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Abstract

We exploit methods of sample-based stochastic optimization for the
purpose of strategyproof dynamic, multi-unit auctions. There are no an-
alytic characterizations of optimal policies for this domain and thus a
heuristic approach, such as that proposed here, seems necessary in prac-
tice. Following the suggestion of Parkes and Duong [17], we perform
sensitivity analysis on the allocation decisions of an online algorithm
for stochastic optimization, and correct the decisions to enable a strat-
egyproof auction. In applying this approach to the allocation of non-
expiring goods, the technical problem that we must address is related
to achieving strategyproofness for reports of departure. This cannot be
achieved through self-correction without canceling many allocation deci-
sions, and must instead be achieved by first modifying the underlying
algorithm. We introduce the NowWait method for this purpose, prove its
successful interfacing with sensitivity analysis and demonstrate good em-
pirical performance. Our method is quite general, requiring a technical
property of uncertainty independence, and that values are not too posi-
tively correlated with agent patience. We also show how to incorporate
“virtual valuations” in order to increase the seller’s revenue.

1 Introduction

Mechanism design addresses the problem of private information in economic en-
vironments and seeks to implement desirable outcomes despite the willingness
of agents to misreport this information. Auctions present a canonical problem
of mechanism design. Many important mechanism design problems are in fact
dynamic, for example with a dynamic agent population and new bids arriving
online [11, 15]. Consider selling theater tickets, airline seats, or banner adver-
tisements, where bids may be expected to arrive over time and associated with
bidders that require a response before all bids have been received.

We consider a very natural instance of this problem. There are C units of
an identical item for sale, to be sold in the course of T time periods. Each

1



bidder (or agent) i has an arrival time ai ∈ 1..T , departure time di ∈ 1..T , and
value ri ∈ R≥0 for qi ∈ Z>0 units of the item. The semantics of the bidder’s
type, θi = (ai, di, ri, qi), are that the bidder has value ri for receiving qi units in
some period t ∈ {ai, . . . , di}. The arrival time models the moment at which the
agent realizes her demand or learns about the existence of the auction while the
departure models the latest moment at which the agent still has value for receiv-
ing the items. The agent types are identically and independently distributed
with probability density function f(θi), and nt agents arrive each period, with
associated density function g(t).

The design goal may be alternatively one of efficiency (i.e., maximizing ex-
pected value) or revenue (i.e., maximizing expected payments). We will consider
both objectives in this paper. If the goal was efficiency, then one might consider
adopting the online Vickrey-Clarke-Groves mechanism [18, 19]. But this mech-
anism requires an optimal (or ǫ-optimal) decision policy, which is not computa-
tionally feasible in this domain. Our dynamic allocation problem is inherently
combinatorial because of the multi-unit demand of agents, and optimal decision
policies cannot be computed (or even represented) offline because of the size of
the state space, which needs to include all possible sets of undominated agent
bids that can be received in a single period. Online, sample-based algorithms
to compute ǫ-optimal policies [10], also quickly become intractable because the
sample-tree scales exponentially in the look-ahead horizon.

Other prior work in the probabilistic, dynamic framework considers only do-
mains that facilitate analytic characterizations of optimal policies; e.g., domains
with commonly-ranked items [6], unit-demand bidders with “regular” valuation
distributions [14], smoothly changing types [20] or unit-demand bidders with
time-discounting [4]. We are not aware of any prior work that is able to scal-
ably address the multi-unit, dynamic auction problem in this paper.

In the absence of computational methods to compute optimal policies, or an-
alytic characterizations of optimal polices, it seems necessary to adopt a heuristic
approach. Parkes and Duong [17] propose “output-ironing” as a methodology
to transform heuristic, online algorithms for stochastic optimization into strat-
egyproof dynamic auction protocols. A strategyproof dynamic auction is one
in which truthful, immediate bidding is a dominant-strategy equilibrium. It is
known that strategyproof dynamic auctions in this environment require that
the allocation policy is monotonic [8, 15]. Loosely, a monotonic policy is one in
which an agent continues to be allocated as it improves its bid (appropriately
defined for arrival, departure, value and quantity). The idea behind output-
ironing is to verify the monotonicity of an allocation policy online, as decisions
are made, and correct such decisions as necessary to make the policy monotonic.

Parkes and Duong [17] successfully apply output-ironing to environments
with expiring goods, where one or more units must be allocated in each pe-
riod; e.g., the allocation of compute time on a shared computer. But this
self-correcting approach is difficult to apply in environments with non-expiring
goods, such as that considered in the current paper. The problem is with regard
to establishing departure monotonicity, which requires that an agent allocated
for some bid (or reported type) is also allocated for a bid with the same arrival,
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value, and quantity but a later departure. For example, suppose an agent i
with reported type (1, 5, $10, 2) is allocated in period 5. It must be verified that
the decision policy will continue to allocate i (in some period) for all reports
of type (1, d′, $10, 2) with d′ > 5. But with non-expiring goods, any reason-
able policy will wait until i’s departure to decide whether to allocate i so that
it maximizes the available information about other bids. This in turn makes
it impossible to verify departure monotonicity with respect to later reports of
departure because the bids that will arrive and affect allocation decisions are
as yet unknown (e.g., at time period 5 it is unknown whether or not bids with
later reported departures will be allocated). Thus, output ironing would need to
cancel all allocations except those to bids for which there are no possible types
with later departures (i.e., maximally-patient agents). This would result in an
implemented policy with very low efficiency.

Our contribution. We design NowWait, a heuristic modification of the
Consensus algorithm [21] for online stochastic optimization, that is provably
departure monotonic and thus precludes the need for output ironing with re-
spect to departure. When coupled with output ironing in the other dimensions
of a bidder’s type, it provides a strategyproof and scalable dynamic multi-unit
auction. We also establish that a simplified form of output ironing, referred
to here as adjacency ironing is sufficient to establish monotonicity. This sig-
nificantly improves the scalability of the methodology. NowWait balances the
immediate reward from accepting a bid with the estimated opportunity cost
from waiting to a future period. Empirical analysis demonstrate higher than
90% efficiency with respect to the offline optimum, and higher than 98% effi-
ciency with respect to the online optimum when this benchmark is available.
This is achieved with around a 20x slow down due to using computational iron-
ing, over-and-above the underlying method of stochastic optimization, and a
per-period solve time of approximately 40 seconds in instances with more than
100 arrivals and 100 goods to allocate. The approach is very flexible, and can
be applied to inputs that are first transformed to “virtual valuations” as in My-
erson’s revenue-optimal offline auction [13]. Our experimental results show that
this can boost revenue significantly in environments with low demand relative to
supply, as would be expected. The approach can also be combined with learning
of the underlying distribution on agent types, because the incentive properties
do not rely on having a correct probabilistic model.1

Other related work. Boutilier et al. [1] apply online stochastic combinato-
rial optimization to clearing expressive banner ad auctions, but without consid-
eration of incentive issues. Hajiaghayi et al. [9] adopt a dynamic-programming
approach to design simple dynamic auctions for settings with unit-demand bid-
ders, with values drawn from a known prior but whose number may not be
known in advance. Parkes [15] provides a general survey of online mechanisms,

1The incentive problems that can occur because of informational externalities when learn-
ing in the context of dynamic auctions (see Gershkov and Moldovanu [5]) can be avoided by
precluding the use of a new report of a type θ by bidder i for the purpose of updating the
center’s model about future reports until the agent has departed.
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including both probabilistic and prior-free approaches.
The agenda of automated mechanism design (AMD) [2] shares the goal of

creating a mechanism automatically, but differs from the approach adopted here
in that it adopts optimization to design a functional description of all decisions
that will be made by a mechanism, rather than seeking to adapt an existing
decision algorithm, such as in the approach adopted here. This makes AMD
very difficult to scale.

The work presented here conforms to the agenda of heuristic mechanism
design, recently advocated by Parkes [16]. This stipulates that a problem in
computational mechanism design be considered solved when a state-of-the-art
algorithm for solving a problem with cooperative agents can be adopted, “with
small modification” to solve the problem with self-interested agents. Output
ironing is a small modification to Consensus in this sense, because it retains
the vast majority of the decisions and also the same underlying computational
approach in making decisions.

Incremental mechanism design [3] also modifies the rules of a mechanism to
remove opportunities for manipulation. Unlike this paper, it requires an iter-
ative approach because fixing one opportunity may introduce another, and is
described only for offline mechanisms where the complete type profile is known.
The approach is also not computational in our sense, in that it deals with
functional representations of social choice functions defined on discretized type
spaces. Lavi and Swamy [12] provide a general procedure to transform ap-
proximate VCG mechanisms into truthful-in-expectation mechanisms for static
environments. But it is not apparent how to apply the approach to dynamic
policies, where only part of an allocation is available at any point.

Outline. We first define the set-up more formally, and define the Consen-

sus algorithm for online stochastic combinatorial optimization. In Section 2,
we also define output ironing and establish a result about the sufficiency of
adjacency-ironing. We continue by defining the important property of depar-
ture obliviousness, and noting the flexibility of our approach in reference to
virtual valuations and learning. Sections 3 and 4 define variants on Consensus

that are adapted to our problem and explain how to perform sensitivity analy-
sis. In Section 5 we present experimental results, before concluding. All proofs
are deferred to the appendix.

2 Consensus and Ironing

Recall that in our model, the type of an agent (ai, di, ri, qi) specifies a value ri

for an allocation of qi units in some period {ai, . . . , di}. We adopt the standard
quasi-linear utility model, in which an agent that pays p for qi units has utility
ri−p. We refer to di−ai as an agent’s patience, and assume this is bounded with
di − ai ≤ ∆. In the auctions we consider, an agent can make to the auctioneer
a single claim about its type. All misreports of type are possible except for
reports of early arrivals, i.e., we assume that an agent cannot claim to have
an earlier arrival than its true arrival. To motivate this, recall that the arrival
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period models the period at which an agent learns of its own demand or learns
about the existence of the mechanism. It is reasonable to restrict an agent’s
strategy from bidding before this period.2

The efficient policy maximizes total expected value:

V ∗(h1) = max
k1∈K(h1)

Eθ2..T

[

max
k2∈K(h2)

Eθ3..T

[

... max
kT ∈K(hT )

v(k, θ)

]]

, (1)

where kt is the allocation decision taken at t, state ht = (St, At) denotes the
number of available items St and the current set of active agents At (agents
with t ∈ {ai, . . . di}), K defines the set of feasible allocation decisions in period
t, θt is the set of types that arrive at t, and v(k, θ) is the total value to agents
allocated by decisions k = k1..T given types θ = θ1..T . We write i ⊏ k for “agent
i is allocated by decision k”.

A dynamic auction M = (π, x) defines a decision policy π = {π1..T } and a
payment policy x = {x1..T }. The decision and payment policy may be ran-
domized and depend on random events ω = {ω1..T }, for example random
samples of future bids. With this, the decision policy π induces decisions
kt := πt(St, At, ω1..t) and collects payment xt

i(S
t, At, ω1..t) ∈ R≥0 from each

active agent. As useful shorthand, let πi(θ, ω) = 1 denote that agent i is allo-
cated for reported types θ given uncertain events ω, with πi(θ, ω) = 0 otherwise.

Define the critical-value for agent i given policy π and reports θ−i of other
agents as vc

(ai,di,qi)
(θ−i, ω) = min{r′i s.t. πi((ai, di, r

′
i, qi), θ−i, ω) = 1}, or ∞

if no such r′i exists. This is the smallest bid value for which agent i would
still win, all else unchanged.Define a partial order on types: θi �θ θ′i ≡ (ai ≥
a′

i)∧ (di≤d′i)∧ (ri≤r′i)∧ (qi≥q′i). Type θ′i is higher than θi if it offers the seller
more flexibility, i.e. it has higher reward, demands less units and has a larger
availability interval.

Monotonicity requires that an allocated agent would still be allocated if its
type were higher, all else unchanged:

Definition 1. Policy π is monotonic if (πi(θi, θ−i, ω) = 1) ∧ (ri >
vc
(ai,di,qi)

(θ−i, ω)) ⇒ πi(θ
′
i, θ−i, ω) = 1 for all θ′i �θ θi, for all θ−i, ω, and

all agents i.

Monotonicity is sufficient, and essentially necessary (if losing agents receive
no payment) for strategyproofness in this environment [15]. A mechanism with
a monotonic decision policy is made strategyproof by defining a payment policy
that charges each allocated agent its critical value. The critical value can be
computed upon the departure.

Surprisingly, optimal policies need not be monotonic:

Example 1. [17] There are 3 units to allocate and 2 periods. In period 1,
agent 1 has type (1, 1, $5, 1) and agent 2 has type (1, 2, $500, 2). In period 2,
with probability 1 − γ an agent will arrive with type (2, 2, $1000, 3) and with

2This assumption is adopted in many other papers, including Hajiaghayi et al. [8] and Pai
and Vohra [14].
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probability γ an agent will arrive with type (2, 2, $5000, 1), for some small γ > 0.
The optimal policy must make a decision in period 1 about agent 1 because agent
1 will depart in this period. Agent 1 is not allocated because this would preclude
the ability to allocate to type (2, 2, $1000, 3) that will arrive with high probability
in period 2. Then in period 2, suppose the unlikely event occurs and an agent
with type (2, 2, $5000, 1) arrives and the optimal policy allocates to agent 2 and
also this new arrival.

Now consider what happens were agent 2 to bid $1000 rather than $500.
The optimal decision in period 1 is now to allocate to agent 1 for $5 and expect
to allocate to agent 2 in period 2. It is better to get certain value of $5 from
agent 1 than expected value γ5000 from the unlikely type in period 2 (for a small
enough γ). But now the same unlikely event occurs, and an agent with type
(2, 2, $5000, 1) arrives in period 2. The optimal policy allocates to this agent
and with 1 unit left is now unable to allocate to agent 2. This is a failure of
monotonicity: agent 2 increases its value but went from winning to losing, fixing
the types of other agents.

It is easy to see that this same failure of monotonicity will occur with the
policies constructed using sample-based stochastic optimization algorithms such
as Consensus [21], described next. It is this failure of monotonicity that sets
up the problem addressed in this paper.

2.1 The Consensus Algorithm

The Consensus (C) algorithm, proposed by van Hentenryck and Bent [21]
for online stochastic optimization, is illustrated in Figure 1, together with the
additional step of output ironing in determining decision k̆t in period t.

Algorithm 1 Consensus algorithm with ironing at time t.

votes(k):=0 for each allocation k of up to St items to At

σj :=GetSample(t) for each j = 1..|Σ|; Σ = {σ1..|Σ|}
for each j = 1..|Σ| do

αj := Opt(St, At, σj) ∩ At // active agents only

αj
s:=Select(αj , Σ, St, At)

votes(αj
s):=votes(αj

s)+1
end for

kt:= arg maxk votes(k)

k̆t := {i ⊏ kt : not isIronedA,D,Q(θi, t, (S,A)ai..t, Σ)}

return k̆t

A scenario σj in period t is a sample of a possible future: σj defines the types
θ[t+1,T ] for periods t + 1 through T . Given a scenario σj , and the current state
(St, At), there is a well-defined offline optimization problem Opt(St, At, σj).
This is a weighted knapsack problem: find the subset of bids At ∪ σj that
maximize the total value allocated without exceeding the capacity St. The C

algorithm constructs samples, solves this offline optimization problem for each
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sample, and of the agents allocated in this offline problem picks out as winning
agents only the active agents (i.e., discarding future, sampled, agents). Denote
this set of winning agents in scenario σj as αj . This set may then be additionally
“filtered” via a Select function to give set αj

s. The set of active agents αj
s then

receives one vote, the one for scenario σj . It is the Select function that we will
modify to make C departure monotonic. We will write C ⊕ Select to specify
that C is used together with the Select function.

The proposed decision kt for current time t is the one with most votes
(breaking ties at random). The final decision k̆t results from discarding all
ironed agents.

The C algorithm is applicable in domains satisfying uncertainty indepen-
dence, i.e. in which the distribution of future agents is independent of past and
current decisions:3

P(θt+1..T |k1..t) = P(θt+1..T ) (2)

for all t, all k1..t. This property requires that future demand is exogenous, and
independent of current and past allocation decisions. For example, when selling
airline tickets it requires that bids for seats arrive irrespective of the number of
seats remaining for sale. Uncertainty independence ensures that scenarios are
valid for any decision path and allows for the same |Σ| scenarios to be valid
whatever the decision made now and in future periods.

2.2 Output Ironing

We now explain output ironing (the “isIroned” function). Policies π and π̆, and

decisions kt and k̆t, denote respectively the policies and decisions before and
after ironing. Let tπi (θ, ω) ∈ T ∪ {∞} denote i’s allocation time (∞ if none
exists) when reported types are θ, for random events ω.

Definition 2 (ironing). Given decision kt, the ironed decision k̆t only keeps
those i ⊏ kt for which

tπi (θ′′i , θ−i, ω) ≤ tπi (θ′i, θ−i, ω), (3)

for all θ′′i �θ θ′i �θ θi. If (3) fails, i’s allocation is canceled.

The ironing step is performed in a period t in which C proposes to allocate
an agent. Eq. (3) requires that an allocation to agent i is canceled unless an
allocation to the same agent would have also been made, and in a monotonically-
earlier period, for all higher reported types of agent i. When an allocation is
canceled the items that were to be allocated are discarded and agent i is never
allocated.4

3All our results remain valid if in the uncertainty independence requirement (2), we also
condition on past and current arrivals: P(θt+1..T |k1..t, θ1..t) = P(θt+1..T |θ1..t). However, at
each time step, new scenarios would have to be generated.

4We cancel the decision and discard the allocated goods, rather than cancel the decision
but return the allocated goods, in order to prevent a knock-on effect, wherein a decision to
iron the decision of one agent would have a ripple effect on the decision of the “base policy”
π and thus whether another agent should be ironed.
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Ironing requires not only that an agent is provably allocated for all higher
reports, but that this occurs in monotonically earlier periods. With this, one can
make an inductive argument to establish that the ironed policy is monotonic:

Theorem 1. [17] Ironed policy π̆ is monotonic.

The uncertainty-independence property facilitates ironing, because it enables
the simulation of counterfactual states as the type of an agent is varied.5

In fact, we show that it is sufficient to perform a simplified form of ironing.
Let θ′′i ∈ θ′i++ if θ′′i is a higher type than θ′i but θ′′i strictly improves over θ′i in at
most one dimension of (a, d, q, r). We henceforth fix θ−i and ω, and omit them
from the tπi notation.

Definition 3. Given decision kt, adjacency-ironing only keeps those i ⊏ kt for
which, for all θ′i = (a′

i, d
′
i, r

′
i, q

′
i) �θ θi = (ai, di, ri, qi), with r′i = ri, it holds that

tπi (θ′′i ) ≤ tπi (θ′i), ∀ θ′′i ∈θ′i++ with r′′i = r′i and (4)

tπi (〈a′
i, d

′
i, r

′′′
i , q′i〉) ≤ tπi (〈a′

i, d
′
i, r

′′
i , q′i〉),∀r′′′i ≥r′′i ≥r′i

If (4) fails, i’s allocation is canceled.

Theorem 2. Adjacency-ironing is equivalent to ironing.

Algorithm 2 performs adjacency-ironing, following the prescription of this
definition. Algorithm 3 provides pseudo-code for isIronedR, which checks the
first condition in Eq. (4). It tracks the changes in C decisions for values higher
than i’s reported value, ri, fixing the rest of i’s type and all other agent types.
For each scenario in each time period in {ai, . . . , t

∗
i } it identifies values at which

the set of agents selected to be allocated in the offline allocation in that scenario
would change: these are the scenario breakpoints. It does so via the BrkPts func-
tion, which determines the set of all (time, scenario, value) triples at which the
set of agents selected to be allocated changes. This function also determines the
“before” and “after” decision as the value is increased past the scenario break-
point, denoted respectively α<

s (β) and α>

s (β) for breakpoint β. An example of
Algorithm 3 for C when Select is the IgnoDep function is presented in the
appendix (see Example 2).

Consider an agent i that can be allocated, i.e. with qi ≤ Si. For simple
Select methods, such as OnlyDep which selects only those agents that are
departing in the current period, the only breakpoint on scenario j in period t
for agent i with type θi = (ai, di, ri, qi) is given by:

rj
o(i) = V (St, At\{i}, σj) − V (St−qi, A

t\{i}, σj) (5)

where by V (S,A, σj) we denote the value of the solution of the offline optimiza-
tion problem Opt(S,A, σj). This follows from the simple combinatorics of the
offline weighted knapsack problem.

5If the realization of new bids was dependent on policy decisions, then the effect of some
earlier change in decision could not be simulated because the future after that change in
decision would not be known.
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Algorithm 2 isIronedA,D,Q(θi, t
∗
i (θi), (S

t, At)ai≤t≤t∗
i
, Σ): online verification of

monotonicity with respect to all higher types θ′i for an agent of type θi allocated
in period t∗i . New allocation time t∗i (θ

′
i) is found by simulating π starting at

ai, where i’s type is replaced by θ′i. The breakpoints computed in isIronedR for
each θ′i allow determining efficiently whether tπi (θ′′i ) > tπi (θ′i) for any θ′′i ∈ θ′i++.

for each θ′i = (a′
i, d

′
i, ri, q

′
i), (a′

i ≤ ai, d
′
i ≥ di, q

′
i ≤ qi) do

if isIronedR(θ′i, t
∗
i (θ

′
i), (S

t, At)ai≤t≤t∗
i
(θ′

i
), Σ) or

for any θ′′i ∈ θ′i++ with r′′i = r′i, tπi (θ′′i ) > tπi (θ′i) then

return true // i ironed

end if

end for

return false // i not ironed

We will soon introduce more nuanced Select methods in which there can be
multiple scenario breakpoints, with the decision that receives a vote changing
more than once. This makes sensitivity analysis, and thus ironing, a bit more
tricky.

Remark: The payments of agents must be computed as the critical value of the
ironed policy. For this, the procedure outlined above for ironing is essentially
reversed: one steps down lower values until the agent would be unallocated in
policy π, or allocated but fail the ironing test and thus be unallocated in ironed
policy π̆ [17].

2.3 Departure Obliviousness

The obvious concern with ironing, which cancels decisions and discards re-
sources, is that it may establish monotonicity at the expense of destroying the
value of a policy by canceling almost all decisions.

In fact, if this was a problem of stochastic optimization with cooperative
agents then it would be optimal to delay any allocation decision until an agent’s
departure, since this is without cost to the agent and allows the center to receive
more information about agent types. This is encapsulated in the OnlyDep select
method: only allocate to those agents that are in the majority vote decision and
depart now.

But as explained earlier, this would lead to a very low quality policy
when coupled with output ironing. Output ironing would fail to establish the
monotonically-earlier property of Eq. (3) for any types except maximally-patient
agents, and cancel most allocation decisions.

We will focus on departure oblivious Select methods, i.e. invariant to an
allocated agent’s delay of departure:

Definition 4. Policy π is departure-oblivious if for any agent i allocated in
period t∗i , the decisions made by the policy for periods ai ≤ t ≤ t∗i do not change
for any reported departure d′i > di, holding all other inputs unchanged.
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Algorithm 3 isIronedR(θi, t
∗
i (θi), (S

t, At)ai≤t≤t∗
i
, Σ): verification of value-

monotonicity for an agent i with type θi allocated in period t∗i . The set of
breakpoints B = {〈tβ , σjβ , rβ , α<

s (β), α>

s (β)〉}β track the changes in scenario
votes. As i’s value increases past rβ , the vote on scenario σjβ at time tβ changes
from α<

s (β) to α>

s (β). If changing only the vote on scenario jβ causes the C

decision to flip, then π must be simulated to allow checking that i’s allocation
time (stored by ti) for the higher (slightly above rβ) reward is no later than for
its lower (below rβ) reward. Finally, as the C decision changes at tβ , break-
points between periods tβ + 1 to ti (we have tβ ≤ ti) must be updated. The

counterfactual sets {~S, ~A} = (St, At)ai≤t≤t∗
i

are maintained, being initialized to
the actual ones determined by π for i’s reported value, which is lower than all
rβ ’s.

B :=
⋃t∗i

t=ai
BrkPtsR(θi, t, ~S, ~A,Σ)|r≥ri

ti := t∗i
while B 6= ∅ do

Let β :=〈tβ , σjβ, rβ , α<

s , α>

s 〉 such that rβ ≤ rb ∀ b ∈ B.
if at tβ,C(votes(Σ 6=jβ ), α<

s )6=C(votes(Σ 6=jβ ), α>

s ) then

// Simulate π until time min{ti, time i wins}
increase i’s value to slightly over rβ

t̆ := tβ

repeat
πt̆ := πt̆(At̆, S t̆)
update active agents: At̆+1 := θt̆+1 ∪ At̆|d≥t̆+1 \ πt̆

update supply: S t̆+1 := S t̆ − #(πt̆)
t̆ := t̆ + 1

until i ⊏ πt̆−1 or t̆ > ti
if i has not won then

return true // i ironed

else

ti := t̆ − 1 // allocation time for new value rβ

B:=
(

B|t≤tβ\{β}
)

∪
⋃

t=tβ+1..ti

BrkPtsR(θi, t, ~S, ~A,Σ)|r≥rβ
end if

end if

end while

return false // i not ironed

This property trivially implies monotonicity with respect to departure. In
combination with ironing with respect to arrival, value and quantity only
(“(a, v, q)-ironing”), i.e. checking Eq. (4) only for types θ′′i and θ′i that differ
from θi in these attributes, this provides full monotonicity.

Proposition 1. For a departure-oblivious policy, (a, v, q)-ironing is equivalent
to ironing.

Note the different decompositions of ironing across the dimensions of a
bidder’s type: Algorithms 2 and 3 separate value from the other dimensions,
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whereas departure obliviousness precludes the need for departure ironing.

2.4 Flexibility: Virtual Values and Learning

In the context of single item, static auctions, Myerson [13] proved the revenue-
optimality of an efficient auction defined on “virtual valuations”. The virtual
valuation of a bidder whose bid ri is drawn with probability density function
(pdf) f and cumulative distribution function (cdf) F is:

w(ri) = r − 1−F (ri)
f(ri)

(6)

Our approach to dynamic auction design provides considerable flexibility.
For example, we can apply the algorithm essentially unchanged, except for sub-
stituting valuations with virtual valuations. Each reported type is converted
into a virtual valuation by retaining (ai, di, qi) but replacing ri with w(ri). All
computation is then performed with respect to virtual valuations: samples are
taken from the distribution on virtual valuations induced by the distribution
on valuations, ironing is performed with respect to a partial order defined on
virtual valuations, and the payment is first determined as the critical “virtual
value” and then transformed into the corresponding actual value.

When the distribution f has a non-decreasing hazard rate (as required by
Myerson [13]), the ironed policy remains monotonic and thus strategyproof.
Without this property, then it would be necessary to also adopt Myerson’s notion
of ironing to first transform the virtual valuation function into a monotone
increasing function, and adopt this as the mapping from values into virtual
values. In our context, we would term this “input ironing” whereas the ironing
adopted in this paper is “output ironing.”

As another indication of our approach’s flexibility, the self-correcting
methodology advanced here does not require that the mechanism has correct in-
formation about the underlying distribution on types. The distribution can sim-
ply be learned over time, for example through a non-parametric approach that
samples from the past such as that proposed by van Hentenryck and Bent [21].
In order to retain strategyproofness, it is necessary to preclude the reported
type of an agent until the agent has itself departed from the system. This way,
the report of an agent cannot affect the mechanism’s distributional model while
the agent still cares about the model.

3 Basic Select Methods

In this section, we introduce some basic select methods that are departure obliv-
ious and therefore useful together with output ironing for the design of strate-
gyproof, dynamic multi-unit auctions. We have already seen

OnlyDep: Select(αj , Σ, St, At) = αj |d=t
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OnlyDep is clearly not departure oblivious.6 For a straw man method that
is departure oblivious, we use the identity Select method that ignores all de-
parture information:

IgnoDep : Select(αj , Σ, St, At) = αj (7)

HazRate only selects bidders somewhat likely to leave soon:

HazRate : Select(αj, Σ, St, At)=
{

i⊏αj:
1−F D

i (di)

fD
i

(di)
<c

}

(8)

where departures have pdf fD
i and cdf FD

i , and c ∈ (0, 1) is a parameter. Agent
i is retained in αj

s by HazRate iff its reported departure di is late enough.
HROrRew also selects bidders with high value-per-item:

HROrRew : Select(αj , Σ, St, At) =

{i⊏αj:
(

1−F D
i (di)

fD
i

(di)
<c

)

∨

(

P[
R

Q
>

ri

qi

]<w

)

} (9)

where parameters c ∈ (0, 1) and w ∈ (0, 1), and R and Q are random variables
denoting an agent’s value and quantity. That is, if i is “too good to miss” then it
is selected even if its departure does not satisfy Eq. (8). Parameters c and w can
be optimized for the distribution on agent types to maximize the performance
of C⊕HazRate or C⊕HROrRew.

Lemma 1. C⊕IgnoDep is departure-oblivious. If FD
i has a monotone non-

decreasing hazard rate (i.e. it is regular) then C⊕HROrRew and C⊕HazRate are
departure-oblivious.

Just as with OnlyDep, the selected subset of agents αj
s in scenario σj will

change at most once as the value of agent i is increased with the HazRate

method. The change, if any, occurs if qi ≤ St and at bid value rj
o(i) = V (St, At\

{i}, σj) − V (St − qi, A
t \ {i}, σj). Agent i is in αj

s for ri ≥ rj
o(i) if and only if

Eq. (8) is satisfied.
When the departure condition in HROrRew is satisfied then this behaves as

HazRate and there is one breakpoint at rj
o(i) for an agent that can be feasibly

allocated. But otherwise, there can be two breakpoints when the value rc
j(i), at

which P[R
Q

>
rc

j (i)

qi
] = w, is greater than rj

o(i). In this case, for ri ∈ [rj
o(i), r

c
j(i))

agent i is in αj but not selected and then for ri ∈ [rc
j(i),∞) agent i is also

selected. More importantly, within ironing, HROrRew only yields one breakpoint:
the condition in Eq. (9) is independent of time and is satisfied by all higher types
if satisfied by a certain type.

6In fact, C⊕OnlyDep does not satisfy a considerably weaker myopic monotonicity property.
Suppose that if agent i, allocated by C⊕OnlyDep at time t∗i (= di), were to delay its reported
departure to d′i > di, then all C⊕OnlyDep’s decisions would be identical up to time t∗i − 1.
Then C⊕OnlyDep will no longer allocate i at t∗i since i’s departure is later.

We can show that under our assumptions, all methods in this paper, including OnlyDep,
satisfy similar properties with respect to arrival and value, but not with respect to quantity.
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4 The NowWait Heuristic

In this section we describe NowWait, a departure-oblivious Select method that
makes an explicit tradeoff between the value of allocating to an agent that could
disappear and the likely benefit of waiting for other opportunities.

The NowWait Select method filters αj down to αj
s by retaining those agents

for which the estimated value from allocating now is greater than the estimated
value from waiting, considering that i’s value may be lost because it may depart:

NowWait : Select(αj , Σ, St, At)

= {i⊏αj: nowt
i(α

j,ri)≥waitt
i(α

j,ri)} (10)

For estimating the future value on a scenario j′, we make the pessimistic
assumption that all agents present in At (except i) either depart or are allocated
in this period so that the future demand is represented only by that in each
scenario j′ ∈ Σ. The global estimate is simply an average over the per-scenario
estimates.7

Let αj
− = αj \ {i} and v(αj

−) denote the total value to the agents allocated

in αj
−. Let #(α) denote the number of items allocated by action α. The value

obtained by allocating to agent i with value ri in period t is estimated as:

nowt
i(α

j , ri) = ri + v(αj
−) + 1

|Σ|

∑

j′∈ΣV (St−#(αj), ∅, σj′

),

Let ρ = ρt be the probability that agent i will still be present in the next pe-
riod t+1 given type θi but ignoring its reported departure (to provide departure
obliviousness):

ρ = P[D > t|D ≥ t, ai, ri, qi] (11)

The value for waiting to allocate i is estimated as:

waitt
i(α

j , ri) = v(αj
−) + (1−ρ) 1

|Σ|

∑

j′∈ΣV (St−#(αj
−), ∅, σj′

)

+ ρ 1
|Σ|

∑

j′∈ΣV (St−#(αj
−), {i}, σj′

)

Since for any i and σj , αj , nowt
i(α

j , ri) and waitt
i(α

j , ri) are independent of
i’s reported departure, we get:

Proposition 2. C⊕NowWait is departure-oblivious.

Figure 1 highlights the subsets of interest among active and future (sampled)
agents on a scenario. Select methods select subsets of active agents in the
offline optimum: A and B for IgnoDep, A (only departing now) for OnlyDep

and subsets of A and B (a priori “urgent”) for NowWait.

7If we were to retain an unallocated agent i′ and consider the presence of this agent when
computing opportunity costs for i in scenario j′, then ironing for i′ would also need to analyze
the effect of i′ raising its value on the allocation decision for i and maybe other agents at
t because of this coupling effect through the NowWait select rule. We wish to avoid this
additional complication.
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Figure 1: Subsets of agents for Select on a scenario.

4.1 Sensitivity Analysis

Having defined NowWait we need to be able to perform sensitivity analysis of
the resulting C algorithm. For this it is crucial to be able to compute scenario
breakpoints to determine when the decision αj

s changes as agent i’s value varies.
There may be two breakpoints per scenario. The first occurs at rj

o(i) when
agent i enters αj and the second at rj

c(i) when agent i is retained by the Select
method.

To better understand NowWait’s behavior, we use shorthand vj′ = V (St−

#αj, ∅, σj′

) and cj′ = V (St− #αj
−, ∅, σj′

) − V (St− #αj , ∅, σj′

). cj′ is the op-
portunity cost incurred by allocating to i if scenario j′ was the actual future.
If αj = {i} and j′ = j then cj = rj

o(i). With this, we have nowt
i(α

j , ri) =

ri + v(αj
−) + 1

|Σ|

∑

j′∈Σ vj′ and waitt
i(α

j , ri) = v(αj
−) + (1 − ρ) 1

|Σ|

∑

j′∈Σ(cj′ +

vj′)+ρ 1
|Σ|

∑

j′∈Σ(max(ri, cj′)+ vj′), where the final term comes from recogniz-

ing that V (St − #(αj
−), {i}, σj′

) = max(ri + vj′ , cj′ + vj′) = max(ri, cj′) + vj′ .
Simplifying, agent i, allocated in αj , is retained if and only if:

ri|Σ| ≥ (1 − ρ)
∑

j′∈Σ cj′ + ρ
∑

j′∈Σ max(ri, cj′) (12)

Note that, apart from the number of items (implicit in cj′) allocated by αj
−,

the condition in Eq. (12) is independent of scenario j. Let φρ(ri) = ri|Σ|− (1−
ρ)

∑

j′∈Σ cj′ − ρ
∑

j′∈Σ max(ri, cj′) = nowt
i(α

j , ri) − waitt
i(α

j , ri).
In general, the value and patience of an agent may be correlated according to

type distribution f(θi). This will complicate sensitivity analysis for C⊕NowWait.
For now we assume that patience and value are independent, and thus ρ does
not depend on an agent’s value ri.

Given this independence assumption, there is a threshold τ∗
ρ (i), for i in αj

to be selected by NowWait such that:

nowt
i(α

j , ri) ≥ waitt
i(α

j , ri) if and only if ri ≥ τ∗
ρ .

Theorem 3 will prove a more general statement.
Denote the second scenario breakpoint by rj

c(i) = max(rj
o(i), τ

∗
ρ ). We may

have τ∗
ρ > rj

o(i) and thus rj
c(i) > rj

o(i) if, for example, scenario j predicts less
demand than the other scenarios and i is likely very patient (ρ is close to 1). For
values in the range [0, rj

o(i)), neither αj nor αj
s include agent i. For values in the

range [rj
o(i), r

j
c(i)), i is included in αj but it is removed by NowWait: i 6⊏ αj

s. For
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values in the range [rj
c(i),∞), both αj and αj

s include i. Say that there exists a
scenario j′ identical to j. Then it is possible that the three possible decisions on
scenario j (which coincide with the ones on j′) induce three different allocations
to be chosen in C by having the highest number of votes. In particular, it is
possible that the C allocation is respectively with, without and then again with
i for rewards respectively in [0, rj

o(i)), [rj
o(i), r

j
c(i)) and [rj

c(i),∞). Decisions for
such values in [0, rj

o(i)) would be ironed.
Proposition 3 establishes the intuitive property that the more likely an agent

i is to still be present in the next period, the higher value i needs to have in
order not to be filtered from the decision by the NowWait Select method.

Proposition 3. As ρ increases from 0 to 1, the threshold τ∗
ρ at which an agent

i ⊏ αj is selected by NowWait weakly increases from the average to the maximum
of the costs {cj′ : j′ ∈ Σ}, when agent patience is independent of value.

Our implementation of sensitivity analysis accounts for the fact that, by
varying ai (and thus ρ) or qi, the threshold τ∗ for NowWait may change.

4.1.1 Correlation of Value and Patience

We now consider the consequence of allowing an agent’s patience to be correlated
with its value. For computational tractability, it will again be important to
identify a single threshold τ∗ at which the agent will pass the NowWait Select

test. The estimated probability ρ that an agent i will still be present in the next
period becomes a function ρ(ri), that depends on i’s value and therefore varies
as i’s value is adjusted in performing sensitivity analysis.

Theorem 3. If ri · (1− ρ(ri)) is non-decreasing in ri, then ∃ threshold τ∗ with:
nowt

i(α
j, ri)≥waitt

i(α
j, ri) ⇐⇒ ri ≥ τ∗.

Negative or moderately positive correlation between value and patience is
thus sufficient for the existence and uniqueness of a threshold τ∗, such that
nowt

i(α
j , τ∗) = waitt

i(α
j , τ∗), with nowt

i(α
j , r′i) ≥ waitt

i(α
j , r′i) if and only if

r′i > τ∗.8 For ri(1−ρ(ri)) to be non-decreasing, it is sufficient for example that:
(i) ρ(ri) is independent of ri, (ii) ρ(ri) is non-increasing with ri, or (iii) ρ(ri)

is not increasing too quickly with ri, such that ∂ρ(ri)/∂ri ≤
1−ρ(ri)

ri
for all ri.

If possible agent patiences are {δ1 < . . . < δn∆
}, a sufficient condition for ρ(ri)

to be non-increasing in ri (case (ii)) is that: P[∆=δl,R=ri]
P[∆=δl+1,R=ri]

is non-decreasing

in ri, ∀ l = 1..n∆ − 1. One can show that this implies E[r|δl] ≥ E[r|δl+1], i.e.
values are higher for smaller patiences.

As the smallest solution of φ(·) = 0 with weakly monotone φ (see Theo-
rem 3’s proof), τ∗ can be found via binary search in [ 1

|Σ|

∑

cj′ ,max cj′ ] (recall

Proposition 3).

8In a unit-demand domain, Pai and Vohra [14] also require negative correlation of value
and patience, in the form of a decreasing hazard rate condition in one parameter out of value,
arrival and departure when the other two are fixed.
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4.2 Example: One Item, Two Impatient Bidders

We illustrate NowWait and IgnoDep, in a simple optimal stopping environment
with one item for sale, two periods and one impatient, unit-demand, bidder per
period with value i.i.d. sampled from distribution F . Method OnlyDep does not
remove any agent from αj on scenario σj (i.e. it is identical to IgnoDep) since
agents are completely impatient.

Denote by v1
c the first bidder’s critical value. As the number of scenarios

tends to ∞, OnlyDep’s v1
c is the median of F : half of the second period draws

need to be higher for the first bid to be rejected. In comparison, NowWait’s v1
c

is the mean of F : ρ = 0, each cj′ is drawn from F and τ∗ = 1
|Σ|

∑

j′ cj′ . Thus,

NowWait appears better placed for average-case performance. Section 5.1.1’s
experimental data show the effects of different critical values on allocative effi-
ciency for two or more periods keeping the unit-supply constraint.

5 Experimental Evaluation

We analyze in turn the allocative efficiency, revenue and runtime of this ironing-
based approach to the design of dynamic, multi-unit auctions. Unless otherwise
mentioned, the C algorithm uses 50 scenarios (samples of possible futures) and
a bidder’s quantity and patience are uniform in 1..5 and its value distribution
is Expon(0.1) times its quantity.

5.1 Allocative Efficiency

Each of the 124 points in Fig. 2 represents an average over at least 20 runs of
NowWait and IgnoDep’s relative efficiencies on a domain where a bidder’s value
is its quantity times an exponentially distributed variable. In such domains, we
varied supply, demand, the number of time periods, the exponential parameter
λ or bidders’ maximum quantity or patience. IgnoDep performs at least 9%
worse in about a quarter of the domains, 5% worse on average and never better
than 9% in comparison with NowWait.

We go on to study more closely an auction with 10 items, 5 time periods,
and 2 bidders arriving in each period. The Select method HazRate is of course
dominated by the more general HROrRew, and only results for this second method
are presented. The parameters c and w for the HROrRew method were optimized
offline, but no setting was better than that for IgnoDep (i.e., allowing all allo-
cated, active agents to remain in the selected set of winning agents). Table 1
presents allocative efficiencies as an average over 200 trials, divided by the av-
erage offline efficiency, i.e. the value that would be achieved if all bids were
available in period 1.

Whereas ironing destroys the efficiency of OnlyDep (as expected, because all
allocations except those to maximally patient agents must be canceled), NowWait
still yields an efficiency of 0.895 after ironing. Note that the overall performance
of NowWait with ironing is 5% better than that of both IgnoDep and HROrRew.
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Figure 2: NowWait’s versus IgnoDep’s relative efficiency (offline optimum = 1)
for 124 domains with exponentially distributed values with independence of
value and patience. The pink diamond, at (0.882, 0.849), represents the average
of all 124 points.

Ironing NowWait OnlyDep HROrRew IgnoDep Fixed Opt
No 0.915 0.952 0.860 0.860 0.815 1
Yes 0.895 0.526 0.852 0.852 0.815 1

Table 1: Allocative efficiency normalized to offline efficiency in a dynamic auc-
tion for 10 items.

Standard deviations for Table 1 are around 0.15 for all entries but OnlyDep with
ironing, for which it is around 0.3. For all entries except OnlyDep with ironing,
the 95% confidence intervals have a radius of 0.02, confirming the statistical
significance of our results. The Fixed method is less sophisticated than the
other methods. It optimally (offline) tunes a per-item price p and allocates
any bidder whose bid amounts to at least p per item. This method’s average
allocative efficiency is 0.815, which further highlights the extent of NowWait’s
(efficiency 0.895) improvement over IgnoDep (efficiency 0.852).

For comparison, NowWait’s and IgnoDep’s efficiencies are very similar if per-
item values are U(0,1) instead. We again see an effect of each policy’s approach:
NowWait (resp. IgnoDep) aims for good mean (resp. median) performance (see
Sec. 4.2). The mean and median are equal for the uniform, but not for the
exponential distribution, as used in Table 1.

Table 2 considers the effect of allowing for negative correlation between value
and patience, when the exponential distribution parameter is proportional to a
bidder’s patience. Before ironing, NowWait’s allocative efficiency is slightly bet-
ter than OnlyDep’s, that has the advantage of waiting until a bidder’s departure.
Ironing is now even more destructive on OnlyDep. This is because high-value
bidders, the ones selected by the offline knapsack problem, tend to have small
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Ironing NowWait OnlyDep HROrRew IgnoDep Opt
No 0.944 0.941 0.881 0.881 1
Yes 0.918 0.245 0.874 0.874 1

Table 2: Allocative efficiency when value is distributed Exp(0.1 · (di − ai)),
inducing a negative correlation between value and patience.

patiences, and thus are often ironed.
For all methods except OnlyDep, cancellations were more frequently due

to ironing in value rather than ironing in the other dimensions. There was no
ironing cancellations if all bidders have unit-demand. This confirms the intuition
that even though possible, instances of ironing are rather rare and caused by
combinatorial peculiarities.

5.1.1 One Item, Impatient Bidders

We consider now the simple domain of a single unit of supply and one impatient
bidder per period. This domain, considered in Section 4.2 for two periods, is
appealing due to the availability of an optimal policy (Gilbert and Mosteller [7],
henceforth GM), that is monotonic and thus strategyproof, providing an optimal
online benchmark.

As bidders are impatient, there is no need for monotonicity with respect
to departure. Thus, this is a setting in which the additional complexity of
NowWait should not be expected to be worthwhile over-and-above the simplicity
of OnlyDep (identical here to IgnoDep). Furthermore, unit-supply and impa-
tience render all Select methods monotonic.

The optimal policy GM is defined by a sequence Rn of posted prices (where
n bidders are yet to arrive). The critical value Rn also represents the expected
efficiency after the n-th remaining bidder arrives. GM is monotonic and truthful
for impatient agents because Rn is independent of the reported value of an
agent (and no temporal strategies are available for impatient agents). For the
Expon(λ) distribution, R0 = 0 (allocate last bidder if no earlier winner) and
Rn+1 = Rn + 1

λ
e−λRn [7].

In Table 3 we compare the efficiency of NowWait and OnlyDep with GM and the
offline optimum. The results for NowWait and OnlyDep are averaged over 100,000
trials. For small horizons (and hence small numbers of agents), the NowWait

method actually outperforms OnlyDep. But the simpler, OnlyDep method does
better for larger horizons and more agents. We explain this by noting that if
n bidders are yet to arrive, NowWait (resp. OnlyDep) sets as critical values the
mean (resp. median) of the highest order statistic of n iid Exp(0.1) variables.

In summary, it is encouraging to us that the sample-based stochastic op-
timization methods can come within 97.8% of the value of the optimal online
policy in this environment (this is the relative performance of C with NowWait at
a horizon of 32), while being flexible and general enough to extend to multi-unit
demand environments.
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Horizon E[NowWait] E[OnlyDep] E[GM] E[Opt]
2 0.911 0.897 0.911 1
4 0.871 0.867 0.873 1
8 0.855 0.859 0.863 1
16 0.854 0.863 0.867 1
32 0.858 0.871 0.877 1

Table 3: Relative (offline optimum=1) allocative efficiency in a unit-supply,
impatient bidder domain. GM is the maximally-efficient, monotonic policy.
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Figure 3: Revenue normalized to offline efficiency in a dynamic auction for 30
items, varying the number of time periods (and thus the level of competition).
Examines the effect of adopting virtual valuations.

5.2 Boosting Revenue

We also ran experiments with virtual valuations in place of agent valuations in
order to test the effectiveness of this approach to boosting revenue.

Fig. 3 plots the revenue with and without virtual valuations. The revenue
metric is normalized with respect to the total value from the efficient offline
allocation. In this auction, we have 30 items available and vary the number
of periods from 6 to 25, with 2 bidders arriving per period. As the number of
periods increases the competition increases: the expected demand ranges from
low-demand (36) to high-demand (150), i.e. the demand:supply ratio trends
from 1.2x to 5x. We observe that virtual valuations have a significant positive
effect on revenue for low demand environments. For example, in the case of 6
periods (and thus a low demand:supply ratio of 1.2x), adopting virtual valua-
tions provides a boost of as much as 169% for IgnoDep and 49% for NowWait.
On the other hand, we also see that virtual valuations can also be detrimental
to revenue properties for high demand environments (for a demand:supply ratio
of 4 or more. Thus, it would be important for a designer to understand the type
of environment before adopting virtual valuations. We also see that the rev-
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enue properties of NowWait generally dominate those of IgnoDep, both with and
without ironing. OnlyDep’s revenue (not shown in Fig. 3) is always significantly
below that of other methods due to extensive cancellations by ironing.

5.3 Computational Scalability

We run all experiments on a CentOS 8-node Pentium 4 at 3GHz cluster with
512 MB of RAM. Fig. 4 summarizes the results, averaged over 50 trials, for a
dynamic auction with 2 bidders arriving each period. In the set of experiments
for Fig. 4 (a) and (b), there are 20 items and 10 periods and we increase the
number of scenarios sampled within C. In Fig. 4 (c), we increase the supply
of items while holding the expected demand:supply ratio constant at 3, by in-
creasing the time horizon and thus the total expected demand as the supply
increases. In addition to looking at the scalability of the system, we are also in-
terested in the overhead that is imposed by the need to perform computational
ironing.

All three plots show that NowWait’s computational overhead when compared
to the other Select methods is limited and reasonable. For example, as the
number of scenarios increases, NowWait’s overhead grows sub-linearly. This is
despite NowWait’s theoretical quadratic (as opposed to linear) dependence on
the number of scenarios (for all j, j′ ∈ Σ, the cj′ costs must be computed for
each scenario (σj) by solving two offline optimization problems). We believe
that this is due in part to some NowWait-specific improvements that we have
made, for example caching the offline optimization results for the cj′ costs (see
Sec. 4.1). For most experimental settings that we considered, on average, C

and ironing take around 15 times more than C alone for all methods except
OnlyDep, for which the overhead is around 40x.9

Figure 4 (c) measures our methods’ absolute, per period runtime (in seconds)
of Consensus and ironing, as the relevant characteristics (number of time pe-
riods, supply and expected demand) of the domain are scaled proportionally.
It is quite encouraging, though perhaps surprising, that NowWait’s per-period
runtime is decreasing for the longer horizons.

6 Conclusions

We presented the first application of stochastic optimization to dynamic,
incentive-compatible multi-unit auctions with patient bidders that demand mul-
tiple units of an item. Method NowWait is used to modify the Consensus al-

9We notice OnlyDep’s higher overhead of ironing from Fig. 4: the ratio of the runtimes of
OnlyDep and IgnoDep is close to 1 without ironing, but about 2.5 with ironing. There exists
(a slightly smaller) difference in ratios even if a, d and q are kept constant in isIronedA,D,Q

(see Algorithm 2). The reason for this discrepancy is revealed by recalling that isIronedR

(see Algorithm 3) computes breakpoints at all times between a bidder’s arrival and time of
allocation. OnlyDep allocates bidders at their departure, which is significantly later on average
than the other methods. Consequently, breakpoints for significantly more time periods are
computed in isIronedR for OnlyDep.
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gorithm [21] and evaluate opportunity costs when deciding whether to retain a
vote to allocate to a particular agent given a particular scenario. Self correction
by output ironing yields truthfulness, and we we can aim for either good effi-
ciency or revenue. The results show excellent efficiency and scalability, with a
sub-linear computational overhead of NowWait with respect to Consensus, and
also demonstrate the effect of revenue boosting via the use of virtual valuations.

That NowWait actually has better performance than OnlyDep on some dis-
tributions suggests that better efficiency still may be attainable using more
sophisticated online stochastic combinatorial optimization methods, such as the
Expectation algorithm [21]. Better estimates of opportunity costs for NowWait
may also lead to better performance. But, either extension will require care in
coupling with output-ironing. It also remains of interest to study the “first
best” solution, i.e. the value and revenue-maximizing policies among mono-
tonic policies, although this seems to us to present a significant technical and
computational challenge because monotonicity constraints break the “principle
of optimality” that underlies many computational approaches.
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Proof of Theorem 2. Suppose tπi (θi) = t. Both π and π̆ can only cancel decisions
of the same base policy π: tπi (θi), t

π̆
i (θi) ∈ {∞, t}.

Suppose tπ̆i (θi) = t. If tπi (θi) = ∞ then by Eq. (4), ∃θ′, θ′′i ∈ θ′i++ with
tπi (θ′′i ) > tπi (θ′i). But then tπ̆i (θi) = ∞ by definition (Eq. (3)), contradiction.
Thus tπi (θi) = t.

Suppose now that tπ̆i (θi) = ∞. By Eq. (3) there exists θ′′i �θ θ′i �θ θi

such that tπi (θ′′i ) > tπi (θ′i). But then there must exist θ̃′i and θ̃′′i ∈ θ̃′i++ with
θ′′i �θ θ̃′′i �θ θ̃′i �θ θ′i �θ θi such that tπi (θ̃′′i ) > tπi (θ̃′i): on the lattice of types,
θ̃′′i to θ̃′i is just a step of the walk from θ′′i to θ′i. Then tπi (θi) = ∞ as well,
by Eq. (4): from violating the first condition if r̃′′i > r̃′i and the second one if
r̃′′i = r̃′i.

Proof of Proposition 1. Let π̀ denote the policy obtained by (a, v, q)-ironing
the departure-oblivious policy π.

Fix θ−i and ω, and consider type θi with departure di such that tπi (θi) = t.
Both π̀ and π̆ can only cancel decisions of the same base policy π:

tπ̀i (θi), t
π̆
i (θi) ∈ {∞, t}. If tπ̆i (θi) = t then tπ̀i (θi) = t as well, as the set of

checks for π̀ is a subset of the one for π̆.
Suppose now that tπ̆i (θi) = ∞. There exists then θ′′i �θ θ′i �θ θi such that

tπi (θ′′i ) > tπi (θ′i). Let θ̃′′i and θ̃′i equal θ′′i and θ′i, but with d̃′′i = d̃′i = di. By
departure obliviousness, tπi (θ̃′′i ) ∈ {∞, tπi (θ′′i )}. If tπi (θ̃′′i ) = ∞ then tπ̀i (θi) = ∞
as well, since θ̃′′i and θi have the same departure. Suppose that tπi (θ̃′′i ) = tπi (θ′′i )
and, similarly, that tπi (θ̃′i) = tπi (θ′i). Then tπ̀i (θi) = ∞ as i would be (a,v,q)-
ironed: tπi (θ̃′′i ) > tπi (θ̃′i).

Proof of Lemma 1. The claim for select method IgnoDep is immediate. For
C⊕HROrRew and C⊕HazRate, let us assume that agent i is allocated at t∗i
when reporting departure di. If di satisfies the departure condition in Eq. (8)
and Eq. (9), and FD

i is regular then all d+
i > di also satisfy this condition.

As decisions before t∗i are unchanged, the t∗i decisions for d+
i and di will be

identical since for any scenario j at time t, the event i ⊏ Optj is independent
of i’s departure. Therefore HROrRew and HazRate are departure-oblivious.

Proof of Proposition 3. We get τ∗
ρ ≤ τ∗

ρ′ for ρ ≤ ρ′ as it is easy to check that for
all ri and all ρ, φρ(ri) is non-decreasing in ρ.

For ρ = 0, the threshold τ∗
0 is the average of marginal costs {cj′ : j′ ∈ Σ}:

τ∗
0 |Σ| =

∑

j′∈Σ cj′ . For ρ = 1, we have τ∗
1 |Σ| =

∑

j′∈Σ max(τ∗
1 , cj′) and thus

τ∗
1 = maxj′ cj′ .

Proof of Theorem 3. Assume c1≥. . .≥ c|Σ|. Let c0 =∞ and c|Σ|+1 =0.

Fix k in 0..|Σ| and let sk =
∑k

j′=1 cj′ . We show that φ(r) (that becomes

|Σ|r −
∑|Σ|

j′=1 cj′ + ρsk − kρr) is non-decreasing in r on the interval (ck, ck+1).
φ(·)’s global monotonicity follows from its continuity. φ(·)’s monotonicity clearly
holds for k = 0 since s0 = 0. Let k ≥ 1, r′ > r and x = 1

k
(φ(r′) − φ(r) − (r′ −
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r)(|Σ| − k)).

We have x = (r− sk

k
)(ρ(r)−ρ(r′)) + (r′−r)(1−ρ(r′)) and

x = r′(1 − ρ(r′)) − r(1 − ρ(r)) + sk

k
(ρ(r′) − ρ(r))

If ρ(r)≥ρ(r′) then x ≥ 0 from the first line. Otherwise, as r′(1−ρ(r′)) − r(1−
ρ(r)) ≥ 0, we get x ≥ 0 from the second line. In either case, x ≥ 0 implying
φ(r′)−φ(r) ≥ 0.

Example 2. Say 3 items are for sale for 2 time periods. Agents X1,2 arrive at
time 1: Xi has ai = 1, di = i, qi = i, ri = i, i = 1, 2. There are 7 time 2 scenarios
σ1..7, each with one agent with quantity 2, 2, 3 and value 3, 4, 10 on scenarios
σ1,2, σ3,4 and σ5,6,7 resp.Votes are {X1} and ∅ for σ1..4 and σ5..7 resp.; hence
X1 is allocated. Agent X3 arrives at time 2 : a3 = d3 = 2, q3 = 1, r3 = 0.5. As
a result, X2 is allocated at time 2: t∗2 = 2.

Let us follow value output ironing for X2, tracking decision changes from
time 1 = a2 to 2 = t∗2 as 2’s value is increased. Time 1 scenario breakpoints are
3, 4, 9 on σ1,2, σ3,4 and σ5,6,7 resp.All 7 time 2 breakpoints are at 0.5.

Denote by Ct the C decision at t. If X2 had value 3, C1 would change
to ∅ as σ1,2 votes become {X1,X2}. Using Algorithm 3’s notation, {X1} =
C(votes(Σ 6=jβ ), α<

s ) 6= ∅ = C(votes(Σ 6=jβ ), α>

s ) at tβ = 1, for jβ = 1 and 2,
rβ = 3, α<

s = {X1} and α>

s = {X1,X2}. All 7 time 2 breakpoints are now at 0
since X2,3 can both be allocated. X2 is still allocated at time 2, surviving ironing
so far.

If X2 had value 4, C1 would change again to {X1,X2} as σ3,4 votes become
{X1,X2}; t2 = 1 and any time 2 breakpoint is discarded since no items are left.
Last breakpoint is at 9: all votes are now for {X1,X2}. As allocation times never
increase as X2’s value increases, isIroned returns false:X2 survives ironing and
is allocated at time 2.

In this example, tβ always equaled ti, precluding the need for updating ~S, ~A
and breakpoints.
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(a) 20 items, 10 periods: C and ironing relative
runtime
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(b) 20 items, 10 periods: C (no ironing) relative
runtime
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(c) Scaling of C and ironing absolute runtime.

Figure 4: Runtimes in a dynamic auction: relative (normalized such that
IgnoDep= 1) in (a) and (b) and absolute (seconds per time period) in (c). In
(c) the expected demand:supply ratio is kept constant at 3 by adjusting them
together with the number of time periods, as shown on the x-axis.
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