CS 286r: Assignment, Matching and Dynamics

Prof. David C. Parkes
SEAS

Class outline

- Overview of course
- Arrow's theorem
- Gibbard-Satterthwaite theorem
- Introducing money (Vickrey)
- Classic mechanisms:
 - median mechanism (social choice)
 - top-trading cycle algorithm (house allocation)
 - deferred-acceptance algorithm (matching)
What is CS 286r?

• Topics at the interface between Computer Science and Economics.
• Rotating topics class, last taught in Fall’08 by Prof. Yiling Chen on “social computing.”
• Seminar style

Course Goals

• Provide an introduction to an emerging, interdisciplinary literature
• Develop a level of comfort with both economic and computational thinking
• Develop general skills related to reading papers, identifying research questions
• Provide a basis for continued research.
Fall 2009

• Assignment, Matching and Dynamics
• Algorithmic, game-theoretic and conceptual questions related to “market engineering” with applications across societal, Internet, governmental and distr. computing settings.
• Focus on mechanism design with and without money, bridging from classic economic theories to recent computational directions.

• Assignment problems:
 – N agents, G goods (tasks), prefs. $S \succ_T T$ on $S, T \subseteq G$.
 – Seek an assignment of goods to agents
 – Variations: with and without money, structure on preferences, initial endowment, side constraints.
 – Design criteria? Examples?
• **Assignment problems:**
 – N agents, G goods (tasks), prefs. \(S \succ T \) on \(S, T \subseteq G \).
 – Seek an assignment of goods to agents
 – Variations: with and without money, structure on preferences, initial endowment, side constraints.
 – Design criteria? Examples?

• **Matching problems:**
 – Two agent sets; e.g. \(S \) (“students”) and \(F \) (“firms”)
 – Two-sided preferences, \(f_1 \succ s_2, s_1 \succ f_2 \)
 – Seek a bipartite matching
 – Variations: indifferences, externalities, multiple units.
 – Design criteria? Examples?

Motivating problems
• Harvard PDP-1 computer (1968)
• Sponsored Search (2002+)
• Wireless spectrum allocation (1994+)
• Undergraduate housing (1999+)
• Course allocation (1996+)
Motivating problems

- Harvard PDP-1 computer (1968)
- Sponsored Search (2002+)
- Wireless spectrum allocation (1994+)
- Undergraduate housing (1999+)
- Course allocation (1996+)

- Babysitting co-ops (1970s+)
- High school matching (2003+ in New York City)
- Medical students to residencies (1998+ NMRP)
- File-sharing networks (1999+)
- TV Ad Auctions (2009+); Ad Exchanges (2006+)
- Crowdsourcing (2001+; e.g. Innocentive, TopCoder)

Dynamics

- Agents arrive and depart
- Set of available goods change
- Preference shocks
- Examples
 - new jobs arriving to schedule on PDP-1
 - dynamic assignment of ad inventory to ads
 - new donor-recipient pairs arriving
 - housing: seniors leave, freshmen arrive
 - changing inventory of last-minute theater tickets
 - learning “taste” for different files
Some technical themes

- Approximate strategyproofness: qualitative and quantitative “degrees” of non-manipulability
- Characterizations and algorithms for dynamic assignment and matching without money
- Approximations via mechanisms without money (AMD agenda)
- Preference representations; role of simplicity?
- Role of transitive trust and “scrip” systems for distributed work platforms
- Using methods of online stochastic optimization within dynamic mechanisms

An active research area

- Nexus of game theory, computer science (AI and theory) and operations research.
- Many conferences:
 - International Conference on Autonomous agents and Multi-Agent systems (in Chicago, May 2010)
 - ACM Conference on Electronic Commerce (at Harvard, June 2010)
 - Int. Workshop on Computational Social Choice (COMSOC, Dusseldorf, Sept 2010)
 - Workshop on Internet and Network Economics (WINE, Rome, Dec 2009)
 - Related papers in STOC/FOCS, AAAI/IJCAI
 - NBER Market Design; Univ. Bonn “Visiting program in Mechanism Design” etc.
<table>
<thead>
<tr>
<th>Course Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Algorithms (CS 124), AI (CS 181, 182) and optimization (AM 121) helpful.</td>
</tr>
<tr>
<td>• Microeconomic theory (EC 1011a, EC 1056, EC 2056) helpful.</td>
</tr>
<tr>
<td>• Ph.D. students in Computer science and Economics/Business-Economics welcomed!</td>
</tr>
<tr>
<td>• A level of mathematical sophistication.</td>
</tr>
<tr>
<td>• Talk to me if you have concerns about your background. Look at the papers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Introductory lectures: this one, game theory, MD with money, MD without money</td>
</tr>
<tr>
<td>• Student led presentation and discussion:</td>
</tr>
<tr>
<td>– ≈ two papers per class</td>
</tr>
<tr>
<td>– meet with me before class to discuss the papers</td>
</tr>
<tr>
<td>• Submit comments (from class page)</td>
</tr>
<tr>
<td>• Two problem sets</td>
</tr>
<tr>
<td>• Final paper</td>
</tr>
</tbody>
</table>
Grading policy

• Participation and comments: 25-30%
• Problem sets: 20-25%
• Presentation and leading discussion: 15%
• Final paper 35%

Final Paper

• Develop a deep understanding of a specific topic related to the class
• May be computational, theoretical, empirical or experimental. Work in a pair with approval.
 – Best papers work on an open research problem.
• Can be an expositional paper: two related technical papers, including an exposition of (at least) two technical results and critical discussion.

• Submit proposal, give a short presentation. Final paper by the end of reading week.
Office hours

• David Parkes, parkes@eecs.harvard.edu
• 2.30-3.30pm Wednesdays, MD 229 (TODAY!)
• Later: Move, likely to Thurs/Fri to meet with students in advance of presenting papers

• Shaili Jain, shailij@eecs.harvard.edu
• 2-4pm Tuesdays, second floor MD lobby

Schedule

• http://www.eecs.harvard.edu/cs286r/schedule.html
For Wednesday 9/9

- Submit comments on reading taken from Chapters 3, 5 and 6 of “Multiagent Systems” by K. Leyton-Brown and Y. Shoham. Reading is posted on the class schedule.
- What is unclear? What would you like to hear about in class? What did you enjoy?
- Two paragraphs maximum.

Class outline

- Overview of course
- Arrow’s theorem
- Gibbard-Satterthwaite theorem
- Introducing money (Vickrey)
- Classic mechanisms:
 - median mechanism (social choice)
 - top-trading cycle algorithm (house allocation)
 - deferred-acceptance algorithm (matching)