 0.25� 0.15 0.22 0.23� 0.14 0.00 0.00� 0.14
A| ∼ B 0.13 0.13� 0.15 0.10 0.14� 0.14 0.04 0.03� 0.14
A|C 0.00 0.00� 0.15 0.36 0.32� 0.14 0.00 0.00� 0.14
A| ∼ C 0.33 0.21� 0.15 0.11 0.12� 0.14 0.06 0.06� 0.14
B|A 0.04 0.03� 0.06 0.21 0.14� 0.11 0.04 0.03� 0.06
B| ∼ A 0.06 0.06� 0.06 0.10 0.11� 0.11 0.06 0.06� 0.06
B|C 0.00 0.00� 0.06 0.60 0.66� 0.11 0.00 0.00� 0.06
B| ∼ C 0.05 0.09 0.06� 0.10 0.09� 0.11 0.05 0.09 0.06�

C|A 0.05 0.04� 0.07 0.07 0.05� 0.04 0.05 0.04� 0.07
C| ∼ A 0.07 0.07� 0.07 0.06 0.04� 0.04 0.07 0.07� 0.07
C|B 0.19 0.09� 0.07 0.11 0.09� 0.04 0.19 0.09� 0.07
C| ∼ B 0.08 0.07� 0.07 0.07 0.03 0.04� 0.08 0.07� 0.07

Table 6: Model Validation

jth slot is given by:

qj = FAj ·
j−1�

k=1

cAk , where cAk = FAkγAk + (1− FAk )λAk .

Each term cAk accounts for the fraction of users that continue brows-
ing the sponsored list after coming across advertiser Ak. As such,
the total number of clicks of slot j is the product of advertiser
Aj’s click-through rate (FAj ) and the total number of users that
reach that position (

�j−1
k=1 cAk ). Advertiser Aj’s payoff is then

(vAj − pAj )q
j .

We are interested in analyzing the complete information Nash
equilibria and resulting efficiency of various scoring rules. A com-
plete information Nash equilibrium is a vector of bids such that no
advertiser can unilaterally change his bid and improve his payoff.
The efficiency of an equilibrium is simply the sum of all advertisers’
value per click times total number of clicks. The optimum social
welfare is the assignment of advertisers to slots with maximum effi-
ciency. Given our labeling scheme in which the j th slot is occupied
by advertiser Aj ∈ N , the optimum social welfare can be written
as:

W (N) = max
A1,...,AN∈N

N�

j=1

qjvAj (1)

3.1 Can Scoring Rules Help?

Search engines have often changed their auction rules for key-
word advertising in order to increase revenue. Yahoo! first dropped
a generalized first-price auction and adopted the rank-by-bid GSP
in early 1997. Ten years later, and with a much wider base of ad-
vertisers, Yahoo! opted for a less drastic change and simply altered
its scoring rule from rank-by-bid to rank-by revenue (in which case
wAj = FAj ). Microsoft’s Live Search followed the same path and
also in 2007 moved from the rank-by-bid to the rank-by-revenue
GSP. Recently, Google also changed its scoring rule, although its
precise functional form was not made public.

Search engines are very reluctant to make bold changes in their
auction rules for mostly two reasons: first, advertisers are hardly
willing to learn a completely new auction format; and may switch
to a competitor if that happens. Second, it is believed that much
may be achieved in terms of revenue and efficiency by simply ex-

ploring different scoring rules within the GSP format. In this sub-
section, we make this claim formally by studying how the choice
of a scoring rule affects the set of complete information Nash equi-
librium of the GSP.

We will focus on a very interesting, but so far neglected, equi-
librium of the GSP: the one that maximizes the search engine’s
revenue among all pure strategy Nash equilibria. The next lemma
derives the bid profile that maximizes revenue for the search en-
gine:

LEMMA 2. Consider the GSP with scoring rule wAj , selling
K slots to N > K advertisers. Let advertisers A1, ..., AN be the
efficient assignees of slots 1 to N and assume advertisers submit
bids according to:

bAj = (1− cAj )
wAj−1

wAj

vAj−1 + cAj

wAj+1

wAj

bAj+1

for j ∈ {2, ..., K}, bAK+1 =
wAK

wAK+1

vAK , bA1 > bA2 (2)

and bAj < bAK+1 for j > K + 1. (3)

If this bid profile constitutes a Nash equilibrium, than it maximizes
the search engine’s revenue among all pure strategy complete in-
formation Nash equilibria. We call it the greedy bid profile.

Proof. Consider the efficient allocation, that is, let advertisers A1, ..., AN

receive slots 1 to N in this order. The Nash equilibrium candidate
that extracts most rents from advertisers has clearly two properties:
first, the last advertiser to obtain a slot (who is AK ) enjoys a zero
payoff. This implies that his payment per click,

wAK+1
wAK

bAK+1 ,
has to be equal to his value per click, vAK , what gives equation
(3). Second, all advertisers above AK should be indifferent be-
tween following equilibrium strategies and undercutting the adver-
tiser immediately below them. To see why this is true, imagine
some advertiser Aj strictly prefers slot j to slot j + 1 (given this
bid profile). In this case, if advertiser Aj+1 slightly increases his
bid, Aj has to pay more but still finds all deviations unprofitable
(and the search engine’s total revenue is higher). As a consequence,
bAj+1 has to satisfy:

�
j−1�

k=1

cAk

�
FAj ·

�
vAj −

wAj+1

wAj

bAj+1

�

•J|K = ‘user clicks on advertiser J occupying the second slot given that she 
clicked on ad K occupying the first slot’
•J | ~K = ‘... given that she DID NOT click on ad K occupying the first slot’
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• GSP + Scoring Rule

• Ads ranked by

• bAj : Aj’s bid

• wAj : a weight (= FAj in the case of rank-by-revenue)

• GSP: payment equal to the smallest bid he could have 
submitted that would have allowed him to maintain 
his position:

• Assumption:

• Can we design a scoring rule to maximize revenue? 

2.3.4 Addressing Endogeneity
One might question the consistency of our estimates by arguing

that the variation on slot allocations may be endogeneous, that is,

advertisers may change their bids (to alter their positions) as a re-

sponse to different groups of users (that browse the web in different

time periods). We believe on the contrary that a significant source

of variation is due to the allocation procedure itself. Microsoft Ad-

Center applies a randomization procedure that perturbs submitted

bids and (non-deterministically) changes the slot allocations. This

makes the variation exogenous.

2.4 Model Validation
It’s commonly assumed, by both the search engines and the lit-

erature on keyword auctions, that the users’ clicking behavior fol-

lows a separable click-through rate model. According to this sim-

ple model, the probability that advertiser j gets a click when she

occupies slot k is given by:

Prob(advertiser j gets a click on slot k) = s
k · fj ,

where s
k

is the slot-specific click-through rate and fj is the advertiser-

specific click-through rate. It then follows that, according to this

model, the probability of any clicking log {j, k, l; c1
, c

2
, c

3} is

given by:

Prob
�
{j, k, l; c1

, c
2
, c

3}
�

= (s1
fj)

Ij (1− s
1
fj)

1−Ij (s2
fk)Ik

·(1− s
2
fk)1−Ik (s3

fl)
Il(1− s

3
fl)

1−Il ,

where Ij is an indicator function that equals 1 if and only if link j

was clicked.

We applied the separable click-through rate model to the same

data base used to estimate the ordered search model. After normal-

izing s
1 = 1 (which is necessary for identification), we obtained

the results shown in Table 5. Note that, as one would expect, the

estimates of advertiser-specific click-through rates in the separable

model, fA, fB and fC , are roughly equal to the baseline click-

through rates of the ordered search model.

This subsection is devoted to comparing the ordered search model

(to simplify, ordered model) from this paper with the widely used

separable click-through rate model (separable model from now on).

Although having less parameters, the separable model cannot be

written as a constrained version of the ordered model. This is

because the separable model specifies a slot-specific term s
k

into

click-though rates that does not depend on who occupies the previ-

ous slots. As such, unlike the ordered model, the separable model

disregards externalities between advertisers, but, on the other hand,

allows for slot-specific effects not contemplated by the ordered

model.

To compare these models, we contrasted the probabilities of click-

ing logs implied by each model to raw moments computed from

our data base. The ordered model has more parameters than the

separable model, and so it should come as no surprise that it pro-

vides a better fit for the data. This is a drawback from purely

non-parametrical comparisons; and in future work we shall ad-

dress these concerns by applying non-nested hypotheses testing

techniques (as in [17]).

Table 6 below present our results. To save space, the event ‘user

clicks on advertiser J occupying the first slot’ is denoted simply

by J and the event ‘user clicks on advertiser J occupying the sec-

ond slot given that he also clicked on advertiser K occupying the

first slot’ is denoted by J |K. Finally, the event ‘user clicks on ad-

vertiser J occupying the second slot given that he did not click on

advertiser K occupying the first slot’ is denoted by J | ∼ K. The

columm labeled ‘realized CTR’ gives the empirical distribution of

these events, while the columms ‘ordered’ and ‘separable’ present

the probabilities predicted by the ordered and the separable models,

respectively.

Let’s analyze table 6, whose left side is constructed based on

clicking logs associated to the keyword ipod. Among the events

considered, the ordered model predictions are at least as good as

the separable models predictions (as measured by their deviations

to the empirical distribution) in 14 out of 15 events (as indicated by
�

). More importantly, the only event in which the separable model

performs better than the ordered model (B| ∼ C) may be found

in less than 1% of the sample (as C occupies the first slot in only

0.88% of the observations - see table 2).

The same pattern is observed for the keywords diet pills and avg
antivirus. As table 6 shows, the ordered model provides better pre-

dictions for 14 out of the 15 events considered. Further, the cases in

which the separable model performs better (C| ∼ B and B| ∼ C,

respectively) occur in less than 2% of the observations for both

keywords.

The 15 events considered span all possible clicking histories for

the first 2 slots. As a consequence, by applying Bayes rule to the

predictions displayed on table 6 and 7, one can derive the implied

probabilities for any clicking log involving only slots 1 and 2. Thus,

from the discussion above, we can safely conclude that the predic-

tions of the ordered model outperform those of the separable model

for all keywords considered.

3. EQUILIBRIUM ANALYSIS
We’ll now analyze how advertisers bid given that users do or-

dered search. We return to a model with a set of N advertisers de-

noted by Aj , j ∈ {1, ..., n} and K. Each advertiser Aj has a value

of vAj per click. Search engines use the following generalization

of the second-price auction to sell sponsored links: first, each ad-

vertiser Aj submits a single bid bAj representing his willingness to

pay per click. Then each advertiser’s bid is mulitplied by a weight

wAj that solely depends on his characteristics, producing a score

sAj = wAj · bAj . Next, advertisers are ranked in decreasing order

of their scores and the j
th

highest ranked advertiser gets the j
th

highest slot. When an advertiser receives a click, he is charged a

price equal to the smallest bid he could have submitted that would

have allowed him to maintain his position in the sponsored list. La-

beling advertisers such that Ai denotes the advertiser ranked in the

i’th slot, we see that advertiser Aj pays pAj where:

pAj · wAj = bAj+1 · wj+1 which gives pAj =
bAj+1 · wAj+1

wAj

.

The total payment of advertiser Aj is then pAj · q
j
, where q

j

is the total number of clicks of slot j.
5

To simplify the analysis,

we’ll take the ordered search model of the previous section and as-

sume that baseline and conditional click-through rates are the same

for each advertiser, that is, we assume that FAj = FAj (H) for

any click history H . Although our empirical exercise suggests that

baseline and conditional click-through rates indeed differ, this as-

sumption is necessary to bring tractability to our theoretical model

of bidding. Further, as we will argue later, our main theoretical con-

clusions remain valid under the more general ordered search model

of the previous section.

With this assumption in hand, the total number of clicks of the

5
Note q

j
is actually a function of the entire assignment of advertis-

ers to slots preceeding j; we denote it by q
j

to simplify notation.
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where Ij is an indicator function that equals 1 if and only if link j

was clicked.
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ipod diet pills avg antivirus

Prob. realized
CTR ordered separable realized

CTR ordered separable realized
CTR ordered separable

A 0.21 0.21� 0.22 0.23 0.21� 0.21 0.15 0.15� 0.14
B 0.09 0.09� 0.09 0.15 0.15� 0.16 0.17 0.21� 0.26
C 0.05 0.10� 0.11 0.03 0.05� 0.06 0.22 0.22� 0.25
A|B 0.26 0.25� 0.15 0.22 0.23� 0.14 0.00 0.00� 0.14
A| ∼ B 0.13 0.13� 0.15 0.10 0.14� 0.14 0.04 0.03� 0.14
A|C 0.00 0.00� 0.15 0.36 0.32� 0.14 0.00 0.00� 0.14
A| ∼ C 0.33 0.21� 0.15 0.11 0.12� 0.14 0.06 0.06� 0.14
B|A 0.04 0.03� 0.06 0.21 0.14� 0.11 0.04 0.03� 0.06
B| ∼ A 0.06 0.06� 0.06 0.10 0.11� 0.11 0.06 0.06� 0.06
B|C 0.00 0.00� 0.06 0.60 0.66� 0.11 0.00 0.00� 0.06
B| ∼ C 0.05 0.09 0.06� 0.10 0.09� 0.11 0.05 0.09 0.06�

C|A 0.05 0.04� 0.07 0.07 0.05� 0.04 0.05 0.04� 0.07
C| ∼ A 0.07 0.07� 0.07 0.06 0.04� 0.04 0.07 0.07� 0.07
C|B 0.19 0.09� 0.07 0.11 0.09� 0.04 0.19 0.09� 0.07
C| ∼ B 0.08 0.07� 0.07 0.07 0.03 0.04� 0.08 0.07� 0.07

Table 6: Model Validation

jth slot is given by:

qj = FAj ·
j−1�

k=1

cAk , where cAk = FAkγAk + (1− FAk )λAk .

Each term cAk accounts for the fraction of users that continue brows-
ing the sponsored list after coming across advertiser Ak. As such,
the total number of clicks of slot j is the product of advertiser
Aj’s click-through rate (FAj ) and the total number of users that
reach that position (

�j−1
k=1 cAk ). Advertiser Aj’s payoff is then

(vAj − pAj )q
j .

We are interested in analyzing the complete information Nash
equilibria and resulting efficiency of various scoring rules. A com-
plete information Nash equilibrium is a vector of bids such that no
advertiser can unilaterally change his bid and improve his payoff.
The efficiency of an equilibrium is simply the sum of all advertisers’
value per click times total number of clicks. The optimum social
welfare is the assignment of advertisers to slots with maximum effi-
ciency. Given our labeling scheme in which the j th slot is occupied
by advertiser Aj ∈ N , the optimum social welfare can be written
as:

W (N) = max
A1,...,AN∈N

N�

j=1

qjvAj (1)

3.1 Can Scoring Rules Help?

Search engines have often changed their auction rules for key-
word advertising in order to increase revenue. Yahoo! first dropped
a generalized first-price auction and adopted the rank-by-bid GSP
in early 1997. Ten years later, and with a much wider base of ad-
vertisers, Yahoo! opted for a less drastic change and simply altered
its scoring rule from rank-by-bid to rank-by revenue (in which case
wAj = FAj ). Microsoft’s Live Search followed the same path and
also in 2007 moved from the rank-by-bid to the rank-by-revenue
GSP. Recently, Google also changed its scoring rule, although its
precise functional form was not made public.

Search engines are very reluctant to make bold changes in their
auction rules for mostly two reasons: first, advertisers are hardly
willing to learn a completely new auction format; and may switch
to a competitor if that happens. Second, it is believed that much
may be achieved in terms of revenue and efficiency by simply ex-

ploring different scoring rules within the GSP format. In this sub-
section, we make this claim formally by studying how the choice
of a scoring rule affects the set of complete information Nash equi-
librium of the GSP.

We will focus on a very interesting, but so far neglected, equi-
librium of the GSP: the one that maximizes the search engine’s
revenue among all pure strategy Nash equilibria. The next lemma
derives the bid profile that maximizes revenue for the search en-
gine:

LEMMA 2. Consider the GSP with scoring rule wAj , selling
K slots to N > K advertisers. Let advertisers A1, ..., AN be the
efficient assignees of slots 1 to N and assume advertisers submit
bids according to:

bAj = (1− cAj )
wAj−1

wAj

vAj−1 + cAj

wAj+1

wAj

bAj+1

for j ∈ {2, ..., K}, bAK+1 =
wAK

wAK+1

vAK , bA1 > bA2 (2)

and bAj < bAK+1 for j > K + 1. (3)

If this bid profile constitutes a Nash equilibrium, than it maximizes
the search engine’s revenue among all pure strategy complete in-
formation Nash equilibria. We call it the greedy bid profile.

Proof. Consider the efficient allocation, that is, let advertisers A1, ..., AN

receive slots 1 to N in this order. The Nash equilibrium candidate
that extracts most rents from advertisers has clearly two properties:
first, the last advertiser to obtain a slot (who is AK ) enjoys a zero
payoff. This implies that his payment per click,

wAK+1
wAK

bAK+1 ,
has to be equal to his value per click, vAK , what gives equation
(3). Second, all advertisers above AK should be indifferent be-
tween following equilibrium strategies and undercutting the adver-
tiser immediately below them. To see why this is true, imagine
some advertiser Aj strictly prefers slot j to slot j + 1 (given this
bid profile). In this case, if advertiser Aj+1 slightly increases his
bid, Aj has to pay more but still finds all deviations unprofitable
(and the search engine’s total revenue is higher). As a consequence,
bAj+1 has to satisfy:

�
j−1�

k=1

cAk

�
FAj ·

�
vAj −

wAj+1

wAj

bAj+1

�
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=

�
j−1�

k=1

cAk

�
cAj+1FAj ·

�
vAj −

wAj+2

wAj

bAj+2

�
,

what, after switching indexes, gives equation (2).�
As the next proposition shows, such a bid profile is an equilib-

rium for all {(vAj , FAj , γAj , λAj )}N
j=1 if and only if weights are

given by:

wAj =
FAj

1− cAj

=
FAj

1− (FAj γAj + (1− FAj )λAj )
.

Although at first awkward, the scoring rule above is a quite natural

one. Indeed, as first proved by [11], advertiser j comes on top of

advertiser k in the efficient allocation if and only if vAj · wAj ≥
vk · wAk .

PROPOSITION 1. Consider the GSP with scoring rule wAj , sell-
ing K slots to N > K advertisers. The greedy bid profile consti-
tutes a complete information Nash equilibrium for all valuations
and search parameters {(vAj , FAj , γAj , λAj )}N

j=1 if and only if

wAj =
FAj

1−cAj
(up to a multiplicative constant). In this case, the

equilibrium allocation is efficient and the search engines’s revenue
is maximal.

Proof. Let advertisers bid according to (2) and (3). By construc-

tion, no advertiser wants to undercut someone else’s bid and get

a slot below his own. Further, no bidders want to deviate up-

wards. To see why, let’s first assume (for later confirmation) that

wAj · bAj ≥ wAj+1 · bAj+1 for all j. To get a contradiction, imag-

ine some advertiser Aj+1 strictly prefers slot j to slot j + 1 (under

this bid profile). In this case:

�
j−1�

k=1

cAk

�
FAj+1 ·

�
vAj+1 −

wAj

wAj+1

bAj

�

>

�
j−1�

k=1

cAk

�
cAj FAj+1 ·

�
vAj+1 −

wAj+2

wAj+1

bAj+2

�
,

what simplifies to:

wAj+1vAj+1(1− cAj ) > wAj bAj − cAj wAj+2bAj+2 . (4)

Since wAj · bAj ≥ wAj+1 · bAj+1 for all j, we have that:

wAj bAj − cAj wAj+2bAj+2 ≥ wAj bAj − cAj wAj+1bAj+1 . (5)

By the choice of the scoring rule, and the fact the allocation is effi-

cient, we know that wAj · vAj ≥ wAj+1 · vAj+1 . Thus:

wAj vAj (1− cAj ) ≥ wAj+1vAj+1(1− cAj ). (6)

Plugging (5) and (6) into (4), we obtain that:

wAj vAj (1− cAj ) > wAj bAj − cAj wAj+1bAj+1 .

Using the definition of bAj from equation (2), the inequality above

becomes:

wAj vAj > wAj−1vAj−1 ,

contradicting efficiency. We conclude that if wAj · bAj ≥ wAj+1 ·
bAj+1 holds for all j, then the greedy bid profile is a Nash equilib-

rium.

It only remains to be shown that the bids described by (2) and

(3) are indeed such that wAj · bAj ≥ wAj+1 · bAj+1 for all Aj .

The proof is by induction. First, it is a matter of algebra to see that

wAj+1 · bAj+1 ≥ wAj+2 · bAj+2 implies wAj · bAj ≥ wAj+1 ·

bAj+1 . Second, this induction hypothesis is true for advertiser AK ,

as wAK · bAK ≥ wAK+1 · bAK+1 if and only if:

(1− cAK )wAK−1vAK−1 + wAK+1cAK bAK+1 ≥ wAK+1 · bAK+1

⇔ (1− cAK )wAK−1vAK−1 ≥ (1− cAK )wAK vAK

⇔ wAK−1vAK−1 ≥ wAK vAK .

By [11], the last inequality is true for all {(vAj , FAj , γAj , λAj )}N
j=1

if and only if wAK =
FAK

1−cAK
(up to a multiplicative constant). �

Our next proposition brings a pessimistic message about what

scoring can achieve in the GSP. It shows that there is no scoring

rule for which an efficient equilibrium where each advertiser pays

his Vickrey-Clark-Groves payments exists for all profiles of valu-

ations and search parameters. This extends a result by [8], who

shows that the GSP equipped with the "rank-by-revenue" scoring

function (wAK = FAK ) does not possess an efficient equilibrium

that implements VCG payments.

Recall the Vickrey-Clark-Groves (VCG from now on) payments

charge each advertiser the welfare difference imposed on the oth-

ers:

pV
Aj

= W (N − {Aj})− (W (N)− qjvAj )

where W (N) is the welfare as defined by equation (1).

PROPOSITION 2. Consider the GSP selling K slots to N > K
advertisers. There is no scoring rule wAj which depends solely
on advertiser Aj’s search parameters (FAj , γAj , λAj ) that imple-
ments an efficient equilibrium with VCG payments for all valua-
tions and search parameters {(vAj , FAj , γAj , λAj )}N

j=1.

Proof. By the payment rule of the GSP, bids that implement

VCG payments have to be such that:

qj−1 ·
wAj bAj

wAj−1

= pV
Aj−1 .

This implies that advertisers have to bid according to:

bAj =
wAj−1

wAj

·
pV

Aj−1

qj−1
for j ∈ {2, ..., K + 1}, (7)

bA1 > bA2 and bAj < bAK+1 for j > K + 1. (8)

With these bids in hand, we have to pick a scoring rule wAj

such that the order of scores corresponds to the efficient ranking of

advertisers, that is,

wAj · bAj ≥ wAj+1 · bAj+1 (9)

if and only if Aj is assigned a slot above Aj+1 in the efficient

allocation.

The idea of the proof is to show that there is no scoring rule

depending only on FAj , γAj , λAj that preserves the inequality (9)

for all profiles {(vAj , FAj , γAj , λAj )}N
j=1.

To see why this is true, let’s plug the bids (7) in the inequality (9)

to obtain that any scoring rule that implements a VCG equilibrium

has to satisfy:

wAj−1

FAj−1

pV
Aj−1 ≥

wAj

cAj−1FAj

pV
Aj

.

To make the argument, let’s take a profile of primitives

{(vAj , FAj , γAj , λAj )}
N
j=1

such that the efficient assignees of slots Aj and Aj−1 have identi-

cal click-through rates and continuation probabilities, that is, let

(FAj , γAj , λAj ) = (FAj−1 , γAj−1 , λAj−1). Since the scoring
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bAj+1 holds for all j, then the greedy bid profile is a Nash equilib-

rium.

It only remains to be shown that the bids described by (2) and
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scoring can achieve in the GSP. It shows that there is no scoring
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his Vickrey-Clark-Groves payments exists for all profiles of valu-

ations and search parameters. This extends a result by [8], who

shows that the GSP equipped with the "rank-by-revenue" scoring
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that implements VCG payments.
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charge each advertiser the welfare difference imposed on the oth-

ers:

pV
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where W (N) is the welfare as defined by equation (1).
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Proof. By the payment rule of the GSP, bids that implement

VCG payments have to be such that:
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such that the order of scores corresponds to the efficient ranking of

advertisers, that is,
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if and only if Aj is assigned a slot above Aj+1 in the efficient
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The idea of the proof is to show that there is no scoring rule
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To make the argument, let’s take a profile of primitives
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ipod diet pills avg antivirus

Prob. realized
CTR ordered separable realized

CTR ordered separable realized
CTR ordered separable

A 0.21 0.21� 0.22 0.23 0.21� 0.21 0.15 0.15� 0.14
B 0.09 0.09� 0.09 0.15 0.15� 0.16 0.17 0.21� 0.26
C 0.05 0.10� 0.11 0.03 0.05� 0.06 0.22 0.22� 0.25
A|B 0.26 0.25� 0.15 0.22 0.23� 0.14 0.00 0.00� 0.14
A| ∼ B 0.13 0.13� 0.15 0.10 0.14� 0.14 0.04 0.03� 0.14
A|C 0.00 0.00� 0.15 0.36 0.32� 0.14 0.00 0.00� 0.14
A| ∼ C 0.33 0.21� 0.15 0.11 0.12� 0.14 0.06 0.06� 0.14
B|A 0.04 0.03� 0.06 0.21 0.14� 0.11 0.04 0.03� 0.06
B| ∼ A 0.06 0.06� 0.06 0.10 0.11� 0.11 0.06 0.06� 0.06
B|C 0.00 0.00� 0.06 0.60 0.66� 0.11 0.00 0.00� 0.06
B| ∼ C 0.05 0.09 0.06� 0.10 0.09� 0.11 0.05 0.09 0.06�

C|A 0.05 0.04� 0.07 0.07 0.05� 0.04 0.05 0.04� 0.07
C| ∼ A 0.07 0.07� 0.07 0.06 0.04� 0.04 0.07 0.07� 0.07
C|B 0.19 0.09� 0.07 0.11 0.09� 0.04 0.19 0.09� 0.07
C| ∼ B 0.08 0.07� 0.07 0.07 0.03 0.04� 0.08 0.07� 0.07

Table 6: Model Validation

jth slot is given by:

qj = FAj ·
j−1�

k=1

cAk , where cAk = FAkγAk + (1− FAk )λAk .

Each term cAk accounts for the fraction of users that continue brows-
ing the sponsored list after coming across advertiser Ak. As such,
the total number of clicks of slot j is the product of advertiser
Aj’s click-through rate (FAj ) and the total number of users that
reach that position (

�j−1
k=1 cAk ). Advertiser Aj’s payoff is then

(vAj − pAj )q
j .

We are interested in analyzing the complete information Nash
equilibria and resulting efficiency of various scoring rules. A com-
plete information Nash equilibrium is a vector of bids such that no
advertiser can unilaterally change his bid and improve his payoff.
The efficiency of an equilibrium is simply the sum of all advertisers’
value per click times total number of clicks. The optimum social
welfare is the assignment of advertisers to slots with maximum effi-
ciency. Given our labeling scheme in which the j th slot is occupied
by advertiser Aj ∈ N , the optimum social welfare can be written
as:

W (N) = max
A1,...,AN∈N

N�

j=1

qjvAj (1)

3.1 Can Scoring Rules Help?

Search engines have often changed their auction rules for key-
word advertising in order to increase revenue. Yahoo! first dropped
a generalized first-price auction and adopted the rank-by-bid GSP
in early 1997. Ten years later, and with a much wider base of ad-
vertisers, Yahoo! opted for a less drastic change and simply altered
its scoring rule from rank-by-bid to rank-by revenue (in which case
wAj = FAj ). Microsoft’s Live Search followed the same path and
also in 2007 moved from the rank-by-bid to the rank-by-revenue
GSP. Recently, Google also changed its scoring rule, although its
precise functional form was not made public.

Search engines are very reluctant to make bold changes in their
auction rules for mostly two reasons: first, advertisers are hardly
willing to learn a completely new auction format; and may switch
to a competitor if that happens. Second, it is believed that much
may be achieved in terms of revenue and efficiency by simply ex-

ploring different scoring rules within the GSP format. In this sub-
section, we make this claim formally by studying how the choice
of a scoring rule affects the set of complete information Nash equi-
librium of the GSP.

We will focus on a very interesting, but so far neglected, equi-
librium of the GSP: the one that maximizes the search engine’s
revenue among all pure strategy Nash equilibria. The next lemma
derives the bid profile that maximizes revenue for the search en-
gine:

LEMMA 2. Consider the GSP with scoring rule wAj , selling
K slots to N > K advertisers. Let advertisers A1, ..., AN be the
efficient assignees of slots 1 to N and assume advertisers submit
bids according to:

bAj = (1− cAj )
wAj−1

wAj

vAj−1 + cAj

wAj+1

wAj

bAj+1

for j ∈ {2, ..., K}, bAK+1 =
wAK

wAK+1

vAK , bA1 > bA2 (2)

and bAj < bAK+1 for j > K + 1. (3)

If this bid profile constitutes a Nash equilibrium, than it maximizes
the search engine’s revenue among all pure strategy complete in-
formation Nash equilibria. We call it the greedy bid profile.

Proof. Consider the efficient allocation, that is, let advertisers A1, ..., AN

receive slots 1 to N in this order. The Nash equilibrium candidate
that extracts most rents from advertisers has clearly two properties:
first, the last advertiser to obtain a slot (who is AK ) enjoys a zero
payoff. This implies that his payment per click,

wAK+1
wAK

bAK+1 ,
has to be equal to his value per click, vAK , what gives equation
(3). Second, all advertisers above AK should be indifferent be-
tween following equilibrium strategies and undercutting the adver-
tiser immediately below them. To see why this is true, imagine
some advertiser Aj strictly prefers slot j to slot j + 1 (given this
bid profile). In this case, if advertiser Aj+1 slightly increases his
bid, Aj has to pay more but still finds all deviations unprofitable
(and the search engine’s total revenue is higher). As a consequence,
bAj+1 has to satisfy:

�
j−1�

k=1

cAk

�
FAj ·

�
vAj −

wAj+1

wAj

bAj+1

�

= continuation probabilities

1.1 Related Work. Sponsored search has been an ac-
tive area of research in the last several years after the early
papers explored the foundational models [12, 4, 29, 21]. In
general, the motivation for the work that followed is that
sponsored search in practice is much more complex than as
described by the first models. Some papers have taken on
the effect of advertiser budgets [8, 25, 2], as well as analyz-
ing bidder strategy and dynamics [7, 27, 9, 13, 32, 31, 22].
There have also been several papers offering extensions to
GSP, or entirely new models and mechanisms [3, 20, 23, 14,
26, 24, 1].

Only very recently are alternate user models that break the
separability assumption starting to receive some attention.
Ghosh and Mahdian [15] study a very general model and
show hardness results for the allocation (winner determina-
tion) problem; they also give algorithms for several special
cases, but none of those imply the algorithms discussed in
this work. Craswell et al. [11] give an empirical study of
several user click models. The “cascade” model, which was
found to fit the data the best, is a special case of the model
we study here (with pi = 1− qi and the events being mutu-
ally exclusive). Gunawardana and Meek [17] performed an
empirical study of ad aggregators with the goal of detect-
ing the affect of an ad on the other ads on the page. Their
findings were consistent with our model; i.e., the presence
of an ad can have a significant affect on the ads below it.
Athey and Ellison [6] present a model where users have an
inherent need, and click until that need is filled (or there is
little chance of it getting filled). They analyze user behav-
ior, advertiser bidding strategies and Bayesian equilibria in
their model.

Independently of our work, Mahdian and Kempe [18] study
the same model we do here. They also provide an O(n log n+
nk) dynamic program for allocation; however at that point
they generalize to the case of position-dependent continua-
tion probabilities and provide an approximation algorithm
for this case, whereas we go on to study deeper structural
and incentive properties in the original model.

1.2 Outline. In Section 2 we define our model formally.
In Section 3, we establish several properties of optimal as-
signments in this model, including our main technical result
that position and click probability will be monotone in bid
and match our intuition. We give our algorithm for finding
an optimal assignment in Section 4 which gives the truthful
auction via VCG pricing, and conclude in Section 5.

2. Markov User Click Model

We consider a sponsored search auction with n bidders B =
{1, . . . , n} and k positions. We will also refer to “ad i,”
meaning the advertisement submitted by bidder i. Each
bidder i ∈ B has two parameters, pi and qi. The click-
through-rate pi is the probability that a user will click on ad
i, given that they look at it. The continuation probability
qi is the probability that a user will look at the next ad in
a list, given that they look at ad i.

Each bidder submits a bid bi to the auction, representing
the amount that they value a click. The quantity pibi then
represents the value of an “impression,” i.e., how much they

value a user looking at their ad. This is commonly referred
to as their “ecpm.”2 Throughout, we will use the notation
ei = pibi for convenience.

Given an assignment (x1, . . . , xk) of bidders to the k po-
sitions, the user looks at the first ad x1, clicks on it with
probability px1 , and then continues looking with probability
qx1 .

3 This is repeated with the second bidder, etc., until the
last ad is reached, or some continuation test has failed. Thus
the overall expected value of the assignment to the bidders
is

ex1 + qx1(ex2 + qx2(ex3 + qx3(. . . qxn�−1(exn)))).

The goal of the auctioneer is to compute an assignment of
ads to positions that maximizes the overall expected value.
Given this assignment, prices can be computed using VCG [30,
10, 16]: for each assigned bidder we compute the change in
others’ value if that bidder were to disappear. This assures
truthful reporting of bids under a profit-maximizing utility
function.

3. Properties of Optimal Assignments

We will start analyzing some basic properties of the opti-
mal assignment. Our insights will allow us to give our main
results regarding monotonicity of position and click proba-
bility, as well as an efficient algorithm for finding this as-
signment.

3.1 Adjusted ECPM. It turns out that the quantity
ei/(1− qi), which we will refer to as the “adjusted ecpm (a-
ecpm),” plays a central role in this model. Intuitively, this
quantity is the impression value adjusted by the negative ef-
fect this bid has on the ads below it. We use ai = ei/(1−qi)
for convenience. The following theorem4 tells us how to as-
sign a set of k selected ads to the k positions:

Theorem 1. In the most efficient assignment, the ads
that are placed are sorted in decreasing order of adjusted
ecpm ai = ei/(1− qi).

Proof. Suppose not. Then in the ranking there are two
consecutive ads i and i

� in positions j and j + 1 where

ei

1− qi
<

ei�

1− qi�
. (1)

The contribution of positions j . . . n to the efficiency of the
ranking (given that position j is reached) is

ei + qi(ei� + qi� ê)

2The acronym ecpm stands for“expected cost per thousand”
impressions, where M is the roman numeral for one thou-
sand. We will drop the factor of one thousand and refer to
pibi as the “ecpm.”
3The click event and the continuation event could in princi-
ple have some correlation, and all our results will still hold.
However since we only consider expected value, we never use
this correlation explicitly in our analysis.
4Interestingly, this theorem essentially follows from a classi-
cal result on optimizing database queries [19].

= adjusted-ecpm (from the other paper)
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Discussion

• More parameters, overfitting

• Does F really capture the information 
externalities?

• The selection effect

• Position externalities overlap with F

• Tractability 

• Small dataset
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Recap
Separable CTR 

Model
Markovian User 

Model
Ordered Search 

Model

Advertiser-specific 
parameters

pi  = P(click ad i|
            view ad i) 

pi  = P(click ad i|
            view ad i) 

Fi(H) = P(click | view 
ad i ⋀ click H)

Fi({∅}) = pi

Position-related 
parameters

αj  = P(view ad i| 
            slot j)  

qi = P(cont|view ad i)
q1 ⨯ ... ⨯ qj-1 = P(view 
ad i| slot j)  

λi = P(cont | view + no 
click i)
γi = P(cont | view + 
click i)
qi = (1-Fi(H)) λi + Fi(H) γi 
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Interesting questions…

• Top-down assumption
• Fairness for individual advertisers
• Is it really a negative externality?

• Trade-off: insights gained vs. increased complexity
• Future work: Tractability? More work on 

segregating user types? Comparison of revenues?
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