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Abstract

For some well-known games, such as the Traveler’s Dilemma or the Cen-
tipede Game, traditional game-theoretic solution concepts—most notably Nash
equilibrium—predict outcomes that are not consistent with empirical observa-
tions. We introduce a new solution concept, iterated regret minimization, which
exhibits the same qualitative behavior as that observed in experiments in many
games of interest, including Traveler’s Dilemma, the Centipede Game, Nash bar-
gaining, and Bertrand competition. As the name suggests, iterated regret mini-
mization involves the iterated deletion of strategies that do not minimize regret.
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1 Introduction

Perhaps the most common solution concept considered in game theory is Nash equi-
librium. Other solution concepts have been considered, such as sequential equilibrium
[Kreps and Wilson 1982], perfect equilibrium [Selten 1975], and rationalizability [Bern-
heim 1984; Pearce 1984]; see [Osborne and Rubinstein 1994] for an overview. There
are a number of well-known games where none of them seems appropriate.

Consider the well-known Traveler’s Dilemma [Basu 1994; Basu 2007]. Suppose
that two travelers have identical luggage, for which they both paid the same price.
Their luggage is damaged (in an identical way) by an airline. The airline offers to
recompense them for their luggage. They may ask for any dollar amount between $2
and $100. There is only one catch. If they ask for the same amount, then that is what
they will both receive. However, if they ask for different amounts—say one asks for $m
and the other for $m′, with m < m′—then whoever asks for $m (the lower amount)
will get $(m+ p), while the other traveler will get $(m− p), where p can be viewed as
a reward for the person who asked for the lower amount, and a penalty for the person
who asked for the higher amount.

It seems at first blush that both travelers should ask for $100, the maximum amount,
for then they will both get that. However, as long as p > 1, one of them might then
realize that he is actually better off asking for $99 if the other traveler asks for $100,
since he then gets $101. In fact, $99 weakly dominates $100, in that no matter what
Traveler 1 asks for, Traveler 2 is always at least as well off asking for $99 than $100, and
in one case (if Traveler 2 asks for $100) Traveler 1 is strictly better off asking for $99.
Thus, it seems we can eliminate 100 as an amount to ask for. However, if we eliminate
100, a similar argument shows that 98 weakly dominates 99! And once we eliminate 99,
then 97 weakly dominates 98. Continuing this argument, both travelers end up asking
for $2! In fact, it is easy to see that (2,2) is the only Nash equilibrium. With any other
pair of requests, at least one of the travelers would want to change his request if he knew
what the other traveler was asking. Since (2,2) is the only Nash equilibrium, it is also the
only sequential and perfect equilibrium. Moreover, it is the only rationalizable strategy
profile; indeed (once we also consider mixed strategies), (2,2) is the only strategy that
survives iterated deletion of strongly dominated strategies. (It is not necessary to
understand these solution concepts in detail; the only point we are trying make here is
that all standard solution concepts lead to (2,2).)

This seems like a strange result. It seems that no reasonable person—even a game
theorist!—would ever play 2. Indeed, when the Traveler’s Dilemma was empirically
tested among game theorists (with p = 2) they typically did not play anywhere close
to 2. Becker, Carter, and Naeve [2005] asked members of the Game Theory Society
(presumably, all experts in game theory) to submit a strategy for the game. Fifty-one
of them did so. Of the 45 that submitted pure strategies, 33 submitted a strategy
of 95 or higher, and 38 submitted a strategy of 90 or higher; only 3 submitted the
“recommended” strategy of 2. The strategy that performed best (in pairwise matchups
against all submitted strategies) was 97, which had an average payoff of $85.09. The
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worst average payoff went to those who played 2; it was only $3.92.
Another sequence of experiments by Capra et al. [1999] showed, among other things,

that this result was quite sensitive to the choice of p. For low values of p, people tended
to play high values, and keep playing them when the game was repeated. By way of
contrast, for high values of p, people started much lower, and converged to playing 2
after a few rounds of repeated play. The standard solution concepts (Nash equilibrium,
rationalizability, etc.) are all insensitive to the choice of p; for example, (2,2) is the
only Nash equilibrium for all choices of p > 1.

We introduce a new solution concept, iterated regret minimization, which has the
same qualitative behavior as that observed in the experiments, not just in Traveler’s
Dilemma, but in many other games that have proved problematic for Nash equilibrium,
including the Centipede Game, Nash bargaining, and Bertrand competition. We focus
on iterated regret minimization in strategic games, and comment on how it can be
applied to Bayesian games.

The rest of this paper is organized as follows. Section 2 contains preliminaries.
Section 3 is the heart of the paper: we first define iterated regret minimization in
strategic games, provide an epistemic characterization of it, and then show how iter-
ated regret minimization works in numerous standard examples from the game theory
literature, including Traveler’s Dilemma, Prisoner’s Dilemma, the Centipede Game,
Bertrand Competition, and Nash Bargaining, both with pure strategies and mixed
strategies. The epistemic characterization, like those of many other solution concepts,
involves higher and higher levels of belief regarding other players’ rationality, it does
not involve common knowledge or common belief. Rather, higher levels of beliefs are
accorded lower levels of likelihood. In Sections 4 and 5, we briefly consider regret mini-
mization in Bayesian games and in the context of mechanism design. We discuss related
work in Section 6, and conclude in Section 7. Proofs are relegated to the appendix.

2 Preliminaries

We refer to a collection of values, one for each player, as a profile. If player j’s value is
xj, then the resulting profile is denoted (xj)j∈[n], or simply (xj) or ~x, if the set of players
is clear from the context. Given a profile ~x, let ~x−i denote the collection consisting of
all values xj for j 6= i. It is sometimes convenient to denote the profile ~x as (xi, ~x−i).

A strategic game in normal form is a “single-shot” game, where each player i chooses
an action from a space Ai of actions. For simplicity, we restrict our attention to finite
games—i.e., games where the set Ai is finite. Let A = A1× . . .×An be the set of action
profiles. A strategic game is characterized by a tuple ([n], A, ~u), where [n] is the set of
players, A is the set of action profiles, and ~u is the profile of utility functions, where
ui(~a) is player i’s utility or payoff if the action profile ~a is played. A (mixed) strategy for
player i is a probability distribution σi ∈ ∆(Ai) (where, as usual, we denote by ∆(X)
the set of distributions on the set X). Let Σi = ∆(Ai) denote the mixed strategies
for player i in game G, and let Σ = Σ1 × · · · × Σn denote the set of mixed strategy
profiles. Note that, in strategy profiles in Σ, players are randomizing independently.
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A pure strategy for player i is a strategy for i that assigns probability 1 to a single
action. To simplify notation, we let an action ai ∈ Ai also denote the pure strategy
σi ∈ ∆(Ai) which puts weight only on ai. If σ is a strategy for player i then σ(a) denotes
the probability given to action a by strategy σ. Given a strategy profile ~σ, player i’s
expected utility if ~σ is played, denoted Ui(~σ), is EPr[u

~σ
i ], where the expectation is taken

with respect to the probability Pr induced by ~σ (where the players are assumed to
choose their actions independently).

3 Iterated Regret Minimization in Strategic Games

We start by providing an informal discussion of iterated regret minimization in strate-
gic games, and applying it to the Traveler’s Dilemma; we then give a more formal
treatment.

Nash equilibrium implicitly assumes that the players know what strategy the other
players are using. Such knowledge seems unreasonable, especially in one-shot games.
Regret minimization is one way of trying to capture the intuition that a player wants
to do well no matter what the other players do.

The idea of minimizing regret was introduced (independently) in decision theory by
Savage [1951] and Niehans [1948]. To explain how we use it in a game-theoretic context,
we first review how it works in a single-agent decision problem. Suppose that an agent
chooses an act from a set A of acts. The agent is uncertain as to the true state of the
world; there is a set S of possible states. Associated with each state s ∈ S and act a ∈ A
is the utility u(a, s) of performing act a if s is the true state of the world. For simplicity,
we take S and A to be finite here. The idea behind the minimax regret rule is to hedge
the agent’s bets, by doing reasonably well no matter what the actual state is. For each
state s, let u∗(s) be the best outcome in state s; that is, u∗(s) = maxa∈A u(a, s). The
regret of a in state s, denoted regretu(a, s), is u∗(s) − u(a, s); that is, the regret of
a in s is the difference between the utility of the best possible outcome in s and the
utility of performing act a in s. Let regretu(a) = maxs∈S regretu(a, s). For example, if
regretu(a) = 2, then in each state s, the utility of performing a in s is guaranteed to
be within 2 of the utility of any act the agent could choose, even if she knew that the
actual state was s. The minimax-regret decision rule orders acts by their regret; the
“best” act is the one that minimizes regret. Intuitively, this rule is trying to minimize
the regret that an agent would feel if she discovered what the situation actually was: the
“I wish I had chosen a′ instead of a” feeling.

Despite having been used in decision making for over 50 years, up until recently,
there was little work on applying regret minimization in the context of game theory.
We discuss other work on applying regret minimization to game theory in Section 6;
here, we describe our own approach. We start by explaining it in the context of the
Traveler’s Dilemma and restrict our attention to pure strategies. We take the acts for
one player to be that player’s pure strategy choices and take the states to be the other
player’s pure strategy choices. Each act-state pair is then just a strategy profile; the
utility of the act-state pair for player i is just the payoff to player i of the strategy
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profile. Intuitively, each agent is uncertain about what the other agent will do, and
tries to choose an act that minimizes his regret, given that uncertainty.

It is easy to see that, if the penalty/reward 2 ≤ p ≤ 49, then the acts that minimize
regret are the ones in the interval [100− 2p, 100]; the regret for all these acts is 2p− 1.
For if player 1 asks for an amount m ∈ [100− 2p, 100] and player 2 asks for an amount
m′ ≤ m, then the payoff to player 1 is at least m′ − p, compared to the payoff of
m′ + p − 1 (or just m′ if m′ = 2) that is achieved with the best response; thus, the
regret is at most 2p−1 in this case. If, instead, player 2 asks for m′ > m, then player 1
gets a payoff of m+ p, and the best possible payoff in the game is 99 + p, so his regret
is at most 99−m ≤ 2p− 1. On the other hand, if player 1 chooses m < 100− 2p, then
his regret will be 99−m > 2p− 1 if player 2 plays 100. On the other hand, if p ≥ 50,
then the unique act that minimizes regret is asking for $2.

Suppose that 2 ≤ p ≤ 49. Applying regret minimization once suggests using a
strategy in the interval [100 − 2p, 100]. But we can iterate this process. If we assume
that both players use a strategy in this interval, then the strategy that minimizes regret
is that of asking for $(100−2p+1). A straightforward check shows that this has regret
2p − 2; all other strategies have regret 2p − 1. In the special case that p = 2, this
approach singles out the strategy of asking for $97, which was found to be the best
strategy by Becker, Carter, and Naeve [2005]. As p increases, the act that survives this
iterated deletion process goes down, reaching 2 if p ≥ 50. This matches, at a qualitative
level, the findings of Capra et al. [1999].1

3.1 Deletion Operators and Iterated Regret Minimization

Iterated regret minimization proceeds much like other notions of iterated deletion. To
put it in context, we first abstract the notion of iterated deletion.

Let G = ([n], A, ~u) be a strategic game. We define iterated regret minimization in
a way that makes it clear how it relates to other solution concepts based on iterated
deletion. A deletion operator D maps sets S = S1 × · · · × Sn of strategy profiles in G
to sets of strategy profiles such that D(S) ⊆ S. We require that D(S) = D1(S)× · · ·×
Dn(S), where Di maps sets of strategy profiles to strategies for player i. Intuitively,
Di(S) is the set of strategies for player i that survive deletion, starting with S. Note
that the set of strategies that survive deletion may depend on the set that we start
with. Iterated deletion then amounts to applying the D operator repeatedly, starting
with an appropriate initial set S0 of strategies, where S0 is typically either the set of
pure strategy profiles (i.e., action profiles) in G or the set of mixed strategy profiles in
G.

Definition 3.1 Given a deletion operator D and an initial set S0 of strategies, the
set of strategy profiles that survive iterated deletion with respect to D and S0 is

D∞(S0) = ∩k>0Dk(S0)

1Capra et al. actually considered a slightly different game where the minimum bid was p (rather
than 2). If we instead consider this game, we get an even closer qualitative match to their experimental
observations.
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(where D1(S) = D(S) and Dk+1(S) = D(Dk(S)). Similarly, the set of strategy pro-
files for player i that survive iterated deletion with respect to D and S0 is D∞i (S0) =
∩k>0Dki (S0), where D1

i = Di and Dk+i
i = Di ◦ Dk.

We can now define the deletion operator RM appropriate for regret minimization
in strategic games (we deal with Bayesian games in Section 4). Intuitively, RMi(S)
consists of all the strategies in Si that minimize regret, given that the other players are
using a strategy in S−i. In more detail, we proceed as follows. Suppose that G is a
strategic game ([n], A, ~u) and that S ⊆ A, the set of pure strategy profiles (i.e., actions).
For ~a−i ∈ S−i, let uSi

i (~a−i) = maxai∈Si
ui(ai,~a−i). Thus, uSi

i (~a−i) is the best outcome for
i given that the remaining players play ~a−i and that i can select actions only in Si. For
ai ∈ Si and ~a−i ∈ S−i, let the regret of ai for player i given ~a−i relative to Si, denoted
regretSi

i (ai | ~a−i), be uSi
i (~a−i) − ui(ai,~a−i). Let regretSi (ai) = max~a−i∈S−i

regretSi(ai |
~a−i) denote the maximum regret of ai for player i (given that the other players’ actions

are chosen from S−i). Let minregretSi = minai∈Si
regret

S−i

i (ai) be the minimum regret
for player i relative to S. Finally, let

RMi(S) = {ai ∈ Si : regretSi (ai) = minregretSi }.

Thus, RMi(S) consists of the set of actions that achieve the minimal regret with
respect to S. Clearly RMi(S) ⊆ S. Let RM(S) = RM1(S)× · · · × RMn(S).

If S consists of mixed strategies, then the construction of RM(S) is the same,
except that the expected utility operator Ui is used rather than ui in defining regret i.
We also need to argue that there is a strategy si for player i that maximizes regret i and
one that minimizes minregret i. This follows from the compactness of the sets of which
the max and min are taken, and the continuity of the functions being maximized and
minimized.

Definition 3.2 Let G = ([n], A, ~u) be a strategic game. RM∞
i (A) is the set of (pure)

strategies for player i that survive iterated regret minimization with respect to pure
strategies in G. Similarly, RM∞

i (Σ(A)) is the set of (mixed) strategies for player i that
survive iterated regret minimization with respect to mixed strategies in G.

The following theorem, whose proof is in the appendix, shows that iterated re-
gret minimization is a reasonable concept in that, for all games G, RM∞(A) and
RM∞(Σ(A)) are nonempty fixed points of the deletion process, that is,RM(RM∞(A)) =
RM∞(A) and RM(RM∞(Σ(A))) = RM∞(Σ(A)); the deletion process converges at
RM∞. (Our proof actually shows that for any nonempty closed set S of strategies,
the set RM∞(S) is nonempty and is a fixed point of the deletion process.)

Theorem 3.3 Let G = ([n], A, ~u) be a strategic game. If S is a closed, nonempty
set of strategies of the form S1 × . . . × Sn, then RM∞(S) is nonempty, RM∞(S) =
RM∞

1 (S)× . . .×RM∞
n (S), and RM(RM∞(S)) = RM∞(S).
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Unlike solution concepts that implicitly assume that agents know other agents’
strategies, in a strategy profile that survives iterated regret minimization, a player is
not making a best response to the strategies used by the other players since, intuitively,
he does not know what these strategies are. As a result, a player chooses a strategy
that ensures that he does reasonably well compared to the best he could have done, no
matter what the other players do. We shall see the impact of this in the examples of
Section 3.4.

3.2 Comparison to Other Solution Concepts Involving Iter-
ated Deletion

Iterated deletion has been applied in other solution concepts. We mention three here.
Given a set S of strategies, a strategy σ ∈ Si is weakly dominated by τ ∈ Si with
respect to S if, for some strategy ~σ−i ∈ S−i, we have Ui(σ, ~σ−i) < Ui(τ, ~σ−i) and, for all
strategies ~σ′−i ∈ S−i, we have Ui(σ, ~σ

′
−i) ≤ Ui(τ, ~σ

′
−i). Similarly, σ is strongly dominated

by τ with respect to S if Ui(σ, ~σ
′
−i) < Ui(τ, ~σ

′
−i) for all strategies ~σ′−i ∈ S−i. Thus, if

σ is weakly dominated by τ with respect to S−i, then i always does at least as well
with τ as with σ, and sometimes does better (given that we restrict to strategies in
S−i); if σ is strongly dominated by τ , then player i always does better with τ as with
σ. Let WDi(S) (resp., SDi(S)) consist of all strategies σi ∈ Si that are not weakly
(resp., strongly) dominated by some strategy in Si with respect to S. We can then
define the pure strategies that survive iterated weak (resp., strong) deletion with respect
to pure strategies as WD(A) (resp., SD(A)). And again, we can start with Σ to get
corresponding notions for mixed strategies.

As is well known [Osborne and Rubinstein 1994], the rationalizable strategies can
also be considered as the outcome of an iterated deletion process. Intuitively, a pure
strategy for player i is rationalizable if it is a best response to some beliefs that player
i may have about the pure strategies that other players are following. Given a set
S of pure strategy profiles, σ ∈ Si is justifiable if there is some distribution µ on
the strategies in S−i such that σ is a best response to the resulting mixed strategy.
Intuitively, µ describes player i’s beliefs about the likelihood that other players are
following various strategies; thus, a strategy σ for i is justifiable if there are beliefs that
i could have to which σ is a best response. Let Ji(S) consist of all strategies for player
i that are justifiable with respect to S. A pure strategy σ for player i is rationalizable
if σ ∈ J∞i (A).2

3.3 An Epistemic Characterization of Iterated Regret Mini-
mization

Traditional solution concepts typically assume common knowledge of rationality, or
at least a high degree of mutual knowledge of rationality. For example, it is well

2The notion of rationalizability is typically applied to pure strategies, although the definitions can
be easily extended to deal with mixed strategies.
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known that rationalizability can be characterized in terms of common knowledge of
rationality [Tan and Werlang 1988], where rational if he has some beliefs according
to which what he does is a best response in terms of maximizing expected utility;
Aumann and Brandenburger [1995] show that Nash equilibrium requires (among other
things) mutual knowledge of rationality (where, again, rationality means playing a
utility-maximizing best response); and Brandenburger, Friedenberg, and Kiesler [2008]
show that iterated deletion of weakly dominated strategies requires sufficiently high
mutual assumption of rationality, where “assumption” is a variant of “knowledge”, and
“rationality” means “does not play a weakly dominated strategy”. But if we make
this assumption (and identify rationality with minimizing regret), we seem to run into
a serious problem with Iterated Regret Minimization, which is well illustrated by the
Traveler’s Dilemma. As we observed earlier, the strategy profile (97, 97) is the only one
that survives iterated regret minimization when p = 2. However, if agent 1 knows that
player 2 is playing 97, then he should play 96, not 97! That is, among all strategies, 97
is certainly not the strategy minimizes regret with respect to {97}.

Some of these difficulties also arise when dealing with iterated deletion of weakly
dominated strategies. The justification for deleting a weakly dominated strategy is the
existence of other strategies. But this justification may disappear in later deletions. As
Mas-Colell, Whinston, and Green [1995, p. 240] put in their textbook when discussing
iterated deletion of weakly dominated strategies:

[T]he argument for deletion of a weakly dominated strategy for player i
is that he contemplates the possibility that every strategy combination of
his rivals occurs with positive probability. However, this hypothesis clashes
with the logic of iterated deletion, which assumes, precisely, that eliminated
strategies are not expected to occur.

Brandenburger, Friedenburg, and Kiesler [2008] resolve this paradox in the context
of iterated deletion of weakly dominated strategies by assuming that strategies were
not really eliminated. Rather, they assumed that strategies that are weakly domi-
nated occur with infinitesimal (but nonzero) probability. This is formally modeled in
a framework where uncertainty is captured using a lexicographic probability system
(LPS) [Blume, Brandenburger, and Dekel 1991], whose support consists of all types.
(Recall that an LPS is a sequence (µ0, µ1, . . .) of probability measures, in this case on
type profiles, where µ1 represents events that have infinitesimal probability relative to
µ0, µ1 represents events that have infinitesimal probability relative to µ1, and so on.
Thus, a probability of (1/2, 1/3, 1/4) can be identified with a nonstandard probability
of 1/2 + ε/3 + ε2/4, where ε is an infinitesimal.) In this framework, they show that
iterated deletion of weakly dominated strategies corresponds to sufficiently high mu-
tual assumption of rationality, where “assumption” is a variant of “knowledge”, and
“rationality” means “does not play a weakly dominated strategy”.

Unfortunately, this approach does not seem to help in the context of iterated regret
minimization. Assigning deleted strategies infinitesimal probability will not make 97
a best response to a set of strategies where 97 is given very high probability. We
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deal with this problem by essentially reversing the approach taken by Brandenburger,
Friedenberg, and Keisler. Rather than assuming common knowledge of rationality,
we assign successively lower probability to higher orders of rationality. The idea is
that now, with overwhelming probability, no assumptions are made about the other
players; with probability ε, they are assumed to be rational, with probability ε2, the
other players are assumed to be rational and to believe that they are playing rational
players, and so on. (Of course, “rationality” is interpreted here as minimizing expected
regret.) Thus, for example, in Traveler’s Dilemma, players do not play 96 because they
are still assuming that, with overwhelming likelihood, the other player is playing an
arbitrary strategy (not 97); 97 is slightly better than the other strategies that minimize
regret given the slight likelihood that the other player is minimizing regret.

This approach is consistent with the spirit of Camerer, Ho, and Chong’s [2004]
cognitive hierarchy model, where the fraction of people with kth-order beliefs declines
as a function of k, although not as quickly as this informal discussion suggests.

Since regret minimization is non-probabilistic, the formal model of a lexicographic
belief is a countable sequence (S0,S1, . . .) of sets of strategy profiles. The strategy
profiles in S0 represent the players’ primary beliefs, the strategy profiles in S1 are the
players’ secondary beliefs, and so on. (We can think of Sk as the support of the measure
µk in an LPS.)3 We call S i the level-i belief of the lexicographic belief (S0,S1, . . .).

Given such lexicographic beliefs, what strategy should a rational player i choose?
Clearly the most important thing is to minimize regret with respect to his primary
beliefs, S0

−i. But among strategies that minimize regret with respect to S0
−i, the best

are those strategies that also minimize regret with respect to S1
−i; similarly, among

strategies that minimize regret with respect to each of S1
−i, . . . ,Sk−1

−i , the best are those
that also minimize regret with respect to Sk−i. Formally, a strategy σ for player i is
rational with respect to a lexicographic sequence (S0,S1, . . .) if there exists a sequence
(T 0, T 1, . . .) of strategy profiles such that T 0

i consists of all strategies τ such that τi
minimizes regret with respect to S0

−i for all players i; and T k for k > 0 is defined
inductively to consist of all strategies τ ∈ T k−1 such that τi has the least regret with
respect to Sk−i among all strategies in T k−1

i ; and σ ∈ ∩∞k=0T ki .4 Of course, this definition
makes perfect sense if the lexicographic sequence is finite and has the form (S0, . . . ,Sk);
in that case we consider (T 0, . . . , T k). Such a sequence (S0, . . . ,Sk) is called a (k+1)st-
order lexicographic belief. It easily follows that ∅ 6= · · · ⊆ T k ⊆ T k−1 ⊆ · · · ⊆ T 0, so
that a strategy that is rational with respect to (S0,S1, . . .) is also rational with respect
to each of the finite prefixes (S0,S1, . . .).

Up to now, we have not imposed any constraints on justifiability of beliefs. We

3Like LPS’s, this model implicitly assumes, among other things, that players i and j have the
same beliefs about players j′ /∈ {i, j}. This assumption is acceptable, given that we assume that (it is
commonly known that) all players start the iteration process by considering all strategies. To get an
epistemic characterization of a more general setting, where players’ initial beliefs about other players
strategies are not commonly known, we need a slightly more general model of beliefs, where each
player has his or her own lexicographic sequence; see Section 3.5.

4A straightforward argument by induction shows that T k is nonempty and compact, so that there
will be a strategy τi that has the least regret with respect to Sk

−i among all strategies in T k−1
i .
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provide a recursive definition of justifiability. A (kth-order) lexicographic belief (Sj)j∈I
is justifiable if, for each j ∈ I, the level-j belief Sj is level-j justifiable, where level-j
justifiability is defined as follows.

• To capture the intuition that players’ primary beliefs are such that they make no
assumptions about the other players, we say that a belief S0

i is level-0 justifiable
if it is the full set of strategies Si available to player i.5

• To capture the intuition that players’ level-k belief is that the other players are
(k − 1)st-order rational, we say that a belief, Ski , is level-k justifiable if there
exists some justifiable kth-order belief (S ′0,S ′1, . . . ,S ′k−1) such that Ski is the set
of rational strategies for player i with respect to (S ′0−i,S ′1−i, . . . ,S ′k−1

−i ).

This notion of justifiability captures the intuition that, with probability εk, each player
jk believes that each other player jk−1 is rational with respect to a kth-order belief and
believes that, with probability εk−1, each other player jk−2 is rational with respect to a
(k−1)st-order belief and believes that, with probability εk−2, . . . , and with probability
ε believes that each other player j1 is rational with respect to a first-order belief and
believes that each other player j0 is playing an arbitrary strategy in S0 (As usual,
“rationality” here means “minimizes regret with respect to his beliefs”.)

Given these definition, we have the following theorem.

Theorem 3.4 Let G = ([n], A, ~u) be a strategic game and let S be the full set of pure
or mixed strategies. Then for each k ∈ N there exists a unique level-k justifiable belief
S̃k = RMk−1(S). Furthermore, RM∞(S) is the set of rational strategies with respect
to the belief (S̃0, S̃1, . . .) and RMk(S) is the set of rational strategies with respect to
the belief (S̃0, S̃1, . . . , S̃k)

Proof: By definition there is a unique level-0 justifiable belief S̃0 = S. It inductively fol-
lows that there exists a unique level-k justifiable belief S̃k = RM(Sk−1) = RMk−1(S).
The theorem then follows from the definition of rationality with respect to a lexico-
graphic belief.

Note that the sets (S̃1, S̃2, . . .) are just the sets (T 0, T 1, . . .) given in the definition of
rationality.

In Appendix A, we provide an alternative characterization of iterated regret mini-
mization in terms of Kripke structures. The idea is to say that, at level 0, each player
has no idea what strategy the other players are using; at level 1, the player knows that
the other players are rational, but that is all he knows; at level 2, the player knows
that other players are rational and believe, at level 1, that other players are rational,
but that is all he knows; and so on. This is made precise using ideas from [Halpern
and Pass 2009].

5As we discuss in Section 3.5, we can also consider a more general model where players have prior
beliefs; in such a setting, S0

i need not be the full set of strategies.
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3.4 Examples

We now consider the outcome of iterated regret minimization in a number of standard
games, showing how it compares to the strategies recommended by other solution con-
cepts. We start by considering what happens if we restrict to pure strategies, and then
consider mixed strategies.

3.4.1 Pure strategies

Example 3.5 Traveler’s Dilemma: If G = ([n], A, ~u) is the Traveler’s Dilemma, then
using the arguments sketched in the introduction, we get that RM∞

i (A) = RM2
i (A) =

{100 − 2p + 1} if p ≥ 50. As we mentioned, (2, 2) is the only action profile (and also
the only mixed strategy profile) that is rationalizable (resp., survives iterated deletion
of weakly dominated strategies, is a Nash equilibrium). Moreover, if we allow an action
to be deleted if it is strongly dominated by a mixed strategy, then (2, 2) is the only
action profile that survives iterated deletion of strongly dominated strategies. (This is
not surprising, since it is well known [Osborne and Rubinstein 1994] that a strategy
survives iterated deletion of strongly dominated strategies iff it is rationalizable.) Thus,
iterated regret minimization is quite different from all these other approaches in the
Traveler’s Dilemma, and gives results that are in line with experimental observations.

Interestingly, although (2,2) is the only Nash equilibrium, it is a rather fragile
equilibrium. If, rather than assuming common belief in rationality, we assume only
common p-belief [Monderer and Samet 1989] for even a relatively small p such as .02
(where common p-belief of a statement φ holds if everyone believes with probability
1− p that everyone believes with probability 1− p . . . that φ holds), then almost every
bid can be justified. But this leaves us with the problem of choosing what will be
played; iterated regret minimization provides some insight.

Example 3.6 Centipede Game: Another well-known game for which traditional so-
lution concepts provide an answer that is not consistent with empirical observations is
the Centipede Game [Rosenthal 1982]. In the Centipede Game, two players play for a
fixed number k of rounds (known at the outset). They move in turn; the first player
moves in all odd-numbered rounds, while the second player moves in even-numbered
rounds. At her move, a player can either stop the game, or continue playing (except at
the very last step, when a player can only stop the game). For all t, player 1 prefers the
stopping outcome in round 2t+ 1 (when she moves) to the stopping outcome in round
2t+ 2; similarly, for all t, player 2 prefers the outcome in round 2t (when he moves) to
the outcome in round 2t + 1. However, for all t, the outcome in round t + 2 is better
for both players than the outcome in round t.

Consider two versions of the Centipede Game. The first has exponential payoffs.
In this case, the utility of stopping at odd-numbered rounds t is (2t+1, 2t−1), while the
utility of stopping at even-numbered rounds is (2t−1, 2t + 1). Thus, if player 1 stops at
round 1, player 1 gets 3 and player 2 gets 1; if player 2 stops at round 4, then player
1 gets 8 and player 2 gets 17; if player 2 stops at round 20, the both players get over
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500,000. In the version with linear payoffs with punishment p > 1, if t is odd, the payoff
is (t, t− p), while if t is even, the payoff is (t− p, t).

The game can be described as a strategic game where Ai is the set of strategies
for player i in the extensive-form game. It is straightforward to show (by backwards
induction) that the only strategy profiles that survive iterated deletion of weakly dom-
inated strategies are ones where player 1 stops at the first move and player 2 stops at
the second move. Moreover, in all Nash equilibria, the first player stops at the first
move. By way of contrast, a large number of strategies are rationalizable. Indeed, it is
not hard to show that all pure strategies where player 1 quits at some point (including
the one where he continues until to his last move, and then quits) are rationalizable.
For example, it is rationalizable for player 2 to continue until the end (since he can
believe that, with probability 1, player 1 will stop at the first move, so that his strategy
is irrelevant). Given that this is rationalizabile, it is also rationalizable for player 1 to
contine to his last move and then quit. Thus, Nash equilibrium seems to eliminate too
many strategies, while rationalizabilitiy eliminates too few. In empirical tests (which
have been done with linear payoffs), subjects usually cooperate for a certain number of
rounds, although it is rare for them to cooperate throughout the whole game [McKelvey
and Palfrey 1992; Nagel and Tang 1998]. As we now show, using iterated regret min-
imization, with linear payoffs, we also get cooperation for a number of rounds (which
depends on the penalty); with exponential payoffs, we get cooperation up to the end
of the game. Our results suggest some further experimental work, with regard to the
sensitivity of the game to the payoffs.

Before going on, note that, technically, a strategy in the Centipede Game must
specify what a player does whenever he is called upon to move, including cases where
he is called upon to move after he has already stopped the game. Thus, if t is odd
and t + 2 < k, there is more than one strategy where player 1 stops at round t. For
example, there is one where player 1 also stops at round t + 2, and another where he
continues at round t+ 2. However, all the strategies where player 1 first stops at round
t are payoff equivalent for player 1 (and, in particular, are equivalent with respect to
regret minimization). We use [t] denote the set of strategies where player 1 stops at
round t, and similarly for player 2. It is easy to see that in the k-round Centipede
Game with exponential payoffs, the unique strategy that minimizes regret is to stop at
the last possible round. On the other hand, with linear payoffs and punishment p, the
situation is somewhat similar to the Traveler’s Dilemma. All strategies (actions) for
player 1 that stop at or after stage k − p + 1 have regret p− 1, which is minimal, but
what happens with iterated deletion depends on whether k and p are even or odd. For
example, if k and p are both even, then RM1(A) = {[k− p+ 1], [k− p+ 3], . . . , k− 1}
and RM2(A) = {k − p + 2, k − p + 4, . . . , k}. Relative to RM(A), the strategies
in [k − p + 1] have regret p − 2; the remaining strategies have regret p − 1. Thus,
RM2

1(A) = RM∞
2 (A) = {[k−p+1]}. Similarly,RM2

2(A) = RM∞
2 (A) = {[k−p+2]}.

If, on the other hand, both k and p are odd, RM1(A) = {[k − p + 1], [k − p +
3], . . . , [k]} andRM2(A) = {[k−p], [k−p+2], . . . , [k−1]}. But, here, iteration does not
remove any strategies (as here k−p+ 1 still has regret p−1 for player 1, and k−p still
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has regret p− 1 for player 2. Thus, RM∞
1 (A) = RM1(A) and RM∞

2 (A) = RM2(A).

Example 3.7 Matching pennies: Suppose that A1 = A2 = {a, b}, and u(a, a) =
u(b, b) = (80, 40), u(a, b) = u(b, a) = (40, 80), and consider the matching pennies game,
with payoffs as given in the table below:

a b
a (80, 40) (40, 80)
b (40, 80) (80, 40)

Since the players have opposite interest there are no pure strategy Nash equilibria.
Randomizing with equal probability over both actions is the only Nash equilibria; this
is consistent with experimental results (see e.g., [Goeree and Holt 2001]). With regret
minimization, both actions have identical regret for both players, thus using regret
minimization (with respect to pure strategies) both actions are viable.

Consider a variant of this game (called the asymmetric matching pennies [Goeree,
Holt, and Palfrey 2000]), where u(a, a) = (320, 40). Here, the unique Nash equilibrium

a b
a (320, 40) (40, 80)
b (40, 80) (80, 40)

is one where player 1 still randomizes between a and b with equal probability, but
player 2 picks b with probability 0.875 [Goeree, Holt, and Palfrey 2000]. Experimental
results by Goeree and Holt [2001] show quite different results: player 1 chooses a with
probability 0.96; player 2, on the other hand, is consistent with the Nash equilibrium
and chooses b with probability 0.86. In other words, players most of the time end
up with the outcome (a, b). With iterated regret minimization, we get a qualitatively
similar result. It is easy to see that in the first round of deletion, a minimizes the regret
for player 1, whereas both a and b minimize the regret for player 2; thus RM1

1(A) = a
and RM1

2(A) = a, b. In the second round of the iteration, b is the only action that
minimize regret for player 2. Thus, RM2(A) = RM∞ = (a, b); that is, (a, b) is the
only strategy profile that survives iterated deletion.

Example 3.8 Coordination games: Suppose that A1 = A2 = {a, b}, and u(a, a) =
(k1, k2), u(b, b) = (1, 1), u(a, b) = u(b, a) = (0, 0), where k1, k2 > 0, as shown in the
table below:
Both (a, a) and (b, b) are Nash equilibria, but (a, a) Pareto dominates (b, b) if k1, k2 > 1:
both players are better off with the equilibrium (a, a) than with (b, b). With regret mini-
mization, we do not have to appeal to Pareto dominance if we stick to pure strategies. It
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a b
a (k1, k2) (0, 0)
b (0, 0) (1, 1)

is easy to see that if k1, k2 > 1, RM1
1(A) = RM1

2(A) = RM∞
1 (A) = RM∞

2 (A) = {a}
(yielding regret 1). Similarly, if k1, k2 < 1, then RM∞

1 (A) = RM∞
2 (A) = {b}, and if

if k1 = k2 = 1, RM1
1(A) = RM1

2(A) = RM∞
1 (A) = RM∞

2 (A) = {a, b}. Finally, if
k1 > 1, and k2 < 1, then the unique profile that minimizes regret is (a, b), which results
in both players getting a payoff of 0. While this is unfortunate, in the absence of any
coordinating device, this may well be the outcome that is played between two players
meeting for the first time.

Example 3.9 Bertrand competition: Bertrand competition is a 2-player game where
the players can be viewed as firms producing a homogeneous good. There is demand
for 100 units of the good at any price up to $200. If both firms charge the same price,
each will sell 50 units of the good. Otherwise, the firm that charges the lower price will
sell 100 units at that price. Each firm has a cost of production of 0, as long as it sells
for a positive price, it makes a profit. It is easy to see that the only Nash equilibria of
this game are (0,0) and (1,1). But it does not seem so reasonable that firms playing
this game only once will charge $1, when they could charge up to $200. And indeed,
experimental evidence shows that people in general choose significantly higher prices
[Dufwenberg and Gneezy 2000].

Now consider regret. Suppose that firm 1 charges n ≥ 1. If firm 2 charges m > 1,
then the best response is for firm 1 to charge m− 1. If m > n, then firm 1’s regret is
(m − 1 − n)100; if m = n > 1, firm 1’s regret is (n/2 − 1)100; if m = n = 1, firm 1’s
regret is 0; and if m < n, firm 1’s regret is (m− 1)100. If m = 1, firm 1’s best response
is to charge 1, and the regret is 0 if n = 1 and 100 if n > 1. It follows that firm 1’s
regret is max((199−n)100, (n− 2)100). Clearly if n = 0, firm 1’s regret is 199× 100 (if
firm 2 charges 200). Thus, firm 1 minimizes regret by playing 100 or 101, and similarly
for firm 2. A second round of regret minimization, with respect to {100, 101}, leads to
100 as the unique strategy that results from iterated regret minimization. This seems
far closer to what is done in practice in many cases.

Example 3.10 The Nash bargaining game [Nash 1950]: In this 2-player game, each
player must choose an integer between 0 and 100. If player 1 chooses x and player 2
chooses y and x + y ≤ 100, then player 1 receives x and player 2 receives y; other-
wise, both players receive 0. All strategy profiles of the form (x, 100 − x) are Nash
equilibria. The problem is deciding which of these equilibria should be played. Nash
[1950] suggested a number of axioms, for which it followed that (50, 50) was the unique
acceptable strategy profile.

Using iterated regret minimization leads to the same result, without requiring
additional axioms. Using arguments much like those used in the case of Bertrand
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competition, it is easy to see that the regret of playing x is max(100− x, x− 1). If the
other player plays y ≤ 100 − x, then the best response is 100 − y, and the regret is
100 − y − x. Clearly, the greatest regret is 100 − x, when y = 0. On the other hand,
if the other player plays y > 100 − x, then the best response is 100 − y, so the regret
is 100 − y. The greatest regret comes if y = 100 − x + 1, in which case the regret is
x − 1. It follows that regret is minimized by playing either 50 or 51. Iterating regret
minimization with respect to {50, 51} leaves us with 50. Thus, (50, 50) is the only
strategy profile that survives iterated regret minimization.

We have implicitly assumed here that the utility of a payoff of x is just x. If, more
generally, it is u(x), and u is an increasing function, then the same argument shows
that the regret is max(u(100)− u(x), u(x− 1)− u(0)). Again, there will be either one
value for which the regret is maximized (as there would have been above if we had
taken the total to be 99 instead of 100) or two consecutive values. A second round
of regret minimization will lead to a single value; that is, again there will be a single
strategy profile of the form (x, x) that survives iterated regret minimization. However,
x may be such that 2x < 100 or 2x > 100. This can be viewed as a consequence of
the fact that, in a strategy profile that survives iterated regret minimization, a player
is not making a best response to what the other players are doing.

We next show that that iterated regret and Nash equilibrium agree on Prisoner’s
Dilemma. This follows from a more general observation, that iterated regret always
recommends a dominant action. A dominant action a for player i is one such that
ui(a,~b−i) ≥ ui(a

′,~b−i) for all a′ ∈ Ai and ~b ∈ A. We can similarly define a dominant
(mixed) strategy. It is easy to see that dominant actions survive iterated deletion of
weakly and of strongly dominated actions with respect to A, and are rationalizable.
Indeed, if there is a dominant action, the only actions that survive one round of iterated
deletion of weakly dominated strategies are dominant actions. Similar observations hold
in the case of mixed strategies. The next result shows that iterated regret minimization
acts like iterated deletion of weakly dominated strategies in the presence of dominant
actions and strategies.

Proposition 3.11 Let G = ([n], A, ~u) be a strategic game. If player i has a dominant
action ai, then

(a) RMi(A) = RM∞
i (A);

(b) RMi(A) consists of the dominant actions in G.

Proof: Every action that is dominant has regret 0 (which is minimal); furthermore,
only dominant actions have regret 0. It follows that RMi(A) consists of the dominant
actions for i (if such actions exist). Since none of these actions will be removed in later
deletions, it follows RMi(A) = RM∞

i (A).

Example 3.12 (Repeated) Prisoner’s Dilemma: Recall that in Prisoner’s Dilemma,
players can either cooperate (c) or defect (d). They payoffs are u(d, d) = (u1, u1)),
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u(c, c) = (u2, u2), u(d, c) = (u3, 0), u(c, d) = (0, u3), where 0 < u1 < u2 < u3 and u2 >
u3/2 (so that alternating between (c, d) and (d, c) is not as good as always cooperating).
It is well known (and easy to check) that d is the only dominant action for both 1 and
2, so it follows by Proposition 3.11 that traditional solutions concepts coincide with
iterated regret minimization for this game.

Things get more interesting if we consider repeated Prisoner’s Dilemma. We show
that if both players use iterated regret deletion, they will defect in every round, both
in finitely and infinitely repeated Prisoner’s Dilemma.

First consider Prisoner’s Dilemma repeated n times. Let sad , the strategy where
player 1 always defects, and let S consist of all pure strategies in n-round Prisoner’s
Dilemma.

Lemma 3.13 regretS1 (sad) = (n− 1)(u3 − u2) + max(−u1, u2 − u3). Moreover, if s is
a strategy for player 1 where he plays c before seeing player 2 play c (i.e., where player
1 either starts out playing c or plays c at the kth for k > 1 move after seeing player 2
play d for the first k−1 moves), then regretS1 (s) > (n−1)(u3−u2)+max(−u1, u2−u3).

It follows from Lemma 3.13 that the only strategies that remain after one round of
deletion are strategies that start out defecting, and continue to defect as long as the
other player defects. If the players both play such a strategy, they both defect at every
round. Thus, all these strategies that survive one round of deletion survive iterated
deletion. It follows that with iterated regret minimization, we observe defection in
every round of finitely repeated prisoners dilemma. Essentially the same argument
shows that this is true in infinitely repeated Prisoner’s Dilemma (where payoffs are
discounted by δ, for 0 < δ < 1). By way of contrast, while always defecting is the only
Nash equilibrium in finitely repeated Prisoner’s Dilemma, the Folk Theorem shows that
for all p with 0 ≤ p ≤ 1, if δ is sufficiently close to 1, there is an equilibrium in which p is
the fraction of times that both players cooperate. Thus, with Nash equilibrium, there
is a discontinuity between the behavior in finitely and infinitely repeated Prisoner’s
Dilemma that does not occur with regret minimization. Nevertheless, intuition suggests
that there should be a way to justify cooperation using regret minimization, just as in
the case of the Centipede Game. This is indeed the case, as we show in Section 3.5.

Example 3.14 Hawk-Dove:6 In this game, A1 = A2 = {d, h}; a player can choose
to be a dove (d) or a hawk (h). The payoffs are something like Prisoner’s Dilemma
(with h playing the role of “defect”), but the roles of a and 0 are switched. Thus,
we have u(d, d) = (b, b), u(d, h) = (a, c), u(h, d) = (c, a), u(h, h) = (0, 0), where again
0 < a < b < c. This switch of the role of a and 0 results in the game having two Nash
equilibria: (h, d) and (d, h). But d is the only action that minimizes regret (yielding
regret c− b). Thus, RM(A) = RM∞(A) = (d, d).

6This game is sometimes known as Chicken.
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Example 3.15 In all the examples considered thus far, there were no strategies that
were strongly dominated by pure strategies, so if we restrict to pure strategies, all strate-
gies survived iterated deletion of strongly dominated strategies. The game described
below shows that the strategies that survive iterated deletion of strongly dominated
strategies by pure strategies can be disjoint from those that survive iterated regret
minimization.

x y
a (0, 100) (0, 0)
b (1, 0) (1, 1)

First consider iterated deletion of strongly dominated strategies. For player 1, b
strongly dominates a. Once a is deleted, y strongly dominates x for player 2. Thus,
iterated deletion of strongly dominated strategies leads to the unique strategy profile
(b, y). Now consider regret minimization. The regret of x is less than that of y, while
the regret of b is less than that of a. Thus, iterated regret minimization leads to (b, x).

Note that in the examples above, the deletion process converges after two steps. We
can construct examples of games where we need max(|A|1 − 1, . . . , |A|n − 1) deletion
steps. The following example shows this in the case that n = 2 and |A1| = |A2|, and
arguably illustrates some problems with iterated regret minimization.

Example 3.16 Consider a symmetric 2-player game with A1 = A2 = {a1, . . . , an}. If
both players play ak, then the payoff for each one is k. For k > 1, if one player plays
ak and the other plays ak−1, then the player who plays ak get −2, and the other gets
0. In all other cases, both players get payoff of 0. The ij entry of the following matrix
describes player h’s payoff if h plays ai and player 2− h plays aj:

1 0 . . . 0 0
−2 2 . . . 0 0
0 −2 3 . . . 0
...

...
...

...
...

0 . . . 0 −2 n


Note that an has regret n + 1 (if, for example player 1 plays an and player 2 plays

an−1, player 1 could have gotten n + 1 more by playing an−1; all other actions have
regret n. Thus, only an is eliminated in the first round. Similar considerations show
that we eliminate an−1 in the next round, then an−2, and so on. Thus, a1 is the only
pure strategy that survives iterated regret minimization.

Note that (ak, ak) is a Nash equilibrium for all k. Thus, the strategy that survives
iterated regret minimization is the one that is Pareto dominated by all other Nash
equilibria. We get a similar result if we modify the payoffs so that if both players play
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ak, then they both get 2k, while if one player plays ak and the other plays ak−1, then
the one that plays ak get −2− 2k−1, and the other gets 0. Suppose that n = 20 in the
latter game. Would players really accept a payoff of 2 when they could get a payoff of
over 1,000,000 if they could coordinate on a20? Perhaps they would not play a20 if they
were concerned about the loss they would face if the other player played a19.

The following variant of a generalized coordination game demonstrates the same
effect even without iteration.

a b
a (1, 1) (0,−10)
b (−10, 0) (10, 10)

Clearly (b, b) is the Pareto optimal Nash equilibrium, but playing b has regret 11,
whereas a has regret only 10; thus (a, a) is the only profile that minimizes regret.
Note, however, that (a, a) is the risk dominant Nash equilibrium. (Recall that in a
generalized coordination game—a 2-player, 2-action game where u1(a, a) > u1(b, a),
u1(b, b) > u1(a, b), u2(a, a) > u2(a, b), and u2(b, b) > u2(b, a)—the Nash equilibrium
(a, a) is risk dominant if the product of the “deviation losses” for (b, b) (i.e., (u1(b, a)−
u1(b, b))(u2(a, b)−u2(b, b))) is higher than the product of the deviation losses for (a, a).)
In the game above, the product of the deviation losses for (b, b) is 100 = (0−10)(0−10),
while the product of the deviation losses for (a, a) is 121 = (−10− 1)(−10− 1); thus,
(a, a) is risk dominant. In fact, in every generalized coordination game, the product of
the deviation losses for (x, x) is regret1(x)regret2(x), so if the game is symmetric (i.e.,
if u1(x, y) = u2(y, x), which implies that regret1(x) = regret2(x)), the risk dominant
Nash equilibrium is the only action profile that minimizes regret. (It is easy to see that
this is no longer the case if the game is asymmetric.)

3.4.2 Mixed strategies

Applying regret in the presence of mixed strategies can lead to quite different results
than if we consider only pure strategies. We first generalize Proposition 3.11, to show
that if there is a dominant strategy that happens to be pure (as is the case, for example,
in Prisoner’s Dilemma), nothing changes in the presence of mixed strategies. But in
general, things can change significantly.

Proposition 3.17 Let G = ([n], A, ~u) be a strategic game. If player i has a dominant
action ai, then RMi(Σ) = RM∞

i (Σ) = ∆(RMi(A)).

Proof: The argument is similar to the proof of Proposition 3.11 and is left to the reader.

To understand what happens in general, we first shows that we need to consider
regret relative to only pure strategies when minimizing regret at the first step. (The
proof is relegated to the Appendix.)

Proposition 3.18 Let G = ([n], A, ~u) be a strategic game and let σi be a mixed strategy
for player i. Then regretΣ

i (σi) = max~a−i∈A−i
regretSi(σi | ~a−i).
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Example 3.19 Roshambo (Rock-Paper-Scissors): In the rock-paper-scissors game,
A1 = A2 = {r, s, p}; rock (r) beats scissors (s), scissors beats paper (p), and paper
beats rock; u(a, b) is (2, 0) if a beats b, (0, 2) if b beats a, and (1, 1) if a = b. If we
stick with pure strategies, by symmetry, we have RM1(A) = RM2(A) = RM∞

1 (A) =
RM∞

2 (A) = {r, s, p}. If we move to mixed strategies, it follows by Proposition 3.18
that picking r, s, and p each with probability 1/3 is the only strategy that minimizes
regret. (This is also the only Nash equilibrium.)

Example 3.20 Matching pennies with mixed strategies: Consider again the matching
pennies game, where A1 = A2 = {a, b}, and u(a, a) = u(b, b) = (80, 40), u(a, b) =
u(b, a) = (40, 80). Recall that RM∞

1 (A) = RM∞
2 (A) = {(a, b)}. Consider a mixed

strategy that puts weight p on a. By Proposition 3.18, the regret of this strategy
is max(40(1 − p), 40p), which is minimized when p = 1

2
(yielding regret 20). Thus

randomizing with equal probability over a, b is the only strategy that minimizes regret;
it is also the only Nash equilibrium. But now consider the asymmetric matching pennies
game, where u(a, a) = (320, 40). Recall that RM∞(A) = (a, b). Since the utilities have
not changed for player 2, it is still the case that 1/2a + 1/2b is the only strategy that
minimizes regret for player 2. On the other hand, by Proposition 3.18, the regret of the
strategy for player 1 that puts weight p on a is max(280(1−p), 40p), which is minimized
when p = .875. Thus RM∞(Σ) = (.875a+ .225b, 0.5a+ 0.5b).

Example 3.21 Coordination games with mixed strategies: Consider again the coor-
dination game where A1 = A2 = {a, b} and u(a, a) = (k, k), u(b, b) = (1, 1), u(a, b) =
u(b, a) = 0. Recall that if k > 1, then RM∞

1 (A) = RM∞
2 (A) = {(a)}, while if k = 1,

then RM∞
1 (A) = RM∞

2 (A) = {a, b}. Things change if we consider mixed strategies.
Consider a mixed strategy that puts weight p on b. By Proposition 3.18, the regret of
this strategy is max(kp, 1− p) which is minimized when p = 1

k+1
(yielding regret k

k+1
).

Thus, mixed strategies that minimize regret can put positive weight on actions that
have sub-optimal regret.

Example 3.22 Traveler’s Dilemma with mixed strategies: As we saw earlier, each of
the choices 96–100 has regret 3 relative to other pure strategies. It turns out that there
are mixed strategies that have regret less than 3. Consider the mixed strategy that puts
probability 1/2 on 100, 1/4 on 99, and decreases exponentially, putting probability 1/298

on both 3 and 2. Call this mixed strategy σ. Let Σ consist of all the mixed strategies
for Traveler’s Dilemma.

Lemma 3.23 regretΣ
1 (σ) < 3.

The proof of Lemma 3.23 shows that regretΣ
1 (σ) is not much less than 3; it is

roughly 3× (1− 1/2101−k). Nor is σ the strategy that minimizes regret. For example,
it follows from the proof of Lemma 3.23 that we can do better by using a strategy that
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puts probability 1/2 on 98 and decreases exponentially from there. While we have not
computed the exact strategy that minimizes (or strategies that minimize) regret—the
computation is nontrivial and does not add much insight—we can make two useful
observations:

• The mixed strategy that minimizes regret places probability at most 3/(99 − k)
on the pure strategies k or less. For suppose player places probability α on the
pure strategies k or less. If player 2 plays 100, player 1 could have gotten 101
by playing 99, and gets at most k + 2 by playing k or less. Thus, the regret is
at least (99− k)α, which is at least 3 if α ≥ 3/(99− k). Thus, for example, the
probability that 90 or less is played is at most 1/3.

• The strategy that minimizes regret has regret greater than 2.9. To see this, note
that the strategy can put probability at most 3/97 on 2 and at most 3/96 on 3.
This means that the regret relative to 3 is at least

(1− 3/96− 3/97)3 + 3/96 = 3− 6/96− 3/97 > 2.9).

The fact that it is hard to compute the exact strategy the minimizes regret suggests
that people are unlikely to be using it. On the other hand, it is easy to compute that
the optimal strategy puts high weight on actions in the high 90’s. In retrospect, it
is also not surprising that one can come close to minimizing regret by putting some
weight on (almost) all actions. This was also the case in Example 3.21; as we observed
there, we can sometimes do better by putting some weight even on actions that do
not minimize regret.7 Interestingly, the distribution of strategies observed by Becker,
Carter, and Naeve [2005] is qualitatively similar to the distribution induced by a mixed
strategy that is close to optimal. If everyone in the population was playing a mixed
strategy that was close to optimal in terms of minimizing regret, we would expect to
see something close to the observed distribution.

The phenomena observed in the previous two examples apply to all the other exam-
ples considered in Section 3.4.1. For example, in the Bertrand competition, while the
pure strategies of least regret (100 and 101) have regret 9,900, there are mixed strate-
gies with regret less than 7,900 (e.g., by putting probability 1/5 on each of 80, 100,
120, 140, and 160). We can do somewhat better than this, but not much. Moreover,
we believe that in both Traveler’s Dilemma and in Bertrand Competition there is a
unique mixed strategy that minimizes regret, so that one round of deletion will suffice.
This is not true in general, as the follow example shows.

7It is not necessarily the case that the support of the optimal strategy consists of all actions, or
even all undominated actions. For example, consider a coordination game with three actions a, b, and
c, where u(a, a) = u(b, b) = k, u(c, c) = 1, and u(x, y) = 0 if x 6= y. If k > 2, then the strategy that
minimizes regret places probability 1/2 on each of a and b, and probability 0 on c.
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Example 3.24 Consider a 2-player symmetric game where A1 = A2 = {amk : m =
1, . . . , n, k = 1, 2}. Define

u1(aij, akl) =

 −3max(i,k) if i 6= k
0 if i = k, j = l
−3i+1 if i = k, j 6= l

Let Σ consists of all mixed strategies in this game. We claim that, for every strategy σ
for player 1, regretΣ

1 (σ) ≥ 3n, and similarly for player 2. To see this, consider a mixed
strategy of the form

∑
ij pijaij. The best response to anj is anj, which gives a payoff of

0. Thus, the regret of this strategy relative to an1 is 3n(
∑

ij,i6=n pij + 3pn2). Similarly,
the regret relative to an3 is 3n(

∑
ij,i6=n pij + 3pn1). Thus, the sum of the regrets relative

to an1 and an2 is 3n(2 + pn1 + pn2). It follows that the regret relative to one of an1 and
an2 is at least 3n. It also easily follows that every convex combination of strategies aij
with i < n has regret exactly 3n (the regret relative to an1 is 3n, and the regret relative
to every other strategy is no worse). Moreover, every strategy that puts positive weight
on an1 or an2 has regret greater than 3n. Thus, at the first step, we eliminate all and
only strategies that put positive weight on an1 or an2. An easy induction shows that at
the kth step we eliminate all and only strategies that put positive weight on a(n−k+1)1

or a(n−k+1)2. After n− 1 steps of iterated deletion, the only strategies that are convex
combinations of a11 and a12. One more step of deletion leaves us 1/2a11 + 1/2a12.8

In the case of pure strategies, it is immediate that there cannot be more than
|A1|+ · · ·+ |An| rounds of deletion, although we do not have an example that requires
more than max(|A1|, . . . , |An|) rounds. Example 3.24 shows that max(|A1|, . . . , |An|)
may be required with mixed strategies, but all that follows from Theorem 3.3 is that
the deletion process converges after at most countably many steps. We conjecture that,
in fact, the process converges after at most max(|A1|, . . . , |An|) steps, both with pure
and mixed strategies, but we have not proved this.

3.5 Iterated regret minimization with prior beliefs

We have assumed that we start the deletion process with all pure (resp., mixed) strategy
profiles. Moreover, we have assumed that, at all stages in the deletion process (and,
in particular, at the beginning), the set of strategies that the agents consider possible
is the same for all agents. More generally, we could allow each agent i could start a
stage in the deletion process with a set Σi of strategy profiles. Intuitively, the strategies
in Σi

j are the the only strategies that i is considering for j. For j 6= i, it is perhaps
most natural to think of Σi

j as representing i’s beliefs about what strategies j will use;

8In this example, at every step but the last step, the set of strategies that remain consist of all
convex combinations of a subset of pure strategies. But this is not necessarily the case. If we replace
3k by 2k in all the utilities above, then we do not eliminate all strategies that put positive weight on
an1 or an2; in particular, we do not eliminate strategies that put the same weight on an1 and an2 (i.e.,
where pn1 = pn2).
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however, it may also make sense to interpret Σi
j as a representative set of j’s strategies

from i’s point of view, or as the only ones that i is considering but it is too complicated
to consider them all (see below). For i = j, Σi

i is the set of strategies that i is still
considering using; thus, i essentially ignores all strategies other than those in Σi

i. When
we do regret minimization with respect to a single set S of strategy profiles (as we do
in the definition of iterated regret minimization), we are implicitly assuming that the
players have common beliefs.

The changes required to deal with this generalization are straightforward: each
agent simply applies the standard regret minimization operator to his set of strat-
egy profiles. More formally, the generalized regret minimization RM′ takes as an
argument a tuple (Π1, . . . ,Πn) of strategy profiles and returns such a tuple; we define
RM(Π1, . . . ,Πn) = (RM(Π1), . . . ,RM(Πn)).9

Example 3.25 Repeated Prisoner’s Dilemma with prior beliefs: The role of prior
beliefs is particularly well illustrated in Repeated Prisoner’s Dilemma. In the proof of
Lemma 3.13, to show that the regret of a strategy like Tit for Tat is greater (n−1)(u3−
u2) + max(−u1, u2 − u3), it is necessary to consider a strategy where player 2 starts
out by defecting, and then cooperates as long as player 1 defects. This seems like an
extremely unreasonable strategy for player 2 to use! Given that there are 22n−1 pure
strategies for each player in n-round Prisoner’s Dilemma, and computing the regret of
each one can be rather complicated, it is reasonable for the players to focus on a much
more limited set of strategies. Suppose that each player believes that the other player
is using a strategy where plays Tit for Tat for some number k of rounds, and then
defects from then on, for some k. Call this strategy sk. (So, in particular, s0 = sad and
sn is Tit for Tat.) Let S∗i consist of all the strategies sk for player i; let S+

2−i be any set
of strategies for player 2− i that includes S∗2−i. It is easy to see that the best response
to s0 is s0, and the best response to sk for k > 1 is sk−1 (i.e., you are best off defecting
just before the other player starts to defect). Thus,

regret
S+

i ×S
∗
2−i

i (sk | sl) =


(l − k − 1)(u2 − u1) if k < l
u3 + u1 − 2u2 if k = l > 0
u3 + u1 − u2 if k > l > 0
u1 if k > l = 0
0 if k = l = 0.

It follows that

regret
S+

i ×S
∗
2−i

i (sk) =


max((n− k − 1)(u2 − u1), u3 + u1 − u2) if k ≥ 2
max((n− 1)(u2 − u1), u3 + u1 − 2u2, u1) if k = 1
n(u2 − u1) if k = 0

Intuitively, if player 1 plays sk and player 2 is playing a strategy in S∗2 , then player 1’s
regret is maximized if player 2 plays either sn (in which case 1 would have been better

9As we hinted in Section 3.3, an epistemic justification of this more general notion of regret mini-
mization would require a more general notion of lexicographic beliefs, where each player has a separate
sequence of beliefs.
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off by continuing to cooperate longer) or if player 2 plays sk−1 (assuming that k > 1),
in which case 1 would have been better off by defecting earlier. Thus, the strategy that
minimizes player 1’s regret is either sn−1, s1, or s0. (This is true whatever strategies
player 1 is considering for himself, as long as it includes these strategies.) If n is
sufficiently large, then it will be sn−1. This seems intuitively reasonable. In the long
run, a long stretch of cooperation pays off, and minimizes regret. Moreover, it is not
hard to show that allowing mixtures over s0, . . . , sn makes no difference; for large n,
sn−1 is still the unique strategy that minimizes regret.

To summarize, if each player i believes that the other player 2 − i is playing a
strategy in S∗2−i—a reasonable set of strategies to consider—then we get a strategy
that looks much more like what people do in practice.

As shown in Example 3.25, starting the deletion process with a subset of the set
of all strategy profiles provides an explanation of observed behavior in the repeated
prisoner’s dilemma. But to make this approach useful, we need to motivate where
these sets are coming from. One approach would be to simply require that the sets are
exogenously given; that is, it is up to the modeler to restrict the set of strategies to
those that he believes are “psychologically viable” for the players. The sets considered
in Example 3.25 could be viewed as represeting such strategies. Another approach
would be to provide some systematic way of determining the subsets of strategies to
use given just the traditional description of the game. For instance, it might seem
natural to exclude all strongly, or even weakly, dominated strategies. We mention that
all our results, except those pertaining to first-price auctions (see Example 4.2 and 5.1),
hold even if we first exclude all strongly or weakly dominated strategies.

Thinking in terms of beliefs makes it easy to relate iterated regret to other notions
of equilibrium. Suppose that there exists a strategy profile ~σ such that player i’s beliefs
have the form Σi × {σ−i}. That is, player i believes that each of the other players are
playing their component of ~σ, and there are no constraints on his choice of strategy.
Then it is easy to see that the strategies that minimize player i’s regret with respect to
these beliefs are just the best responses to σ−i. In particular, if ~σ is a Nash equilibrium,
then (~σ, . . . , ~σ) ∈ RM′(Σ1×σ−1, . . . ,Σn×σ−n). The key point here is that if the agent’s
beliefs are represented by a “small” set, then the agent makes a best response in the
standard sense by minimizing regret; minimizing regret with respect to a “large” belief
set looks more like traditional regret minimization.

4 Iterated Regret Minimization in Bayesian Games

Bayesian games are a well-known generalization of strategic games, where each agent
is assumed to have a characteristic or some private information not known to the other
players. This is modeled by assuming each player has a type. Typically it is assumed
that that there is a commonly known probability over the set of possible type profiles.
Thus, a Bayesian game is tuple ([n], A, ~u, T, π), where, as before, [n] is the set of players,
A is the set of action profiles, ~u is the profile of utility functions, T = T1 × . . .× Tn is

22



the set of type profiles (where Ti represents the set of possible types for player i), and
π is a probability measure on T . A player’s utility can depend, not just on the action
profile, but on the type profile. Thus, ui : A × T → IR. For simplicity, we assume
that Pr(ti) > 0 for all types ti ∈ Ti and i = 1, . . . , n (where ti is an abbreviation of
{~t′ : t′i = ti}).

A strategy for player i in a Bayesian game in a function from player i’s type to an
action in Ai; that is, what a player does will in general depends on his type. For a pure
strategy profile ~σ, player i’s expected utility is

Ui(~σ) =
∑
~t∈T

π(~t)ui(σ1(t1), . . . , σn(tn)).

Player i’s expected utility with a mixed strategy profile ~σ is computed by computing
the expectation with respect to the probability on pure strategy profiles induced by ~σ.
Given these definitions, a Nash equilibrium in a Bayesian game is defined in the same
way as a Nash equilibrium in a strategic game.

There are some subtleties involved in doing iterated deletion in Bayesian games.
Roughly speaking, we need to relativize all the previous definitions so that they take
types into account. We give the definitions for pure strategies; the modifications to
deal with mixed strategies are straightforward and left to the reader.

As before, suppose that S = S1 × . . . × Sn. Moreover, suppose that, for each
player i, Si is also a crossproduct; that is, for each type t ∈ Ti, there exists a set
of actions A(t) ⊆ Ai such that Si consists of all strategies σ such that σ(t) ∈ A(t)
for all t ∈ Ti. For ~a−i ∈ S−i and ~t ∈ T , let uSi

i (~a−i,~t) = maxai∈S ui(ai,~a−i,~t). For
ai ∈ Si, ~a−i ∈ S−i, and ~t ∈ T , the regret of ai for player i given ~a−i and ~t, relative
to Si, denoted regretSi

i (ai | ~a−i,~t), is uSi
i (~a−i,~t) − ui(ai,~a−i,~t). Let regretSi (ai | ~t) =

max~a−i∈S−i(~t−i)
regretSi(ai | ~a−i,~t) denote the maximum regret of player i given ~t. The

expected regret of ai given ti and S−i is E[regretSi
i (ai | ti)] =

∑
~t∈T Pr(~t | ti)regretSi

i (ai |
~t). Let minregretSi(ti) = minai∈Si(ti) E[regretSi (ai | ti)]. We delete all those strategies
that do not give an action that minimizes expected regret for each type. Thus, let
RMi(Si) = {σ ∈ Si : regretSi

i (σ(ti) | ti) = minregretSi(ti)}, and define RM(S) =
RM1(S1) × . . . × RMn(Sn). Having defined the deletion operator, we can apply
iterated deletion as before.

Example 4.1 Second-Price Auction: A second-price auction can be modeled as a
Bayesian game, where a player’s type is his valuation of the product being auctioned.
His possible actions are bids. The player with the highest bid wins the auction, but
pays only what the second-highest bids. (For simplicity, we assume that in the event
of a tie, the lower-numbered player wins the auction.) If he bids b and has valuation
(type) v, his utility is v − b; if he does not win the auction, his utility is 0. As is
well known, in a second-price auction, the strategy where each player bids his type is
weakly dominant; hence, this strategy survives iterated regret minimization. No other
strategy can give a higher payoff, no matter what the type profile is.
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Example 4.2 First-Price Auction: In a first-price auction, the player with the highest
bid wins the auction, but pays his actual bid. Assume, for simplicity, that bids are
natural numbers, that the lower-numbered player wins the auction in the event of a
tie, that all valuations are even, and that the product is sold only if some player bids
above 0. If a player’s valuation is v, then bidding v′ has regret max(v′ − 1, v − v′ − 1).
To see this, consider player i. Suppose that the highest bid of the other agents is v′′,
and that the highest-numbered agent that bids v′′ is agent j. If v′′ < v′ or v′′ = v′ and
i < j, then i wins the bid. He may have done better by bidding lower, but the lowest
he can bid and still win is 1, so his maximum regret in this case is v′−1 (which occurs,
for example, if v′′ = 0). On the other hand, if v′′ > v′ or v′′ = v and j < i, then i does
not win the auction. He feels regret if he could have won the auction and still paid at
most v. To win, if j < i, he must bid v′′ + 1, in which case his regret is v − v′′ − 1. In
this case, v′′ can be as small as v′, so his regret is at most v − v′ − 1. If j > i, then he
must only bid v′′ to win, so his regret is v − v′′, but v′′ ≥ v′ + 1, so his regret is again
at most v− v′− 1. It follows that bidding v′ = v/2 is the unique action that minimizes
regret (yielding a regret of v/2− 1).

Note that in the auctions examples above, the bid for player i that minimizes his
regret does not depend on his prior distribution over the valuations (i.e., types) of the
other players. This is so since no matter what prior player i has on the valuation vj of a
player j, he still considers it possible that j bids an arbitrary value bj; in particular, it
might very well be that bj > vj. If we restrict the prior beliefs of players (as in Section
3.5) to include only bids bj ≤ vj (as bids b > vj are weakly dominated by bidding vj),
the analysis in Example 4.2 no longer holds; the bid for player i that minimizes his
regret now depends on his prior.

5 Mechanism Design using Regret Minimization

In this section, we show how using regret minimization as the solution concept can help
to construct efficient mechanisms. We consider mechanisms where an agent truthfully
reporting his type is the unique strategy that minimizes regret, and focus on prior-free
mechanisms (i.e., mechanisms that do not depend on the type distribution of players);
we call these regret-minimizing truthful mechanisms. Additionally, we focus on ex-
post individually-rational (IR) mechanisms.10 As the example below shows, regret-
minimizing truthful mechanisms can do significantly better than dominant-strategy
truthful mechanism.

Example 5.1 Maximizing revenue in combinatorial auctions: In a combinatorial auc-
tion, there is a set of m indivisible items that are concurrently auctioned to n bidders.
The bidders can bid on bundles of items (and have a valuation for each such bundle);

10Recall that a mechanism is ex-post individually rational if a player’s utility of participating is no
less than that of not participating, no matter what the outcome is.
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the auctioneer allocates the items to the bidders. The standard VCG mechanism is
known to maximize social welfare (i.e., the allocation by the auctioneer maximizes the
sum of the valuations of the bidders of the items they are assigned), but might yield
poor revenue for the seller. Designing combinatorial auctions that provide good revenue
guarantees for the seller is a recognized open problem. By using regret minimization
as the solution concept, we can provide a straightforward solution.

Consider a combinatorial first-price auction: that is, the auctioneer determines the
allocation that maximizes its revenue (based on the bidders’ bids), and the winning
bidders pay what they bid. Using the same argument as for the the case of a single-item
first-price auction, it follows that if a bidder’s valuation of a bundle is v (where v is an
even number), bidding v/2 is the unique bid on that bundle that minimizes his regret.
Thus, in a combinatorial first-price auction, the seller is guaranteed to receive MSW /2,
where MSW denotes the maximal social welfare, that is, the maximum possible sum of
the bidders’ valuation for an allocation. Clearly MSW is the most that the seller can
receive, since a rational bidder would not bid more than his valuation. To additionally
get a truthful auction with the same guarantee, change the mechanism so that the
winning bidder pay b/2 if he bids b; it immediately follows that a bidder with valuation
v for a bundle should bid v. (The mechanism is also trivially IR as players never
pay more than their valuation.) This should be contrasted with the fact that there is
no dominant-strategy implementation (i.e., no mechanism where bidding the valuation
maximizes utility no matter what the other player bid) that guarantees even a positive
fraction of MSW as revenue. In fact, as we now show, to guarantee a fraction r of MSW
the minimum regret needs to be “large”. By way of contrast, dominant strategies have
regret 0.

Lemma 5.2 An efficient, IR, regret-minimizing truthful mechanism that guarantees
the seller a fraction r of MSW as revenue has a minimum regret of at least rMSW −
1. (In particular, a mechanism that guarantees a revenue of MSW /2 must have a
minimum regret of at MSW /2 + 1, just like the first-price auction.)

Proof: The claim already holds if there is a single object and two buyers. Assume
by way of contradiction that there exists an efficient, IR, truthful auction where the
seller’s revenue is at least rMSW . Since the auction is efficient and truthful, the bidder
with the higher bid b will win the auction. It follows that this bidder must pay at least
rb (or else either the revenue guarantee could not be satisfied, or the auction is not
truthful), but at most b (or else the auction cannot be both truthful and IR). Thus,
player 1’s regret when bidding its valuation v is at least rv− 1, since if player 2 bids 0,
player 1 needs to pay at least rv, whereas he could have paid at most 1 by bidding 1
(since with a truthful, IR mechanism, a player will never pay more than he bids).

The following result shows that no regret-minimizing truthful mechanism can do
significantly better than the first-price auction in terms of maximizing revenue.

Lemma 5.3 No efficient, IR, regret-minimizing truthful mechanism can guarantee the
seller more than ((

√
5− 1)/2)MSW of revenue.
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Proof: As in Lemma 5.2, consider a mechanism for a single object case with two buyers
that has a revenue guarantee of rMSW . We claim that if player 1 has valuation v, then
his regret if he bids αv is at most max(αv, v − rαv). To see this, note that if player 2
bids b ≤ αv, then player 1 pays at most αv (by IR and truthfulness), which potentially
could have been saved. Thus, his regret is at most αv if player 2 bids less than αv. If,
on the other hand, player 2 bids b > αv, then player 1 needs to pay at least rαv to win
the object (by truthfulness and the revenue guarantee), so his regret is at most v−rαv.
It is easy to see that αv = v − rαv if α = 1/(r + 1). Thus, if α = 1/(r + 1), player 1’s
regret is at most v/(r + 1). (We are ignoring here the possibility that v/(r + 1) is not
an integer, hence not a legal bid. As we shall see, this will not be a problem.) But, by
Lemma 5.2, player 1’s regret when his valuation is v can be as high as rv − 1. Thus,
we must have v/(r + 1) ≥ rv − 1, or equivalently, (r − 1/(r + 1))v ≤ 1. This can be
guaranteed for all v only if r − 1/(r + 1) < 0, so we must have r < (

√
5− 1)/2.

6 Related Work

While the notion of regret has been well studied in the context of decision theory (see
[Hayashi 2008b] and the references therein for some discussion of the recent work),
there has been surprisingly little work on applying regret to game theory. Linhart
and Radner [1989] applied regret to a bargaining problem, and showed that it leads to
solutions that seem much more reasonable than Nash equilibrium. In the words of
Linhart and Radner, “in the application to sealed-bid bargaining, the instruction ‘Bid
so as to minimize your maximum regret’ has several advantages over the instruction
‘Bid the best response to your opponent’s bid.’ ”. In the computer science literature,
Hyafil and Boutilier [2004] consider pre-Bayesian games, where each agent has a type
and a player’s utility depends on both the action profile and the type profile, just as
in a Bayesian game, but now there is no probability on types.11 The solution concept
they use is a hybrid of Nash equilibrium and regret. Roughly speaking, they take regret
with respect to the types of the other players, but use Nash equilibrium with respect
to the strategies of other players. That is, they define regretSi

i (ai | ~a−i,~t) as we do
(taking Si to consist of all strategies for player i), but then define regretSi(ai | ~a−i) by
minimizing over all ~t−i. They then define a profile ~σ to be a minimax-regret equilibrium
if, for all type profiles ~t, no agent can decrease his regret by changing his action. For
strategic games, where there are no types (i.e., |T | = 1), their solution concept collapses
to Nash equilibrium. Thus, their definitions differ from ours in that they take regret
with respect to types, not with respect to the strategies of other players as we do, and
they do not iterate the regret operation.

Aghassi and Bertsimas [2006] also consider pre-Bayesian games, and use a solution
concept in the spirit of that of Hyafil and Boutilier. However, rather than using minimax

11Hyafil and Boutilier actually consider a slightly less general setting, where the utility for player i
depends only on player i’s type, not the whole type profile. Modifying their definitions to deal with
the more general setting is straightforward.
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regret, they use maximin, where a maximin action is one with the best worst-case payoff,
taken over all the types of the other agents. Just as with the Hyafil-Boutilier notion,
the Aghassi-Bertsimas notion collapses to Nash equilibrium if there is a single type.

Even closer to our work is a recent paper by Renou and Schlag [2008] (their work
was done independently of ours). Just as we do, they focus on strategic games. Their
motivation for considering regret, and the way they do it in the case of pure strategies, is
identical to ours (although they do not iterate the deletion process). They allow prior
beliefs, as in Section 3.5, and require that these beliefs are described by a closed, convex
set of strategies. They are particularly interested in strategy profiles ~σ that minimize
regret for each agent with respect to all the strategy profiles in an ε neighborhood of
~σ. Although they define regret for pure strategies, this is only a tool for dealing
with mixed strategies; they do not consider the regret of a pure strategy with respect
to a set of pure strategies, as we do. In particular, they have no analogue to our
analysis of purestrategies in Section 3.4.1. If we consider regret relative to the set of
all mixed strategy profiles, then we are just in the setting of Section 3.4.2. However,
their definition of regret for mixed strategies is somewhat different from ours; see the
full paper for a detailed comparison. Appendix C where we also show that, despite
these differences, the approaches often give the same results (and are certainly inspired
by similar intuitions).

7 Discussion

The need to find solution concepts that reflect more accurately how people actually
play games has long been recognized. This is a particularly important issue because
the gap between “descriptive” and “normative” is particularly small in game theory.
An action is normatively the “right” thing to do only if it is the right thing to do with
respect to how others actually play the game; thus, a good descriptive theory is an
essential element of a good normative theory.

There are many examples in the literature of games where Nash equilibrium and
its refinements do not describe what people do. We have introduced a new solution
concept, iterated regret minimization, that, at least in some games, seems to capture
better what people are doing than more standard solution concepts. The outcomes
of games like the Traveler’s Dilemma and the Centipede Game have sometimes been
explained by assuming that a certain fraction of agents will be “altruistic”, and play
the helpful action (e.g., playing 100 in Traveler’s Dilemma or cooperating in the Cen-
tipede Game) (cf., [Capra, Goeree, Gomez, and Holt 1999]). There seems to be some
empirical truth to this assumption; for example, 10 of 45 game theorists that submitted
pure strategies in the experiments of Becker, Carter, and Naeve [2005] submitted 100.
With an assumption of altruism, then the strategies of many of the remaining players
can be explained as best responses to their (essentially accurate) beliefs. Altruism
may indeed be part of an accurate descriptive theory, but to use it, we first need to
decide what the “right” action is, and also the likelihood that agents are altruistic.
Iterated regret minimization provides a different descriptive explanation, and has some

27



normative import as well. It seems particularly appealing when considering inexperi-
enced but intelligent players that play a game for the first time. In this setting, it seems
unreasonable to assume that players know what strategies other players are using (as
is implicitly assumed in Nash equilibrium).

We emphasize that although there exist alternative explanations of the observed
behavior in the games considered here, these explanations in general depend on the
specific game under consideration. In contrast, iterated regret minimization provides
a single, simple, explanation that—at least at a qualitative level—is consistent with
observed behavior in all of them.

While we have illustrated some of the properties of iterated regret minimization,
we view this paper as more of a “proof of concept”. There are clearly many issues we
have left open. We mention a few of the issues we are currently exploring here.

• As we observed in Section 3.5, some behavior is well explained by assuming that
agents start the regret minimization procedure with a subset of the set of all
strategy profiles, which can be thought of as representing the strategy profiles
that the agent is considering. But we need better motivation for where this set
is coming from.

• We have considered “greedy” deletion, where all strategies that do not minimize
regret are deleted at each step. We could instead delete only a subset of such
strategies at each step of deletion. It is well known that if we do this with iterated
deletion of weakly dominated strategies, the final set is strongly dependent on
the order of deletion. The same is true for regret minimization. Getting an
understanding of how robust the deletion process is would be of interest.

• We have focused on normal-form games and Bayesian games. It would also be
interesting to extend regret minimization to extensive-form games. A host of new
issues arise here, particularly because, as is well known, regret minimization is not
time consistent (see [Hayashi 2008a] for some discussion of the relevant issues).

• A natural next step would be to apply our solution concepts to mechanism design
beyond just auctions.

A An Epistemic Characterization Using Kripke Struc-

tures

Let G = ([n], A, ~u) be a strategic game, and let S denote the full set of mixed strategies.
A (lexicographic belief) Kripke structure for G has the form (W, s,B1, . . . ,Bn), where s
associates with each world w ∈ W a pure strategy profile s(w) in the game Γ, and Bi as-
sociates with each world w a sequence (W0,W1, . . .) of sets of worlds. For convenience,
we use Bki (w) to denote the set Wk in the sequence, so Bi(w) = (B0

i (w),B1
i (w), . . .).

Intuitively, B0
i (w) consists of the worlds that player i considers most likely at w, the

worlds in B1
i (w) are less likely, and so on. Thus, the sequence Bi(w) models player i’s
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beliefs at w. We assume that at each world in ∪∞j=0Bi(w) player i uses the same strat-
egy and has the same beliefs. That is, if w′ ∈ ∪∞j=0Bi(w), then si(w) = si(w

′), where
si(w) denotes player i’s strategy in the strategy profile s(w), and Bi(w) = Bi(w′). This
captures the intuition that a player knows his own strategy and beliefs.

Given a set W ′ of worlds, let s(W ′) denote the set of strategy profiles associated
with the worlds in W ′; that is, s(W ′) = {s(w′) : w′ ∈ W ′}. Note that while the notion
of a lexicographic belief sequence defined in Section 3.3 considers a countable sequence
(S0,S1, . . .) of strategies, a belief sequence here considers a sequence Bi(w) of sets of
worlds. Player i is rational in world w if player i’s strategy in w is rational with respect
to 〈s(B0

i (w)), s(B1
i (w)), . . .〉. where rationality with respect to lexicographic sequences

is defined as in Section 3.3.
To capture the type of reasoning we want to do in these Kripke structures, we

consider a propositional language similar in spirit to that considered in [Halpern and
Pass 2009]. We start with the special proposition true, a primitive proposition play i(a)
for each player i and action a ∈ Ai (which intuitively says that player i is playing
action a), a primitive proposition RAT i for each player i (which, intuitively, says that
player i is rational), and close off under conjunction, negation, and the family of modal
operators Ok

i . Roughly speaking, Ok
i φ says that “all player i knows at level k is φ”.

We take play−i(~a−i) to be an abbreviation for ∧j 6=iplay j(aj), and play(~a) to be an
abbrevation for ∧jplay j(aj).

A formula is either true or false at a world in a Kripke structure. As usual, we write
(M,w) |= φ if φ is true at world w in Kripke structure M . The semantics for formulas
other that Ok

i φ is given as follows:

• (M,w) |= true (so true is vacuously true).

• (M,w) |= play i(a) if si(w) = a

• (M,w) |= RAT i if si(w) is a best response to the strategy sequence 〈s(B0
i (w)), s(B1

i (w)), . . .〉.

• (M,w) |= ¬φ if (M,ω) 6|= φ.

• (M,w) |= φ ∧ φ′ iff (M,ω) |= φ and (M,ω) |= φ′.

The “all agent i knows” operator was first considered by Levesque [1990] and later
by Halpern and Lakemeyer [2001]. While our definition is similar in spirit to these
earlier definitions, it is more syntactic, and follows the lines of the definition used in
[Halpern and Pass 2009]. Intuitively, “all agent i knows is φ” if agent i knows φ and
considers possible every formula consistent with φ. The phrase “every formula” makes
it clear that the meaning of “all i knows” is dependent on what formulas we consider.
For simplicitly here, we just consider formulas of the form play−i(σ−i) for j 6= i, so “all
i knows is φ” says that i considers possible all strategy profiles that other players could
use, consistent with φ.12 Thus,

12There is no reason to focus just on strategies. In [Halpern and Pass 2009], we also consider a
version of the operator where the language includes all possible beliefs of the other players (i.e., all
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• (M,w) |= Ok
i φ if (M,w′) |= φ for all w′ ∈ Bki (w) and for all strategies a−i ∈ A−i,

if there exists some structure M † and world w† in M † such that (M †, w†) |=
φ ∧ play−i(a−i), then there exists a world w′′ ∈ Bk(w) such that (M,w′′) |=
play−i(a−i).

Thus, this formula says that if it is consistent with φ that the players other than i play
a−i, then player i must consider it possible at the kth level that the players play a−i.

Define the formulas NDk
i inductively, by taking ND0

i = true and

NDk+1
i = RAT i ∧ ∧k`=0O

`
i (∧j 6=iND `

j).

This formula captures the intuitions that we outlined in the main text. Player i’s top-
level belief is that the other players could be using an arbitrary strategy; his first-level
belief is that the other players are rational, but that they believe that other players
could be using an arbitrary strategy; his second-level belief is that the other players
are rational and believe that other players are rational and believe that other players
are using an arbitrary strategy; and so on.

The following theorem shows that ∧iNDk
i completely characterizes k rounds of it-

erated regret minimization.

Theorem A.1 The following are equivalent:

• The action profile ~a survives k rounds of iterated regret minimization (i.e., ~a ∈
RMk(S)).

• There exists a structure M and world w in M such that (M,w) |= play(~a) ∧
(∧iNDk

i ).

Proof: We proceed by induction on k. The result is trivially true if k = 0. Suppose the
result is true for k; we prove it for k + 1. Suppose that (M,w) |= play(~a) ∧ (∧iNDk

i ).
It is almost immediate from the induction hypothesis that s−i(B`i )) = RM`

−i(S) for
` = 0, . . . , k and every player i. Since (M,w) |= play i(ai) ∧ RATi, it follows that
ai ∈ RMk+1

i (S). Thus, ~a ∈ RMk+1(S).
Now suppose that ~a ∈ RMk+1(S). We construct a finite structure Mk+1 as follows.

Let W consist of all the worlds of the form (~a, `, i), where ~a ∈ S, ` ∈ {0, . . . , k + 1},
and i is a player. Define s(~a, `, i) = s(~a, `, i) = ~a. Finally, define

Bhj ((~a, i, `)) =


{(~a′, j, `− 1) : ~a′−j ∈ RMh

−j(S), aj = a′j} if 0 ≤ h ≤ `, j 6= i, ` > 0;
{(~a′, j, 0) : ~a′−j ∈ S−j, aj = a′j} if h = ` = 0, j 6= i;

{(~a′, i, `) : ~a′−i ∈ RMh
−i(S), ai = a′i} if 0 ≤ h ≤ `, j = i;

B`j((~a, i, `)) if h > `.

It is easy to see that if ai = a′i, then Bhi (~a, i, `) = Bhi (~a′, i, `), and if j 6= i and
aj = a′j, then Bhj (~a, i, `) = Bhj (~a′, j, `− 1). It follows that, for all worlds w,w′ ∈ Mk+1,

possible types of the other players). We could do the same here, but for ease of exposition, we focus
on the simpler language.
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if w′ ∈ ∪∞j=0Bi(w), then si(w) = si(w
′) and Bi(w) = Bi(w′). Thus, Mk+1 is indeed a

lexicographic belief Kripke structure. Now a straightforward induction on h shows that
if ~a ∈ RMh(S) and h ≤ `, then (M, (~a, `, j)) |= ∧iNDh

i . The desired result follows.

B Proofs

We provide proofs of all the results not proved in the main text here. We repeat the
statements for the convenience of the reader.

Theorem 3.3: Let G = ([n], A, ~u) be a strategic game. If S is a closed, nonempty
set of strategies of the form S1 × . . . × Sn, then RM∞(S) is nonempty, RM∞(S) =
RM∞

1 (S)× . . .×RM∞
n (S), and RM(RM∞(S)) = RM∞(S).

Proof: We start with the case of pure strategies, since it is so simple. Since D(S) ⊆ S
for any deletion operator D and set S of strategy profiles, when we have have equality,
then clearly RM∞(A) = RMk(A). Since A is finite by assumption, after some point
we must have equality. Moreover, we have RM(RM∞(A)) = RM∞(A).

To deal with the general case, we must work a little harder. The fact thatRM∞(S) =
RM∞

1 (S)×. . .×RM∞
n (S) is straightforward and left to the reader. To prove the other

parts, we first need the following lemma.

Lemma B.1 Let S be a nonempty closed set of strategies. Then RM(S) is closed and
nonempty.

Proof: We start by showing that regretSi
i is continuous. First note that regretSi

i (ai | ~a−i)
is a continuous function of ~ai. By the closedness (and hence compactness) of S it
follows that regretSi (ai) = max~a−i∈S−i

regretSi(ai | ~a−i) is well defined (even though
it involves a max). To see that regretSi is continuous, suppose not. This means
that there exist some a, δ such that for all n, there exists an an within 1/n of a
such that |regretSi (an) − regretSi (a)| > δ. By compactness of S, it follows by the
Bolzano-Weierstrass theorem [Rudin 1976] that there exist a convergent subsequence
(anm , regret i(anm)) which converges to (a, b). We have |b − regret i(a)| ≥ δ, which is a
contradiction.

Now, to see that RM(S) is nonempty, it suffices to observe that, because S is
compact, and regretSi is continuous, for each player i, there must be some strategy σi
such that regretSi (σi) = minregretSi . Thus, σi ∈ RM(S).

To show that RM(S) is closed, suppose that 〈σm〉m=1,2,3,... is a sequence of mixed
strategy profiles in RM(S) converging to σ (in the sense that the probability placed
by σm on a pure strategy profile converges to the probability placed by σ on that
strategy profile) and, by way of contradiction, that σ /∈ RM(S). Thus, for some player
i, σi /∈ RMi(S). Note that, since RM(S) ⊆ S, the sequence 〈σmi 〉m=1,2,3,... is in S;
since S is closed, σ ∈ S. Let minregretSi = b. Since σmi ∈ RMi(S), we must have
that regretSi (σmi ) = b for all m. Since σi /∈ RMi(S), there must exist some strategy
profile ~τ ∈ S such that Ui(~τ) − Ui(σi, τ−i) = b′ > b. But by the continuity of utility,
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limm Ui(σ
m
i , τ) = b′. This contradicts the assumption that regretSi (σmi ) = b for all m.

Thus, RM(S) must be closed.

Returning to the proof of Proposition 3.3, note that since S is closed and nonempty,
it follows by Lemma B.1 that RMk(S) is a closed nonempty set for all k. Additionally,
note that RMk(S) can be viewed as a subset of the compact set [0, 1]|A| (since a
probability distribution on a finite set X can be identified with a tuple of numbers in
[0, 1]|X|); it follows that RMk(S) is also bounded, and thus compact. Finally, note that
the set {RMk(S) : k = 1, 2, 3, . . .} has the finite intersection property : the intersection
of any finite collection of its elements is nonempty (since it is equal to the smallest
element). The compactness of S now guarantees that the intersection of all the sets
in a collection of closed subsets of S with the finite intersection property is nonempty
[Munkres 2000]. In particular, it follows that RM∞(S) is nonempty.

To see that RM∞(S) is a fixed point of the deletion process, suppose, by way of

contradiction, that σi ∈ RM∞
i (S) −RMi(RM∞(S)). Let minregret

RM∞(S)
i = b and

choose σ′i ∈ RM∞
i (S) such that regret

RM∞(S)
i (σ′i) = b. Since σi /∈ RM(RM∞(S)),

it must be the case that regret
RM∞(S)
i (σ′i) = b′ > b. By assumption, σi ∈ RM∞(S),

so σi ∈ RMk(S) for all k; moreover, regret
RMk(S)
i (σi) ≥ b′. Since σi ∈ RMk+1(S),

it follows that minregret
RMk(S)
i ≥ b′. This means that there exists a strategy profile

~τ k ∈ RMk such that Ui(~τ
k) − Ui(σ′i, ~τ k−i) ≥ b′. By the Bolzano-Weierstrass theorem,

the sequence of strategies 〈~τ k〉k=1,2,... has a convergent subsequence 〈~τ kj〉j=1,2,... that
converges to some strategy profile ~τ . Since τ k ∈ RMm(S) for all k ≥ m, it must be
the case that, except for possibly a finite initial segment, this convergent subsequence
is in RMm(S). Since RMm(S) is closed, ~τ , the limit of the convergent subsequence,
is in RMm(S) for all m ≥ 1. Thus, ~τ ∈ RM∞(S). Now a simple continuity argument
shows that Ui(~τ)− Ui(σ′i, ~τ−i) ≥ b′ > b, a contradiction.

Lemma 3.13: regretS1 (sad) = (n− 1)(u3− u2) + max(−u1, u2− u3). Moreover, if s is
a strategy for player 1 where he plays c before seeing player 2 play c (i.e., where player
1 either starts out playing c or plays c at the kth for k > 1 move after seeing player 2
play d for the first k−1 moves), then regretS1 (s) > (n−1)(u3−u2)+max(−u1, u2−u3).

Proof: Let sc be the strategy where player 2 starts out playing d and then plays c to
the end of the game if player 1 plays c, and plays d to the end of the game if player 1
plays d. We have regretS1

1 (sad | sc) = (n− 1)(u3− u1)− u1: player 1 gets gets nu1 with
(sad , sc), and could have gotten (n − 1)u3 if he had cooperated on the first move and
then always defected.

Let s′c be the strategy where player 2 starts out playing c and then plays c to the
end of the game if player 1 plays c, and plays d to the end of the game if player 1
plays d. It is easy to see that regretS1

1 (sad | s′c) = (n − 1)(u3 − u1) + (u2 − u3). Thus,
regretS1 (sad) ≥ (n− 1)(u3−u2) + max(−u1, u2−u3). We now show that regretS1 (sad) =
(n−1)(u3−u2)+max(−u1, u2−u3). For suppose that the regret is maximized if player
2 plays some strategy s, and player 1’s best response to s is s′. Consider the first place
where the play of (s′, s) differs from that of (sad , s). This must happen after a move
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where player 1 plays c with s′. For as long as player 1 plays d with s′, player 2 cannot
distinguish s′ from sad , and so does the same thing in response. So suppose that player
1 plays c at move k with s′. If player 2 plays c at step k, player 1 gets a payoff of u3

with (sad , s) at step k and a payoff of u2 with (s′, s). Thus, player 1’s total payoff with
(sad , s) is at least (n−1)u1 +u3, while his payoff with (sad , s) is at most (n−1)u3 +u2;
thus, his regret is at most (n − 1)(u3 − u1) + (u2 − u3). On the other hand, if player
2 plays d with s at step k, then player 1’s payoff at step k with (s′, s) is 0, while his
payoff at step k with (sad , s) is u1. Thus, his regret is at most (n − 1)(u3 − u1) − u1.
(In both cases, the regret can be that high only if k = 1.)

We next show that if s is a strategy for player 1 where he plays c before seeing
player 2 play c, then regretS1 (s) > (n − 1)(u3 − u2) + max(−u1, u2 − u3). Suppose
that k is the first move where player 1 plays c despite not having seen c before. If
k = 1 (so that player 1 cooperates on the first move), let sd be the strategy where
player 2 plays d for the first move, then plays c to the end of the game if player 1
has played d for the first move, and otherwise plays d to the end of the game. It is
easy to see that Then regretS1

1 (s | sd) = (n − 1)(u3 − u1) + u1. On the other hand,
if k > 1, then the regret regretS1

1 (s | sc) ≥ (n − 1)(u3 − u1). Thus, regretS1 (s) >
(n− 1)(u3 − u2) + max(−u1, u2 − u3).

Proposition 3.18: Let G = ([n], A, ~u) be a strategic game and let σi be a mixed
strategy for player i. Then regretΣ

i (σi) = max~a−i∈A−i
regretΣi

i (σi | ~a−i).

Proof: Note that, for all strategies profiles ~σ−i, there exists some strategy σ∗i such that
UΣi
i (~σ−i) = maxσ′i∈Σi

Ui(σ
′
i, ~σ−i) = Ui(σ

∗
i , ~σ−i). It follows that

UΣi
i (~σ−i) = Ui(σ

∗
i , ~σ−i)

=
∑

~a−i∈A−i
~σ−i(~a−i)Ui(σ

∗
i ,~a−i)

≤
∑

~a−i∈A−i
~σ−i(~a−i)U

Σi
i (~a−i).

Thus
regretΣi

i (σi | ~σ−i)
= UΣi

i (~σ−i)− Ui(σi, ~σ−i)
= UΣi

i (~σ−i)−
∑

~a−i∈A−i
~σ−i(~a−i)Ui(σi,~a−i)

≤
∑

~a−i∈A−i
~σ−i(~a−i)U

Σi
i (~a−i)−

∑
~a−i∈A−i

~σ−i(~a−i)Ui(σi,~a−i)

=
∑

~a−i∈A−i
~σ−i(~a−i)regretΣi

i (σi | ~a−i)
≤ max~a−i∈A−i

regretΣi
i (σi | ~a−i).

It follows that

regretΣ
i (σi) = max

~σ−i∈Σ−i

regretΣi
i (σi | ~σ−i) = max

~a−i∈A−i

regretΣi
i (σi | ~a−i).

Lemma 3.23: regretΣ
1 (σ) < 3.

Proof: By Proposition 3.18, to compute regretΣ
1 (σ), it suffices to compute regretΣ1

1 (σ | a)
for each action a of player 2. If Player 1 plays σ and player 2 player plays 100, then
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the best response for player 1 is 99, giving him a payoff of 99. The payoff with σ is

100× 1/2 + 101× 1/4 + 100× 1/8 + · · ·+ 5× 2−98 + 4× 2−98

102× 1/2 + 101× 1/4 + 100× 1/8 + · · ·+ 5× 2−98 + 4× 2−98 − 1
= 4× (1/2 + 1/4 + · · ·+ 2−98 + 2−98)+

1× (1/2 + 1/4 + · · ·+ 2−98)+
1× (1/2 + 1/4 + · · ·+ 2−97) + · · · 1/2− 1

= 4 + (1− 2−98 + (1− 2−97) + · · ·+ (1− 1/2)− 1
= 102− (1/2 + 1/4 + · · ·+ 2−98)− 1
= 100 + 1/298,

so the regret is less than 1. Similarly, if player 2 plays k with 2 ≤ k ≤ 99, the best
response for player 1 is k − 1, which would give player 1 a payoff of k + 1, while the
payoff from σ is

(k − 2)(1/2 + · · ·+ 1/2100−k) + k × 1/2101−k + (k + 1)× 1/2102−k + k × 1/2103−k+
(k − 1)× 1/2104−k + · · ·+ 5× 1/298 + 4× 1/298.

Thus, player 1’s regret if player 2 plays k is

3× (1/2 + · · ·+ 1/2100−k + 1/2105−k) + 2× 1/2104−k + 1× (1/2101−k + 1/2103−k)
+ 1/2106−k(4 + 5× 1/2 + 6× 1/4 + · · ·+ (k − 4)× 1/298)
= 3× (1/2 + · · ·+ 1/2100−k + 1/2105−k)2× 1/2104−k + 1× (1/2101−k + 1/2103−k) + 6× 1/2106−k)
= 3× (1/2 + · · ·+ 1/2100−k + 1/2104−k)2× 1/2104−k + 1× (1/2101−k + 1/2103−k)
∼ 3× (1− 1/2101−k) < 3.

C A Comparison to the Renou-Schlag Approach

As we said, the Renou-Schlag definition of regret in the case of mixed strategies is
somewhat different from ours. Our definition of regretSi

i (σi | ~σ−i) does not depend on
whether ~σ consist of pure strategies or mixed strategies (except that expected utility
must be used in the case of mixed strategies, rather than utility). By way of contrast,
Renou and Schlag [2008] define

regret ′i(σi | ~σ−i) =
∑

ai∈Ai,a−i∈A−i

σi(a)~σ−i(~a−i)regretAi
i (ai | ~a−i),

where, as before, regretAi
i (ai | ~a−i) denotes the regret of player i relative to the actions

Ai. That is, regret ′i(σi | ~σ−i) is calculated much like the expected utility of ~σ to agent i,
in terms of the appropriate convex combination regrets for pure strategies. Note that
regret ′i is independent of any set Si of strategies.

While we view players as actually choosing mixed strategies, intuitively, Renou and
Schlag view players as really choosing only pure strategies. A mixed strategy is taken
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to represent the beliefs of the players regarding other players’ strategies. With this
viewpoint, to calculate the regret of an action a relative to a mixed strategy ~σ−i for
the other players, the player should calculate his regret relative to every pure strategy
for the other players, and multiply that by the likelihood of that strategy occurring,
according to his beliefs (i.e., according to ~σ−i). Thus, with this viewpoint, we should
have

regret ′i(σi | ~σ−i) =
∑

a−i∈A−i

~σ−i(~a−i)regret ′i(σi | ~a−i).

The fact that regret ′(σi | ~a−i) should be
∑

ai∈A σi(ai)regretAi
i (ai | ~a−i) is noncontrover-

sial. As the following lemma shows, both approaches agree on the regret relative to a
pure strategy, although they disagree in general.

Lemma C.1 If ~σ is a mixed strategy and ~a is a pure strategy, then regret ′i(σi | ~a−i) =
regretΣi

i (σi | ~a−i), but in general, regret ′i(σi | ~σ−i) 6= regretΣi
i (σi | ~σ−i).

Proof: For the first claim, it suffices to show that regretΣi
i (σi | ~a−i) =

∑
ai∈A σi(ai)regretAi(ai |

~a−i). It is easy to see that there is a pure strategy for player i that is a best response
to ~a−i; call it a∗. Thus,

regretΣi
i (σi | ~a−i)

= ui(a
∗,~a−i)− ui(σi,~a−i)

= ui(a
∗,~a−i)−

∑
ai∈Ai

σi(ai)ui(ai,~a−i)
=

∑
ai∈Ai

σi(ai)(ui(a
∗,~a−i)− ui(ai,~a−i)) [since ui(a

∗,~a−i) =
∑

ai∈Ai
σi(ai)ui(a

∗,~a−i)]

=
∑

ai∈Ai
σi(ai)regretAi

i (ai | ~a−i).

For the second part, consider the following game, where A1 = A2 = {a, b}, and
player 1’s payoffs are given by the following table:

a b
a 3 0
b 0 2

Clearly regretΣ1
1 (a | a) = regretΣ1

1 (b | b) = 0, regretΣ1
1 (a | b) = 2, and regretΣ1

1 (b | a) = 3.
Let σ be the strategy (1/2)a+(1/2)b. Then an easy computation shows that regret ′(a |
σ) = 1, while regretΣ1

1 (a | σ) = 0 (since a is the best response to σ).

In light of Lemma C.1, it is perhaps not surprising that the two approaches rank
strategies differently. What is perhaps surprising is that, as we now show, if we are
considering the strategy that minimizes regret with respect to all strategies, then it
does not matter which approach we take.

Proposition C.2 Let G = ([n], A, ~u) be a strategic game and let σi be a mixed strategy
for player i. Then regretΣ

i (σi) = maxσ−i∈Σ−i
regret ′i(σi | σ−i).
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Proof: By Proposition 3.18, regretΣi
i (σi) = max~a−i∈A−i

regretΣi
i (σi | ~a−i). It is also easy

follows from the definition of regret ′i that maxσ−i∈Σ−i
regret ′i(σi | σ−i) = max~a−i∈A−i

regret ′i(σi |
~a−i). Thus, it suffices to show that regretΣi

i (σi | ~a−i) = regret ′i(σi | ~a−i) for all ~a−i ∈ A−i;
this follows from Lemma C.1.

Proposition C.2 shows that, for many of the examples in Section 3.4.2, it would
not matter whether we had used regret ′ instead of regret . On the other hand, the
difference between the two approaches becomes more significant if we consider prior
beliefs. Just as we do, Renou and Schlag consider regret minimization not just with
respect to all strategies, but with respect to a set of strategies (representing a player’s
beliefs). When a player is considering his best response, he always considers all possible
strategies for himself. Thus, in our language, Renou and Schlag consider generalized
regret minimization with respect to profiles of sets of strategy profiles of the form
(Σ1×Π−1, . . . ,Σn×Π−n); that is, each agent i puts no restriction on his own strategies.
(They also require that Π−i be a closed, convex set of strategies.) In general, regret
and regret ′ differ with prior beliefs, as the following example shows.

Example C.3 Consider the game from Lemma C.1. Let σα denote the strategy αa+
(1 − α)b; let Π2 be the (closed, convex) set of strategies for player 2 of the form σα,
where α ∈ [1/5, 3/5]. It is easy to check that

regretΣ1
1 (σα | σα′) =

{
3α′ − (3αα′ + 2(1− α)(1− α′)) if α′ ≥ 2/5
2(1− α′)− (3αα′ + 2(1− α)(1− α′)) if α′ < 2/5,

since a is the best response to σα′ if α′ ≥ 2/5, and otherwise b is the best response.
Simplifying this expression, we get

regretΣ1
1 (σα | σα′) =

{
5(1− α)(α′ − 2/5) if α′ ≥ 2/5
5α(2/5− α′) if α′ < 2/5.

If player 1 believes that player 2 is playing a strategy in Π2 (i.e., α′ ∈ [1/5, 3/5]), then
the strategy that minimizes regretΣ1

1 is σ1/2. The strategy σ1/2 has regret /12; another
other strategy will have greater regret relative to either σ1/5 or σ3/5. (Note that without
this restriction on α′, σ3/5 would have minimized regret1.) By way of contrast,

regret ′1(σα | σα′) = 2α(1− α′) + 3(1− α)α′,

and the strategy that minimizes regret ′1 is σ3/5. This guarantees that regret ′1 is 6/5, no
matter what player 2 does; on the other hand, if player 1 chooses σα and α > 3/5, then
regret ′1(σα | σ1/5) > 6/5, while if α < 3/5, then regret ′1(σα | σ3/5) > 6/5.
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