EXTERNALITIES

Sponsored Search Auctions with Markovian Users (Aggarwal, Feldman, Muthukrishnan, Pal)

Externalities in Keyword Auctions: an Empirical and Theoretical Assessment (Gomez, Immorlica, Markakis)

CHONNIKARN (FERN) JIRA & PICHAYUT (PETCH) JIRAPINYO

SPONSORED SEARCH AUCTIONS: RECAP

- Advertisers ranked and chosen to positions by score = b_iw_i
 (w_i = weight associated with advertiser i, b_i = advertiser i's bid)
- Separable click-through rate:
 - P(click ad $i | view ad i) = p_i$ (advertiser-specific)
 - P(view ad $i \mid \text{slot } j) = \alpha_i$ (slot-specific)
 - Click-through rate = P(click ad $i | \text{slot } j) = p_i \alpha_j$
- Explored various scoring and pricing rules, assuming strategic behavior of bidders
 - Most studied: GSPs
- Measures of desirability: efficiency, revenue-maximization
- Also explored effect of expressiveness vs. simplification
- Assumed no *externalities* ...

A NEW MODEL FOR USER'S BEHAVIOR

- Ordered Search
 - Users browse from top to bottom
 - Make clicking decisions slot by slot
 - Implicit assumption: first ad always read

EXTERNALITIES

- Idea: value of acquiring slot in sponsored search list highly depends on who else is shown in the other sponsored positions
- Two types:
 - Position Externalities
 - Your iPod ad is under an Apple store ad
 - Information Externalities
 - Your diet pill ad is under an ad warning about the diet pill
- Depart from separable click-through rate models

SPONSORED SEARCH AUCTIONS WITH MARKOVIAN USERS AGGARWAL ET AL

AGGARWAL ET AL: BIG PICTURE

- Model for user behavior: Markovian user model
- Considers negative externalities from positions (no information externalities)
- Based on this user model
 - characterizes efficient assignment
 - gives algorithm to find it
 - efficient assignment not GSP, but has some desirable properties of GSP (allows for *intuitive bidding*) and can be made IC with VCG payment
- Focuses on how to allocate ads to slots efficiently/to max revenue *given the bids*: **no equilibrium analysis**

MARKOVIAN USER MODEL

- Recall separable click-through rate model: P(click ad *i* | slot *j*) = $p_i \alpha_j$; where α_j decreasing in position
 - Motivation:
 - Model process such that decreasing α_i arises naturally
 - Each ad effects user's clicking on that ad as well as looking at other ads
 - Formulation: user as Markov Process
 - n bidders $\beta = \{1, ..., n\}$, k positions
 - For each bidder, begin scanning ads from the top down. When position *j* is reached:

 p_i = probability that a user will click on ad i, given he *looks* at it

 q_i = probability that a user will look at the next ad in a list, given that he *looks* at ad i

MARKOVIAN USER MODEL (2)

- Compare with separable click-through rate model:
 - $\alpha_j = \prod_{i' \in A} q_{i'}$; where *A* is set of ads above position *j*
- No longer separable, but reduces to same expression as separable model in the first slot, where α₁ =1 and click-through rate = p_i
- Position externality: q_i introduces tradeoff between probability of clicking an add (p_i) and the ad's effect on slot below it (q_i)

OPTIMAL ÅSSIGNMENT

- Expected Cost per Thousand: $e_i = p_i b_i$ = value of an "impression" = how much bidder values user looking at ad *i*
- What is "best/optimal assignment" ?
 Given bid b_i for ad i, find assignment of ads (x₁, x₂, ..., x_k) with corresponding p_{xi} and q_{xi} such that
 max {e_{x1} + q_{x1} (e_{x2} + q_{x2}(e_{x3} + q_{x3}(... +q_{x(k-1)}(e_{xk}))))}
- Interpretation: If assume that bidders are truthful in reporting values as bids (v_i= b_i), then want to maximize overall expected value of assignment to bidders

PROPERTIES OF OPTIMAL ASSIGNMENT (1)

• Adjusted ecpm (a-ecpm) = $e_i/(1-q_i)$

THEOREM 1. In the most efficient assignment, the ads that are placed are sorted in decreasing order of adjusted $ecpm a_i = e_i/(1-q_i).$

- **Proof sketch:** swap argument
 - Suppose not: consider a_i and $a_{i'}$ of ads in optimal assignment positions j and j+1 such that $a_i < a_{i'}$
 - Compare contributions of positions j to n to efficiency for both orders of *i* and *i*' in slots *j* and *j*+1
 - Contradiction

ILLUSTRATIVE EXAMPLE

• Theorem 1 tells *how to sort the ads* to select, but doesn't tell *which k ads* to select

Bidder	e _i	q _i	$a_i = e_i / (1 - q_i)$
1	\$1.00	0.75	4
2	\$2.00	0.20	2.5
3	\$0.85	0.80	4.25

- Ranking by ecpm doesn't yield optimal assignment
 - (2,1): efficiency = \$2 + 0.2(\$1) = \$2.20
- Ranking by a-ecpm doesn't yield optimal assignment
 - (3,1): efficiency = \$0.85 + 0.8(\$1) = \$1.65
- Optimal Assignment is (1,2): efficiency = \$1 + 0.75(\$2) = \$2.50

PROPERTIES OF OPTIMAL ÅSSIGNMENT (2) BIDDER DOMINANCE

 While having higher a-ecpm alone doesn't allow a bidder to dominate another, having both higher a-ecpm and ecpm does suffice

THEOREM 2. For all bidders i in an optimal assignment, if some bidder j is not in the assignment, and $a_j \ge a_i$ and $e_j \ge e_i$, then we may substitute j for i, and the assignment is no worse.

• **Intuition:** for a special case, if $a_i = e_i$ for all *i*, then assignment reduces to GSP

PROPERTIES OF OPTIMAL ASSIGNMENT (3) SUBSET SUBSTRUCTURE IN OPTIMAL ASSIGNMENTS

- Subset structure between optimal assignments to different numbers of slots
- OPT(C, j) = set of all optimal solutions for filling j positions with bidders from C
- Optimal solution S c OPT(C, j) = set of agents assigned to slots 1-j

THEOREM 3. Let $j \in \{1, \ldots, k\}$ be some number of positions, and let C be an arbitrary set of bidders. Then, for all $S \in OPT(C, j - 1)$, there is some $S' \in OPT(C, j)$ where $S' \supset S$.

• Intuition: for each additional number of slots, find a proper position to insert another bidder into sequence of bidders assigned

PROPERTIES OF OPTIMAL ASSIGNMENT (4) MONOTONICITY OF POSITION/CLICK PROBS

- Optimal assignment supports **intuitive Bidding**
 - higher bids translate to higher positions and more clicks
 - Allows bidder to adjust bid intelligently without global knowledge of other bids

THEOREM 4. As a bidder increases her bid (keeping all other bids fixed):

- (a) the probability of her receiving a click in the optimal solution does not decrease, and
- (b) her position in the optimal solution does not go down.

COMPUTING OPTIMAL ASSIGNMENT

1. Optimal Assignment using Dynamic Programming

- Sort ads in decreasing order of a-ecpm: O(n log n)
- F(i,j) = efficiency obtained (given you reach slot j) by filling slots (j...k) with bidders from set $\{i,...,n\}$

 $F(i,j) = max(F(i+1, j+1) q_i + e_i, F(i+1, j))$

- Solving for *F*(1,1) yields optimal assignment: O(*nk*)
- **Overall:** $O(n \log n + nk)$

COMPUTING OPTIMAL ASSIGNMENT (2)

2. Near-linear time algorithm (in place of dynamic programming)

- Oracle: for any *j*, *j*' ϵ β , return bidder $j \le y \le j'$ that maximizes $f(q_y, e_y)$ for an arbitrary linear function $f : O(log^2 n)$
- Algorithm constructs solution S_i e OPT(ß, i) for i = 1,...,k.
 Final one S_k is the overall optimum. Make O(k²) calls to oracle
- **Overall:** $O(n \log n + k^2 \log^2 n)$

THEOREM 5. Consider the auction with n Markovian bidders and k slots. There is an optimal assignment which can be determined in $O(n \log n + k^2 \log^2 n)$ time.

Using VCG pricing -> truthful mechanism for sponsored search with Markovian users

DISCUSSION: LIMITATIONS

- Statistical and machine learning problem: need to find a good way to find model parameters, especially q'_i s
- Open problem: initialization for new users coming in
- q_i can depend on location
- Model extension for general layouts

EXTERNALITIES IN KEYWORD AUCTIONS

GOMES, IMMORLICA, MARKAKIS

TWO TYPES OF EXTERNALITIES

- - User tires of the search
 - $\lambda_j = \Pr(\text{Continue} \mid \text{View } j +$ Don't Click *j*)
 - User finds what she looks for
 - $\gamma_j = \Pr(\text{Continue} \mid \text{View } j +$ $\operatorname{Click} j$

- Position Externalities
 Information Externalities
 - $H = \{ j: link j received a click \}$
 - $F_i(H) = \Pr(\operatorname{Click} j \mid \operatorname{View} j + \operatorname{Click} H)$
 - $F_j(\{\emptyset\})$ = Base-line Click-through rates

EXAMPLE: EXTERNALITIES

- $\lambda_j = \Pr(\text{Continue} \mid \text{View } j + \text{Don't Click } j)$
- $\gamma_j = \Pr(\text{Continue} \mid \text{View}\,j + \text{Click}\,j)$
- $F_j(H) = \Pr(\operatorname{Click} j \mid \operatorname{View} j + \operatorname{Click} H)$
- Two ads: A_1, A_2
- $Pr(click on A_1) = F_{A_1}$
- $\Pr(\operatorname{click} \operatorname{on} A_2) = (1 F_{A_1})\lambda_{A_1}F_{A_2} + F_{A_1}\gamma_{A_1}F_{A_2}(\{A_1\})$

REPRESENTATION OF AN EVENT

- A pair of tuples
 - First tuple = the ads displayed
 - Second tuple = the ads clicked
 - {j, k, Ø; k, Ø, Ø}= Event when j and k were displayed and only k was clicked.

EXAMPLE: REPRESENTATION

- $\lambda_j = \Pr(\text{Continue} \mid \text{View } j + \text{Don't Click } j)$
- $\gamma_j = \Pr(\text{Continue} \mid \text{View}\,j + \text{Click}\,j)$
- $F_j(H) = \Pr(\operatorname{Click} j \mid \operatorname{View} j + \operatorname{Click} H)$

Ordered Search Model:

Prob
$$(\{j, k, l; j, \emptyset, \emptyset\})$$
 = $F_j(1 - \gamma_j) +$
 $F_j\gamma_j(1 - F_k(\{j\}))(1 - \lambda_k) +$
 $F_j\gamma_j(1 - F_k(\{j\}))\lambda_k(1 - F_l(\{j\}))$

Separable Model:

Prob(advertiser j gets a click on slot k) = $s^k \cdot f_j$

 s^k , slot specific CTR; f_j , advertiser specific CTR

REPRESENTATION: ALL POSSIBLE EVENTS

Prob $(\{j, k, \emptyset; \emptyset, \emptyset, \emptyset\})$	=	$(1-F_j)(1-\lambda_j) +$
		$(1-F_j)\lambda_j(1-F_k),$
Prob $(\{j, k, \emptyset; j, \emptyset, \emptyset\})$	=	$F_j(1-\gamma_j) + F_j\gamma_j(1-F_k(\{j\})),$
Prob $(\{j, k, \emptyset; k, \emptyset, \emptyset\})$	=	$(1-F_j)\gamma_j F_k,$
Prob $(\{j, k, \emptyset; j, k, \emptyset\})$	=	$F_j \gamma_j F_k(\{j\}),$
Prob $(\{j, k, l; k, \emptyset, \emptyset\})$	=	$(1-F_j)\lambda_j F_k(1-\gamma_k) +$
		$(1-F_j)\lambda_j F_k \gamma_k (1-F_l(\{k\})),$
Prob $(\{j, k, l; l, \emptyset, \emptyset\})$	=	$(1-F_j)\lambda_j(1-F_k)\lambda_kF_l,$
Prob $(\{j, k, l; j, k, \emptyset\})$	=	$F_j \gamma_j F_k(\{j\})(1-\gamma_k) +$
		$F_j \gamma_j F_k(\{j\}\gamma_k(1-F_l(\{j,k\}))),$
Prob $(\{j, k, l; j, l, \emptyset\})$	=	$F_j \gamma_j (1 - F_k(\{j\}) \lambda_k F_l(\{j\}),$
Prob $(\{j, k, l; k, l, \emptyset\})$	=	$(1-F_j)\lambda_j F_k \gamma_k F_l(\{k\}),$
$Prob\left(\{j,k,l;j,k,l\}\right)$	=	$F_j \gamma_j F_k(\{j\}) \gamma_k F_l(\{j,k\}).$

DATASET: OBSERVATIONS

- CTRs depend on users' search objectives
 - Restricts experiments to a single search objective
- Requires variations on clicking history
 - Takes only events with at least 2 of 3 top advertisers displayed together
- The representation assumes top-to-bottom search for all users

DATASET

keyword	advertisers	5	# of obs.	slot	ipod	diet pill
	(A): store	.apple.com			(A): 6,460 (76.92%)	(A): 1,912 (41.10%)
ipod	(B): cellpl	honeshop.net	8,398	first	(B): 1,864 (22.20%)	(B): 908 (19.52%)
-	(C): nexta	.g.com			(C): 74 (0.88%)	(C): 1,832 (39.38%)
	(A): price	sexposed.net			(A): 1,438 (17.12%)	(A): 1,848 (39.72%)
diet pill		illvalueguide.con	n 4,652	second	(B): 5,826 (69.37%)	(B): 1,988 (42.73%)
		ohene.com	,		(C): 1,134 (13.50%)	(C): 816 (17.54%)
	(A): Avg-				(A): 26 (0.31%)	(A): 472 (10.15%)
avg antivir		-	1,336	third	(B): 22 (0.26%)	(B): 692 (14.88%)
avg antivit	avg antivirus (B): avg-for-free.com (C): free-avg-download.com			umu	(C): 950 (11.31%)	(C): 668 (14.36%)
	(C). Hee-a	avg-download.co.			(other): 7,400 (88.12%)	(other): 2,820 (60.62%)
Table 1: Ke	ywords and Ad	vertisers			antivirus	
					(A): 1,233 (92.29%)	
				first	(B): 71 (5.31%)	
					(C): 32 (2.40%)	
1 /		1. 4 .11			(A): 88 (6.59%)	
	pod	diet pill	antivirus	second	(B): 674 (50.45%)	
	1,572 (74.08%)	640 (56.73%)	205 (43.15%)		(C): 574 (42.96%)	
	524 (24.69%)	384 (34.04%)	259 (54.52%)		(A): 9 (0.67%)	
third 3	30 (1.41%)	104 (9.21%)	11 (2.31%)	third	(B): 21 (1.57%)	
total 2	2,122 (100%)	1,128 (100%)	475 (100%)	umu	(C): 355 (26.57%)	
					(other): 951 (71.18%)	

Table 3: Distribution of Clicks per Slot

 Table 2: Distribution of Advertisers per Slot

ESTIMATION

 Estimating parameters using the maximum likelihood method, maximizing the probability of the sample:

$$\log L = \sum_{n} \log \left[\operatorname{Prob} \left(\{ j_n, k_n, l_n; c_n^1, c_n^2, c_n^3 \} \right) \right]$$

ESTIMATION RESULTS

keyword	ipod	diet pill	antivirus				
F_A	0.210 (0.005)	0.210 (0.008)	0.151 (0.010)	F_C	0.104 (0.012)	0.051 (0.004)	0.215 (0.042)
$F_A(\{B\})$	0.250 (0.038)	0.232 (0.032)	0.00 (0.074)	$F_C(\{A\})$	0.040 (0.032)	0.052 (0.017)	(0.012) 0.242 (0.042)
$F_A(\{C\})$	—	0.317 (0.065)	—	$F_C(\{B\})$	0.095 (0.032)	0.088 (0.029)	0.121 (0.889)
$F_A(\{B,C\})$	—	0.664 (0.075)	—	$F_C(\{A,B\})$	0.327 (0.190)	0.664 (0.089)	0.125 (0.699)
F_B	0.087 (0.006)	0.150 (0.009)	0.206 (0.038)	λ_A	0.676 (0.056)	0.760 (0.064)	1.0 (0.217)
$F_B(\{A\})$	0.030 (0.022)	0.146 (0.034)	0.364 (0.050)	λ_B	0.627 (0.042)	0.673 (0.057)	0.183 (0.049)
$F_B(\{C\})$	—	0.663 (0.080)	—	λ_C	1.00 (0.057)	0.579 (0.037)	0.424 (0.201)
$F_B(\{A,C\})$	—	0.334 (0.083)		γ_A	1.00 (0.777)	0.940 (0.195)	1.00 (0.231)
				γ_B	1.00 (0.820)	1.00 (0.743)	0.686 (0.902)
$\lambda_j = \Pr(Cc)$		U U	, i i i i i i i i i i i i i i i i i i i	γ_{C}		1.00 (0.892)	—
$\gamma j = \Pr(C)$	ontinue	View $j + C$	lick j)	Table 4: Estima	ites of the Or	dered Searcl	n Model
$F_j(H) = \mathbb{P}$	r(Click <i>j</i>	View $j + 0$	Click <i>H</i>)				

MAKING SENSE OF THE INFORMATION EXTERNALITIES

- $F_j > F_j(\{k\})$:
 - k has a negative externality effect on j
- $F_j < F_j(\{k\})$:
 - *k* has *positive externality* effect on *j*
 - or evidence for the *selection* effect

 $F_j(H) = \Pr(\operatorname{Click} j \mid \operatorname{View} j + \operatorname{Click} H)$

SELECTION EFFECT

- "the group of users that make at least one click may be fundamentally different from the total pool of users that perform searches on Microsoft Live."
- The selection effect:
 - $F_j < F_j(\{k\})$ same as positive externalities
 - $\lambda_i < \gamma_i$

 $\lambda_j = \Pr(\text{Continue} \mid \text{View} j + \text{Don't Click} j)$

 $\gamma_j = \Pr(\text{Continue} \mid \text{View} j + \text{Click} j)$

 $F_j(H) = \Pr(\operatorname{Click} j \mid \operatorname{View} j + \operatorname{Click} H)$

ESTIMATION RESULTS

keyword	ipod	diet pill	antivirus				
F_A	0.210 (0.005)	0.210 (0.008)	0.151 (0.010)	F_C	0.104 (0.012)	0.051 (0.004)	0.215 (0.042)
$F_A(\{B\})$	0.250 (0.038)	0.232 (0.032)	0.00 (0.074)	$F_C(\{A\})$	0.040 (0.032)	0.052 (0.017)	0.242 (0.042)
$F_A(\{C\})$	<u> </u>	0.317 (0.065)		$F_C(\{B\})$	0.095 (0.032)	0.088 (0.029)	0.121 (0.889)
$F_A(\{B,C\})$		0.664 (0.075)	—	$F_C(\{A, B\})$	0.327 (0.190)	0.664 (0.089)	0.125 (0.699)
F_B	0.087 (0.006)	0.150 (0.009)	0.206 (0.038)	λ_A	0.676 (0.056)	0.760 (0.064)	1.0 (0.217)
$F_B(\{A\})$	0.030 (0.022)	0.146 (0.034)	0.364 (0.050)	λ_B	0.627 (0.042)	0.673 (0.057)	0.183 (0.049)
$F_B(\{C\})$	—	0.663 (0.080)	—	λ_C	1.00 (0.057) 1.00	0.579 (0.037) 0.940	0.424 (0.201) 1.00
$F_B(\{A,C\})$	—	0.334 (0.083)		γ_A	(0.777) 1.00	(0.195) 1.00	(0.231) 0.686
$\lambda_{j} = \Pr(Co)$	ntinuo X	$\frac{1}{1000}$ i \pm D	on't Click i)	γ_B	(0.820)	(0.743) 1.00	(0.902)
		U U				(0.892)	
$\gamma_j = \Pr(\text{Continue} \mid \text{View } j + \text{Click } j)$ Table 4: Estimates of the Ordered S							h Model
$F_j(H) = \Pr$	(Click $j \mid $	View $j + C$	lick <i>H</i>)				

_

MODEL VALIDATION

Ordered Search Model vs. Separable CTR Model

keyword	ipod	diet pill	antivirus
F_A	0.210	0.210	0.151
	(0.005)	(0.008)	(0.010)
F_B	0.087	0.150	0.206
	(0.006)	(0.009)	(0.038)
F_C	0.104	0.051	0.215
	(0.012)	(0.004)	(0.042)

Estimates of the Ordered Search Model

keyword	ipod	diet pill	antivirus
f.	0.216	0.205	0.144
f_A	(0.005)	(0.008)	(0.009)
f_	0.085	0.164	0.256
f_B	(0.004)	(0.009)	(0.036)
f	0.107	0.057	0.253
f_C	(0.011)	(0.004)	(0.038)
s^1	1.00	1.00	1.00
8	<u> </u>	<u> </u>	<u> </u>
s^2	0.676	0.671	0.961
8	(0.036)	(0.037)	(0.136)
s^3	0.400	0.699	0.144
8	(0.072)	(0.056)	(0.043)

Table 5: Estimates of the Separable CTR Model

MODEL VALIDATION (2)

		ipod			diet pills		ava	g antivirus	
Prob.	realized CTR	ordered	separable	realized CTR	ordered	separable	realized CTR	ordered	separable
A	0.21	0.21*	0.22	0.23	0.21*	0.21	0.15	0.15*	0.14
В	0.09	0.09*	0.09	0.15	0.15*	0.16	0.17	0.21*	0.26
C	0.05	0.10*	0.11	0.03	0.05*	0.06	0.22	0.22*	0.25
A B	0.26	0.25*	0.15	0.22	0.23*	0.14	0.00	0.00 ★	0.14
$A \sim B$	0.13	0.13*	0.15	0.10	0.14*	0.14	0.04	0.03*	0.14
A C	0.00	0.00★	0.15	0.36	0.32*	0.14	0.00	0.00 ★	0.14
$A \sim C$	0.33	0.21*	0.15	0.11	0.12*	0.14	0.06	0.06*	0.14
B A	0.04	0.03*	0.06	0.21	0.14*	0.11	0.04	0.03*	0.06
$ B \sim A$	0.06	0.06*	0.06	0.10	0.11*	0.11	0.06	0.06*	0.06
B C	0.00	0.00★	0.06	0.60	0.66*	0.11	0.00	0.00 ★	0.06
$ B \sim C$	0.05	0.09	0.06*	0.10	0.09*	0.11	0.05	0.09	0.06*
C A	0.05	0.04*	0.07	0.07	0.05*	0.04	0.05	0.04*	0.07
$C \sim A$	0.07	0.07*	0.07	0.06	0.04*	0.04	0.07	0.07*	0.07
C B	0.19	0.09*	0.07	0.11	0.09*	0.04	0.19	0.09*	0.07
$C \sim B$	0.08	0.07*	0.07	0.07	0.03	0.04*	0.08	0.07*	0.07

 Table 6: Model Validation

• J | K = 'user clicks on advertiser *J* occupying the second slot given that she clicked on ad *K* occupying the first slot'

•J | ~K = '... given that she DID NOT click on ad *K* occupying the first slot'

EQUILIBRIUM ÁNALYSIS

- GSP + Scoring Rule
- Ads ranked by $s_{A_j} = w_{A_j} \cdot b_{A_j}$
 - $b_{Aj}: A_j$'s bid
 - w_{Aj} : a weight (= F_{Aj} in the case of rank-by-revenue)
- GSP: payment equal to the smallest bid he could have submitted that would have allowed him to maintain his position:

$$p_{A_j} \cdot w_{A_j} = b_{A_{j+1}} \cdot w_{j+1}$$
 which gives $p_{A_j} = \frac{b_{A_{j+1}} \cdot w_{A_{j+1}}}{w_{A_j}}$

- Assumption: $F_{A_j} = F_{A_j}(H)$
- Can we design a scoring rule to maximize revenue?

EQUILIBRIUM ÁNALYSIS (2)

LEMMA 2. Consider the GSP with scoring rule w_{A_j} , selling K slots to N > K advertisers. Let advertisers $A_1, ..., A_N$ be the efficient assignees of slots 1 to N and assume advertisers submit bids according to:

$$b_{A_{j}} = (1 - c_{A_{j}}) \frac{w_{A_{j-1}}}{w_{A_{j}}} v_{A_{j-1}} + c_{A_{j}} \frac{w_{A_{j+1}}}{w_{A_{j}}} b_{A_{j+1}}$$

for $j \in \{2, ..., K\}, b_{A_{K+1}} = \frac{w_{A_{K}}}{w_{A_{K+1}}} v_{A_{K}}, \ b_{A_{1}} > b_{A_{2}}$ (2)
and $b_{A_{j}} < b_{A_{K+1}}$ for $j > K+1$. (3)

If this bid profile constitutes a Nash equilibrium, than it maximizes the search engine's revenue among all pure strategy complete information Nash equilibria. We call it the greedy bid profile.

EQUILIBRIUM ÁNALYSIS (3)

PROPOSITION 1. Consider the GSP with scoring rule w_{A_j} , selling K slots to N > K advertisers. The greedy bid profile constitutes a complete information Nash equilibrium for all valuations and search parameters $\{(v_{A_j}, F_{A_j}, \gamma_{A_j}, \lambda_{A_j})\}_{j=1}^N$ if and only if $w_{A_j} = \frac{F_{A_j}}{1-c_{A_j}}$ (up to a multiplicative constant). In this case, the equilibrium allocation is efficient and the search engines's revenue is maximal.

> $c_{A_k} = F_{A_k}\gamma_{A_k} + (1 - F_{A_k})\lambda_{A_k}$ = continuation probabilities $a_i = e_i/(1 - q_i)$ = adjusted-ecpm (from the other paper)

PROPOSITION 2. Consider the GSP selling K slots to N > Kadvertisers. There is no scoring rule w_{A_j} which depends solely on advertiser A_j 's search parameters $(F_{A_j}, \gamma_{A_j}, \lambda_{A_j})$ that implements an efficient equilibrium with VCG payments for all valuations and search parameters $\{(v_{A_j}, F_{A_j}, \gamma_{A_j}, \lambda_{A_j})\}_{j=1}^N$.

DISCUSSION

- More parameters, overfitting
- Does *F* really capture the information externalities?
 - The selection effect
 - Position externalities overlap with *F*
- Tractability
- Small dataset

RECAP

	Separable CTR Model	Markovian User Model	Ordered Search Model
Advertiser-specific parameters	$p_i = P(click ad i view ad i)$	$p_i = P(click ad i view ad i)$	$F_{i}(H) = P(\text{click} \text{view})$ ad i \land click H) $F_{i}(\{\emptyset\}) = p_{i}$
Position-related parameters	$\alpha_j = P(\text{view ad } i \mid slot j)$	$q_i = P(\text{cont} \text{view ad } i)$ $q_1 \times \dots \times q_{j-1} = P(\text{view}$ $\text{ad } i \text{ slot } j)$	$\lambda_{i} = P(\text{cont} \mid \text{view} + \text{no} \\ \text{click } i) \\ \gamma_{i} = P(\text{cont} \mid \text{view} + \\ \text{click } i) \\ q_{i} = (1 - F_{i}(H)) \lambda_{i} + F_{i}(H) \gamma_{i}$

INTERESTING QUESTIONS...

- Top-down assumption
- Fairness for individual advertisers
 - Is it really a negative externality?
- Trade-off: insights gained vs. increased complexity
- Future work: Tractability? More work on segregating user types? Comparison of revenues?