
Overview
The Model

Results

Self-Correcting Sampling-Based Dynamic
Multi-Unit Auctions

Output Ironing Demystified

Xiaoqi Zhu and Richard Liu

October 26, 2009

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Dynamic Mechanism Design: An Overview

Many mechanism design problems are inherently dynamic.

Movie tickets

Internet advertising

Kidney exchanges

Airline seats

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Dynamic Multi-unit Auctions

Features:

Multi-unit supply

Multi-unit demand

Agents with bounded patience

Probabilistic model of future scenarios

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Design Goals

Desirable properties of the dynamic auction:

1 Computational tractability

2 Outcome efficiency

3 Incentive compatibility

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Design Goals

Desirable properties of the dynamic auction:

1 Computational tractability

2 Outcome efficiency

3 Incentive compatibility

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Design Goals

Desirable properties of the dynamic auction:

1 Computational tractability

2 Outcome efficiency

3 Incentive compatibility

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

A Simple Motivating Example

Example (Ice Cream)

Ice cream is made at one cone an hour. There are three agents.

Agent # Arrival Departure Value Demand
Agent 1 1 2 100 1
Agent 2 1 2 80 1
Agent 3 2 2 60 1

Consider the näıve generalization of the Vickrey auction. If every buyer
were truthful...

Agent 1 wins in period 1 for 80; agent 2 wins in period 2 for 60.

But, agent 1 can do better by reporting a value of 61:

Then, agent 2 wins in period 1 for 60; agent 1 wins in period 2 for
61.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

A Simple Motivating Example

Example (Ice Cream)

Ice cream is made at one cone an hour. There are three agents.

Agent # Arrival Departure Value Demand
Agent 1 1 2 100 1
Agent 2 1 2 80 1
Agent 3 2 2 60 1

Consider the näıve generalization of the Vickrey auction. If every buyer
were truthful...

Agent 1 wins in period 1 for 80; agent 2 wins in period 2 for 60.

But, agent 1 can do better by reporting a value of 61:

Then, agent 2 wins in period 1 for 60; agent 1 wins in period 2 for
61.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

A Simple Motivating Example

Example (Ice Cream)

Ice cream is made at one cone an hour. There are three agents.

Agent # Arrival Departure Value Demand
Agent 1 1 2 100 1
Agent 2 1 2 80 1
Agent 3 2 2 60 1

Consider the näıve generalization of the Vickrey auction. If every buyer
were truthful...

Agent 1 wins in period 1 for 80; agent 2 wins in period 2 for 60.

But, agent 1 can do better by reporting a value of 61:

Then, agent 2 wins in period 1 for 60; agent 1 wins in period 2 for
61.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

A Simple Motivating Example

Truthfulness of the Vickrey auction no longer holds in a
dynamic setting.

The mechanism can be made strategyproof by charging
agents the critical value payment, which we will talk more
about later.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

The Model

Model

C units of an identical item for sale, to be sold in T time periods.
Agent (bidder) i has type θi = (ai , di , ri , qi) where

ai ∈ {1, ...,T} is the agent’s arrival time.

di ∈ {1, ...,T} is the agent’s departure time.

ri ∈ R≥0 is the total value agent i is willing to pay for in some
period t ∈ {ai , ..., di}.
qi ∈ Z>0 is the number of units demanded by the agent.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

The Model (cont’d)

Assumptions:

Limited misreports: Agents cannot report early arrivals.

Single-valued preferences: Agents are indifferent to time of
allocation.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

The Model (cont’d)

Inputs:
Active agents At ⊆ θ1..t

Available items S t

Random events ω = {ω1..t}
↓

Dynamic auction:
Decision policy π
Payment policy x

↓
Outputs:

Decisions πt
i (S t ,At , ω1..t) ∈ {0, 1} for each i ∈ At

Payments x t
i (S t ,At , ω1..t) for each i ∈ At

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Payment and Critical Value

Definition (Critical Value)

The critical value for agent i , given policy π and reports θ−i of
other agent types, is

v c
(ai ,di ,qi)

(θ−i , ω) = min{r ′i s.t. πi ((ai , di , r
′
i , qi), θ−i , ω) = 1}

or ∞ if no such r ′i exists.

Lemma

Any truthful online mechanism that satisfies individual rationality
must collect a payment equal to the critical value from each
allocated agent.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Monotonicity

Definition (Partial Order on Types)

Types that offer the seller more flexibility are higher.

θi �θ θ′i ≡ (ai ≥ a′i) ∧ (di ≤ d ′i) ∧ (ri ≤ r ′i) ∧ (qi ≥ q′i)

Definition (Monotonicity)

Policy π is monotonic if

(πi (θi , θ−i , ω) = 1)
∧

(ri > v c
(ai ,di ,qi)

(θ−i , ω))

implies
πi (θ

′
i , θ−i , ω) = 1

for all θ′i �θ θi , for all θ−i , ω, and all agents i .

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Monotonicity (cont’d)

An allocated agent must continue to be allocated if its type were
higher, all else unchanged.

Monotonicity is necessary for incentive compatibility (if losing
agents receive no payment).

Additionally, monotonicity is made sufficient for incentive
compatibility by defining a payment policy that charges each
allocated agent its critical value.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Bridging Algorithms and Mechanism Design

We can use an stochastic optimization algorithm to produce a
decision policy π. We have seen some examples in class...

Expectation

Consensus

Regret

This paper focuses on the Consensus algorithm.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Problem

Question: Are decision policies produced by the Consensus
algorithm monotonic?

Answer: No...

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Problem

Question: Are decision policies produced by the Consensus
algorithm monotonic?

Answer: No...

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Problem

Question: Are decision policies produced by the Consensus
algorithm monotonic?

Answer: No...but with the proper modification, yes!

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Consensus Algorithm: A Refresher

Algorithm (Consensus)

votes(k) := 0 for each allocation k of up to S t items to At

σj := GetSample(t) for each k = 1..|Σ|; Σ = {σ1..|Σ|}
for each j = 1..|Σ| do
αj := Opt(S t ,At , σt) ∩ At // active agents only
αj
s := Select(αj ,Σ,S t ,At)

votes(αj
s) := votes(αj

s) + 1
end for
k t := arg maxk votes(k)

return k t

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Consensus Algorithm: A Refresher

Algorithm (Consensus with ironing)

votes(k) := 0 for each allocation k of up to S t items to At

σj := GetSample(t) for each k = 1..|Σ|; Σ = {σ1..|Σ|}
for each j = 1..|Σ| do
αj := Opt(S t ,At , σt) ∩ At // active agents only
αj
s := Select(αj ,Σ,S t ,At)

votes(αj
s) := votes(αj

s) + 1
end for
k t := arg maxk votes(k)
k̆ t := {i @ k t : not isIronedA,D,Q(θi , t, (S ,A)ai ..t ,Σ)}
return k̆ t

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Output Ironing

“Ironed” decision discards allocations that violate
monotonicity.

Surviving allocations must allocate higher types earlier.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Output Ironing

“Ironed” decision discards allocations that violate
monotonicity.

Surviving allocations must allocate higher types monotonically
earlier.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

An Intuitive Example

Example

Suppose θ′′′i �θ θ′′i �θ θ′i �θ θi . Suppose we are in period t4 and
policy π proposes to allocate to agent i , with type θi .

time: GFED@ABCt1
/.-,()*+ /.-,()*+ GFED@ABCt2

/.-,()*+ /.-,()*+ GFED@ABCt3
/.-,()*+ /.-,()*+ GFED@ABCt4

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

An Intuitive Example

Example

Suppose θ′′′i �θ θ′′i �θ θ′i �θ θi . Suppose we are in period t4 and
policy π proposes to allocate to agent i , with type θi .

time: GFED@ABCt1
/.-,()*+ /.-,()*+ GFED@ABCt2

/.-,()*+ /.-,()*+ GFED@ABCt3
/.-,()*+ /.-,()*+ GFED@ABCt4

θi→θ′i
vv

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

An Intuitive Example

Example

Suppose θ′′′i �θ θ′′i �θ θ′i �θ θi . Suppose we are in period t4 and
policy π proposes to allocate to agent i , with type θi .

time: GFED@ABCt1
/.-,()*+ /.-,()*+ GFED@ABCt2

/.-,()*+ /.-,()*+ GFED@ABCt3

θ′i→θ
′′
i

vv /.-,()*+ /.-,()*+ GFED@ABCt4

θi→θ′i
vv

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

An Intuitive Example

Example

Suppose θ′′′i �θ θ′′i �θ θ′i �θ θi . Suppose we are in period t4 and
policy π proposes to allocate to agent i , with type θi .

time: GFED@ABCt1
/.-,()*+ /.-,()*+ GFED@ABCt2

θ′′i →θ
′′′
i

66
/.-,()*+ /.-,()*+ GFED@ABCt3

θ′i→θ
′′
i

vv /.-,()*+ /.-,()*+ GFED@ABCt4

θi→θ′i
vv

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

An Intuitive Example

Example

Suppose θ′′′i �θ θ′′i �θ θ′i �θ θi . Suppose we are in period t4 and
policy π proposes to allocate to agent i , with type θi .

time: GFED@ABCt1
/.-,()*+ /.-,()*+ GFED@ABCt2

θ′′i →θ
′′′
i

66
/.-,()*+ /.-,()*+ GFED@ABCt3

θ′i→θ
′′
i

vv /.-,()*+ /.-,()*+ GFED@ABCt4

θi→θ′i
vv

If we do not verify monotonically -earlier allocations, then this
allocation decision would survive.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

An Intuitive Example

Example

Suppose θ′′′i �θ θ′′i �θ θ′i �θ θi . Suppose we are in period t4 and
policy π proposes to allocate to agent i , with type θi .

time: GFED@ABCt1
/.-,()*+ /.-,()*+ GFED@ABCt2

θ′′i →θ
′′′
i

66
/.-,()*+ /.-,()*+ GFED@ABCt3

θ′i→θ
′′
i

vv /.-,()*+ /.-,()*+ GFED@ABCt4

θi→θ′i
vv

If we do not verify monotonically -earlier allocations, then this
allocation decision would survive. But monotonicity fails at t2!

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Output Ironing (cont’d)

Definition (Ironing)

Given decision kt , the ironed decision k̆t only keeps those i @ kt

for which
tπi (θ

′′
i , θ−i , ω) ≤ tπi (θ′i , θ−i , ω),

for all θ′′i �θ θ′i �θ θi . If the condition fails, i ’s allocation is
cancelled.

isIronedA,D,Q checks this condition for each allocated agent i
at the end of the Consensus algorithm at time t.

When an allocation is cancelled, the items are discarded.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Output Ironing (cont’d)

Theorem

The ironed policy π̆ is monotonic.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Uncertainty Independence

Assumption:

The distribution of future agents is independent of past and
current decisions:

Pr(θt+1..T | k1..t) = Pr(θt+1..T)

for all t, all k1..t .

However, we can condition on past and current arrivals.

This assumption render stochastic optimization feasible.
What types of scenarios does this preclude?

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Uncertainty Independence

Assumption:

The distribution of future agents is independent of past and
current decisions:

Pr(θt+1..T | k1..t) = Pr(θt+1..T)

for all t, all k1..t .

However, we can condition on past and current arrivals.
This assumption render stochastic optimization feasible.
What types of scenarios does this preclude?

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Uncertainty Independence (cont’d)

Uncertainty independence facilitates ironing.

Enables counterfactual states to be simulated as type of an
agent is varied.
Enables computational tractability.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

A Simplification

We only need to check monotonicity locally.

It turns out ironing is actually quite simple...

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

A Simplification

We only need to check monotonicity locally.

It turns out ironing is actually quite simple...

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Adjacency Ironing

Definition (Adjacency ironing)

Given decision kt , adjacency-ironing only keeps those i @ kt for
which, for all θ′i = (a′i , d

′
i , r
′
i , q
′
i) �θ θi = (ai , di , ri , qi), with r ′i = ri ,

it holds that

tπi (θ′′i) ≤ tπi (θ′i), ∀θ′′i ∈ θ′i++ with r ′′i = r ′i and

tπi (〈a′i , d ′i , r ′′′i , q
′
i 〉) ≤ tπi (〈a′i , d ′i , r ′′i , q′i 〉),∀r ′′′i ≥ r ′′i ≥ r ′i .

If the above conditions fail, i ’s allocation is cancelled.

Theorem

Adjacency ironing is equivalent to ironing.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Ironing Agent Values

When we iron agent values ri , we run into a problem – these
values are not discretized. How can we fix this?

Key lies in Consensus algorithm – we only care when a
particular vote changes

This induces particular values of ri that we need to check
called Breakpoints.

Definition (Breakpoints)

The BrkPts function determines the set of all (time, scenario,
value) triples at which the the set of agents selected to be
allocated in the offline allocation would change.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Ironing Agent Values

When we iron agent values ri , we run into a problem – these
values are not discretized. How can we fix this?

Key lies in Consensus algorithm – we only care when a
particular vote changes

This induces particular values of ri that we need to check
called Breakpoints.

Definition (Breakpoints)

The BrkPts function determines the set of all (time, scenario,
value) triples at which the the set of agents selected to be
allocated in the offline allocation would change.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Ironing Agent Values

When we iron agent values ri , we run into a problem – these
values are not discretized. How can we fix this?

Key lies in Consensus algorithm – we only care when a
particular vote changes

This induces particular values of ri that we need to check
called Breakpoints.

Definition (Breakpoints)

The BrkPts function determines the set of all (time, scenario,
value) triples at which the the set of agents selected to be
allocated in the offline allocation would change.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Ironing Agent Values

When we iron agent values ri , we run into a problem – these
values are not discretized. How can we fix this?

Key lies in Consensus algorithm – we only care when a
particular vote changes

This induces particular values of ri that we need to check
called Breakpoints.

Definition (Breakpoints)

The BrkPts function determines the set of all (time, scenario,
value) triples at which the the set of agents selected to be
allocated in the offline allocation would change.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Breakpoints Example: OnlyDep

The breakpoints are induced by the Select function that
prunes the allocation results.

Consider OnlyDep, which only allows allocation to agents
departing in the current period.

Then, there is only one breakpoint for agent i with
θi = (ai , di , ri , qi) and scenario j in period t given by

r j
o(i) = V (S t ,At , ω \ {i}, ωj)− V (S t − qi ,A

t \ {i}, ωj)

where V (S ,A, ωj) is the value of the solution of the offline
optimization problem.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Breakpoints Example: OnlyDep

The breakpoints are induced by the Select function that
prunes the allocation results.

Consider OnlyDep, which only allows allocation to agents
departing in the current period.

Then, there is only one breakpoint for agent i with
θi = (ai , di , ri , qi) and scenario j in period t given by

r j
o(i) = V (S t ,At , ω \ {i}, ωj)− V (S t − qi ,A

t \ {i}, ωj)

where V (S ,A, ωj) is the value of the solution of the offline
optimization problem.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Breakpoints Example: OnlyDep

The breakpoints are induced by the Select function that
prunes the allocation results.

Consider OnlyDep, which only allows allocation to agents
departing in the current period.

Then, there is only one breakpoint for agent i with
θi = (ai , di , ri , qi) and scenario j in period t given by

r j
o(i) = V (S t ,At , ω \ {i}, ωj)− V (S t − qi ,A

t \ {i}, ωj)

where V (S ,A, ωj) is the value of the solution of the offline
optimization problem.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Using Breakpoints to Iron Agent Values

Definition (isIronedR algorithm)

Calculates the breakpoints.

Starting from the smallest breakpoint,

Simulates the decision policy to check that allocation happens
monotonically earlier
Updates the breakpoints for the time periods after the change
in allocation

If not, allocation is ironed out.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

The Efficiency Cost of Ironing

Ironing cancels decisions and discards resources. There is a clear
tradeoff.

Example

Suppose we restrict allocated agents only to those that depart
now.

Rationale: maximizes information about agent types; goods
are non-expiring.

Output ironing would cancel allocation to all except
maximally-patient agents. The efficiency loss is catastrophic.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

The Efficiency Cost of Ironing

Ironing cancels decisions and discards resources. There is a clear
tradeoff.

Example

Suppose we restrict allocated agents only to those that depart
now.

Rationale: maximizes information about agent types; goods
are non-expiring.

Output ironing would cancel allocation to all except
maximally-patient agents. The efficiency loss is catastrophic.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

The Problem Lies in Departure

How do we establish monotonicity via ironing without
considerable tradeoff in efficiency?

Recall the Consensus algorithm:

αj := Opt(S t ,At , σt) ∩ At

αj
s := Select(αj ,Σ,S t ,At)

We provide departure monotonicity by modifying the Select
algorithm.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

The Problem Lies in Departure

How do we establish monotonicity via ironing without
considerable tradeoff in efficiency?

Recall the Consensus algorithm:
αj := Opt(S t ,At , σt) ∩ At

αj
s := Select(αj ,Σ,S t ,At)

We provide departure monotonicity by modifying the Select
algorithm.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

The Problem Lies in Departure

How do we establish monotonicity via ironing without
considerable tradeoff in efficiency?

Recall the Consensus algorithm:
αj := Opt(S t ,At , σt) ∩ At

αj
s := Select(αj ,Σ,S t ,At)

We provide departure monotonicity by modifying the Select
algorithm.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Departure Obliviousness

Definition

Policy π is departure-oblivious if for any agent i allocated in
period t∗i , the decisions made by the policy for periods ai ≤ t ≤ t∗i
do not change for any reported departure d ′i > di , holding all other
inputs unchanged.

A departure-oblivious policy is trivially monotonic with respect to
departure time.

Proposition

For a departure-oblivious policy, (a, v , q)-ironing is equivalent to
ironing.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Departure Obliviousness

Implement via Select method.

Examples:

OnlyDep : Select(αj ,Σ,S t ,At) = αj |d=t

IgnoDep : Select(αj ,Σ,S t ,At) = αj

Which method results in a departure-oblivious algorithm?

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Departure Obliviousness

Implement via Select method.

Examples:

OnlyDep : Select(αj ,Σ,S t ,At) = αj |d=t

IgnoDep : Select(αj ,Σ,S t ,At) = αj

Which method results in a departure-oblivious algorithm?

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Departure Obliviousness

Implement via Select method.

Examples:

OnlyDep : Select(αj ,Σ,S t ,At) = αj |d=t

IgnoDep : Select(αj ,Σ,S t ,At) = αj

Which method results in a departure-oblivious algorithm?

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

A More Sophisticated Algorithm

NowWait:

Define ρ = ρt to be the probability that agent i will still be present
in the next period t + 1 given type θi , but ignoring its reported
departure.

Assume all agents present at t except for i either depart or are
allocated in time t so that future demand is represented only by
that in each scenario.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

A More Sophisticated Algorithm

NowWait:

Define ρ = ρt to be the probability that agent i will still be present
in the next period t + 1 given type θi , but ignoring its reported
departure.

Assume all agents present at t except for i either depart or are
allocated in time t so that future demand is represented only by
that in each scenario.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

A More Sophisticated Algorithm

NowWait:

We can then derive the expected value of allocating to agent i now
(now t

i (αj , ri)) and the future value of a scenario (waitt
i (αj , ri)).

nowt
i (αj , ri) = ri + v(αj) + 1

|Σ|
P

j′∈Σ V (St − #(αj), ∅, σj′)

waitti (αj , ri) =

v(αj) + (1− ρ) 1
|Σ|

P
j′∈Σ V (St − #(αj), ∅, σj′) + ρ 1

|Σ|
P

j′∈Σ V (St − #(αj), {i}, σj′)

NowWait:

Select(αj ,Σ,S t ,At) = {i @ αj : nowt
i (αj , ri) ≥ waitti (αj , ri)}

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

NowWait

Proposition

Consensus⊕ NowWait is departure-oblivious.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Experimental Results

Ironing NowWait OnlyDep HROrRew IgnoDep Fixed Opt
No 0.915 0.952 0.860 0.860 0.815 1
Yes 0.895 0.526 0.852 0.852 0.815 1

Note the efficiency loss due to ironing when OnlyDep is used.

By contrast, IgnoDep results in only a marginal loss of
efficiency.

NowWait further improves upon IgnoDep.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Experimental Results

Ironing NowWait OnlyDep HROrRew IgnoDep Fixed Opt
No 0.915 0.952 0.860 0.860 0.815 1
Yes 0.895 0.526 0.852 0.852 0.815 1

Note the efficiency loss due to ironing when OnlyDep is used.

By contrast, IgnoDep results in only a marginal loss of
efficiency.

NowWait further improves upon IgnoDep.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Experimental Results

Ironing NowWait OnlyDep HROrRew IgnoDep Fixed Opt
No 0.915 0.952 0.860 0.860 0.815 1
Yes 0.895 0.526 0.852 0.852 0.815 1

Note the efficiency loss due to ironing when OnlyDep is used.

By contrast, IgnoDep results in only a marginal loss of
efficiency.

NowWait further improves upon IgnoDep.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Experimental Results

Ironing NowWait OnlyDep HROrRew IgnoDep Fixed Opt
No 0.915 0.952 0.860 0.860 0.815 1
Yes 0.895 0.526 0.852 0.852 0.815 1

Note the efficiency loss due to ironing when OnlyDep is used.

By contrast, IgnoDep results in only a marginal loss of
efficiency.

NowWait further improves upon IgnoDep.

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Experimental Results (cont’d)

0.65 0.82 10.65

0.82

1
NowWait vs. IgnoDep Expon(!)124 domains

NowWait (relative)

Ig
no

De
p

(re
la

tiv
e)

y=0.91x

y=1.09x

Figure 2: NowWait’s versus IgnoDep’s relative efficiency (offline optimum = 1)
for 124 domains with exponentially distributed values with independence of
value and patience. The pink diamond, at (0.882, 0.849), represents the average
of all 124 points.

Ironing NowWait OnlyDep HROrRew IgnoDep Fixed Opt
No 0.915 0.952 0.860 0.860 0.815 1
Yes 0.895 0.526 0.852 0.852 0.815 1

Table 1: Allocative efficiency normalized to offline efficiency in a dynamic auc-
tion for 10 items.

Standard deviations for Table 1 are around 0.15 for all entries but OnlyDep with
ironing, for which it is around 0.3. For all entries except OnlyDep with ironing,
the 95% confidence intervals have a radius of 0.02, confirming the statistical
significance of our results. The Fixed method is less sophisticated than the
other methods. It optimally (offline) tunes a per-item price p and allocates
any bidder whose bid amounts to at least p per item. This method’s average
allocative efficiency is 0.815, which further highlights the extent of NowWait’s
(efficiency 0.895) improvement over IgnoDep (efficiency 0.852).

For comparison, NowWait’s and IgnoDep’s efficiencies are very similar if per-
item values are U(0,1) instead. We again see an effect of each policy’s approach:
NowWait (resp. IgnoDep) aims for good mean (resp. median) performance (see
Sec. 4.2). The mean and median are equal for the uniform, but not for the
exponential distribution, as used in Table 1.

Table 2 considers the effect of allowing for negative correlation between value
and patience, when the exponential distribution parameter is proportional to a
bidder’s patience. Before ironing, NowWait’s allocative efficiency is slightly bet-
ter than OnlyDep’s, that has the advantage of waiting until a bidder’s departure.
Ironing is now even more destructive on OnlyDep. This is because high-value
bidders, the ones selected by the offline knapsack problem, tend to have small

17

Average: (0.882, 0.849)

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Design Goals

Desirable properties of the dynamic auction:

1 Computational tractability

2 Outcome efficiency

3 Incentive compatibility

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Design Goals

Desirable properties of the dynamic auction:

1 Computational tractability ⇐ adjacency-ironing

2 Outcome efficiency

3 Incentive compatibility

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Design Goals

Desirable properties of the dynamic auction:

1 Computational tractability ⇐ adjacency-ironing

2 Outcome efficiency ⇐ departure obliviousness

3 Incentive compatibility

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Design Goals

Desirable properties of the dynamic auction:

1 Computational tractability ⇐ adjacency-ironing

2 Outcome efficiency ⇐ departure obliviousness

3 Incentive compatibility ⇐ monotonicity

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

Overview
The Model

Results

Concluding Remarks

Applications of other stochastic optimization algorithms, e.g.
Regret and Expectation, to dynamic multi-unit auctions

Additional runtime improvements

Formalize the tradeoff between monotonicity and optimality

Xiaoqi Zhu and Richard Liu Self-Correcting Sampling-Based Dynamic Multi-Unit Auctions Output Ironing Demystified

	Overview
	The Model
	Results

