CHAPTER 11

Combinatorial Auctions

Liad Blumrosen and Noam Nisan

Abstract

In combinatorial auctions, a large number of items are auctioned concurrently and bidders are allowed to express preferences on bundles of items. This is preferable to selling each item separately when there are dependencies between the different items. This problem has direct applications, may be viewed as a general abstraction of complex resource allocation, and is the paradigmatic problem on the interface of economics and computer science. We give a brief survey of this field, concentrating on theoretical treatment.

11.1 Introduction

A large part of computer science as well as a large part of economics may be viewed as addressing the "allocation problem": how should we allocate "resources" among the different possible uses of these resources. An auction of a single item may be viewed as a simple abstraction of this question: we have a single indivisible resource, and two (or more) players desire using it – who should get it? Being such a simple and general abstraction explains the pivotal role of simple auctions in mechanism design theory.

From a similar point of view, "combinatorial auctions" abstract this issue when multiple resources are involved: how do I allocate a collection of interrelated resources? In general, the "interrelations" of the different resources may be combinatorially complex, and thus handling them requires effective handling of this complexity. It should thus come as no surprise that the field of "combinatorial auctions" – the subject of this chapter – is gaining a central place in the interface between computer science and economics.

11.1.1 Problem Statement

The combinatorial auction setting is formalized as follows: There is a set of m indivisible items that are concurrently auctioned among n bidders. For the rest of this chapter we
will use \(n \) and \(m \) in this way. The combinatorial character of the auction comes from the fact that bidders have preferences regarding subsets – bundles – of items. Formally, every bidder \(i \) has a valuation function \(v_i \) that describes his preferences in monetary terms:

Definition 11.1 A valuation \(v \) is a real-valued function that for each subset \(S \) of items, \(v(S) \) is the value that bidder \(i \) obtains if he receives this bundle of items. A valuation must have “free disposal,” i.e., be monotone: for \(S \subseteq T \) we have that \(v(S) \leq v(T) \), and it should be “normalized”: \(v(\emptyset) = 0 \).

The whole point of defining a valuation function is that the value of a bundle of items need not be equal to the sum of the values of the items in it. Specifically for sets \(S \) and \(T \), \(S \cap T = \emptyset \), we say that \(S \) and \(T \) are complements to each other (in \(v \)) if \(v(S \cup T) > v(S) + v(T) \), and we say that \(S \) and \(T \) are substitutes if \(v(S \cup T) < v(S) + v(T) \).

Note that implicit in this definition are two assumptions about bidder preferences: first, we assume that they are “quasi-linear” in the money, i.e., if bidder \(i \) wins bundle \(S \) and pays a price of \(p \) for it then his utility is \(u_i(S) - p \). Second, we assume that there are “no externalities”; i.e., a bidder only cares about the item that he receives and not about how the other items are allocated among the other bidders.

Definition 11.2 An allocation of the items among the bidders is \(S_1, \ldots, S_n \) where \(S_i \cap S_j = \emptyset \) for every \(i \neq j \). The social welfare obtained by an allocation is \(\sum_i v_i(S_i) \). A socially efficient allocation (among bidders with valuations \(v_1, \ldots, v_n \)) is an allocation with maximum social welfare among all allocations.

In our usual setting the valuation function \(v_i \) of bidder \(i \) is private information – unknown to the auctioneer or to the other bidders. Our usual goal will be to design a mechanism that will find the socially efficient allocation. What we really desire is a mechanism where this is found in equilibrium, but we will also consider the partial goal of just finding the optimal allocation regardless of strategic behavior of the bidders. One may certainly also attempt designing combinatorial auctions that maximize the auctioneer’s revenue, but much less is known about this goal.

There are multiple difficulties that we need to address:

- **Computational complexity:** The allocation problem is computationally hard (NP-complete) even for simple special cases. How do we handle this?
- **Representation and communication:** The valuation functions are exponential size objects since they specify a value for each bundle. How can we even represent them? How do we transfer enough information to the auctioneer so that a reasonable allocation can be found?
- **Strategies:** How can we analyze the strategic behavior of the bidders? Can we design for such strategic behavior?
INTRODUCTION

The combination of these difficulties, and the subtle interplay between them is what gives this problem its generic flavor, in some sense encompassing many of the issues found in algorithmic mechanism design in general.

11.1.2 Some Applications

In this chapter we will undertake a theoretical study and will hardly mention specific applications. More information about various applications can be found in the references mentioned in Section 11.8. Here we will shortly mention a few.

"Spectrum auctions," held worldwide and, in particular, in the United States, have received the most attention. In such auctions a large number of licenses are sold, each license being for the use of a certain band of the electromagnetic spectrum in a certain geographic area. These licenses are needed, for example, by cell-phone companies. To give a concrete example, let us look at the next scheduled auction of the FCC at the time of writing (number 66), scheduled for August 2006. This auction is intended for "advanced wireless services" and includes 1,122 licenses, each covering a 10- or 20-MHz spectrum band (somewhere in the 1.7-GHz or 2.1-GHz frequency range) over a geographic area that contains a population of between 0.5 million to 50 million. The total of the minimum bids for all licenses is over 1 billion dollars. Generally speaking, in such auctions bidders desire licenses covering the geographic area that they wish to operate in, with sufficient bandwidth. Most of the spectrum auctions held so far escaped the full complexity of the combinatorial nature of the auction by essentially holding a separate auction for each item (but usually in a clever simultaneous way). In such a format, bidders could not fully express their preferences, thus leading, presumably, to suboptimal allocation of the licenses. In the case of FCC auctions, it has thus been decided to move to a format that will allow "combinatorial bidding," but the details are still under debate.

Another common application area is in transportation. In this setting the auction is often "reversed"—a procurement auction—where the auctioneer needs to buy the set of items from many bidding suppliers. A common scenario is a company that needs to buy transportation services for a large number of "routes" from various transportation providers (e.g., trucking or shipping companies). For each supplier, the cost of providing a bundle of routes depends on the structure of the bundle as the cost of moving the transportation vehicles between the routes in the bundle needs to be taken into account. Several commercial companies are operating complex combinatorial auctions for transportation services, and commonly report savings of many millions of dollars.

The next application we wish to mention is conceptual, an example demonstrating that various types of problems may be viewed as special cases of combinatorial auctions. Consider a communication network that needs to supply multiple "connection requests"—each requesting a path between two specified nodes in the network, and offering a price for such a path. In the simplest case, each network edge must be fully allocated to one of the requests, so the paths allocated to the requests must be edge-disjoint. Which requests should we fulfill, and which paths should we allocate for it? We can view this as a combinatorial auction: the items sold are the edges of the network. The players are the different requests, and the valuation of a
request gives the offered price for any bundle of edges that contains a path between the required nodes, and 0 for all other bundles.

11.1.3 Structure of This Chapter

We start our treatment of combinatorial auctions, in Section 11.2, by leaving aside the issue of representation and concentrating on bidders with simple "single-minded" valuations. For these bidders we address the twin questions of the computational complexity of allocation and strategic incentive compatibility. The rest of the chapter then addresses general valuations. Section 11.3 lays out mathematical foundations and introduces the notion of Walrasian equilibrium and its relation to the linear programming relaxation of the problem. Section 11.4 describes a first approach for computationally handling general valuations: representing them in various "bidding languages." Section 11.5 describes a second approach, that of using iterative auctions which repeatedly query bidders about their valuations. In Section 11.6 we show the limitations of the second approach, pointing out an underlying communication bottleneck. Section 11.7 studies a natural widely used family of iterative auctions — those with ascending prices. Bibliographic notes appear in Section 11.8, followed by a collection of exercises.

11.2 The Single-Minded Case

This section focuses on the twin goals of computational complexity and strategic behavior, while leaving out completely the third issue of the representational complexity of the valuation functions. For this, we restrict ourselves to players with very simple valuation functions which we call "single-minded bidders." Such bidders are interested only in a single specified bundle of items, and get a specified scalar value if they get this whole bundle (or any superset) and get zero value for any other bundle.

Definition 11.3 A valuation \(v \) is called single minded if there exists a bundle of items \(S^* \) and a value \(v^* \in \mathbb{R}^+ \) such that \(v(S) = v^* \) for all \(S \supseteq S^* \), and \(v(S) = 0 \) for all other \(S \). A single-minded bid is the pair \((S^*, v^*)\).

Single-minded valuations are thus very simply represented. The rest of this section assumes as common knowledge that all bidders are single minded.

11.2.1 Computational Complexity of Allocation

Let us first consider just the algorithmic allocation problem among single-minded bidders. Recall that in general, an allocation gives disjoint sets of items \(S_i \) to each bidder \(i \), and aims to maximize the social welfare \(\sum_i v_i(S_i) \). In the case of single-minded bidders whose bids are given by \((S^*_i, v^*_i)\), it is clear that an optimal allocation can allocate to every bidder either exactly the bundle he desires \(S_i = S^*_i \) or nothing at all \(S_i = \emptyset \). The algorithmic allocation problem among such bidders is thus given by the following definition.
Definition 11.4 The allocation problem among single-minded bidders is the following:

INPUT: \((S^*_i, v_i^*)\) for each bidder \(i = 1, \ldots, n\).

OUTPUT: A subset of winning bids \(W \subseteq \{1, \ldots, n\}\) such that for every \(i \neq j \in W\), \(S^*_i \cap S^*_j = \emptyset\) (i.e., the winners are compatible with each other) with maximum social welfare \(\sum_{i \in W} v_i^*\).

This problem is a "weighted-packing" problem and is NP-complete, which we will show by reduction from the INDEPENDENT-SET problem.

Proposition 11.5 The allocation problem among single-minded bidders is NP-hard. More precisely, the decision problem of whether the optimal allocation has social welfare of at least \(k\) (where \(k\) is an additional part of the input) is NP-complete.

Proof We will make a reduction from the NP-complete "INDEPENDENT-SET" problem: given an undirected graph \(G = (V, E)\) and a number \(k\), does \(G\) have an independent set of size \(k\)? An independent set is a subset of the vertices that have no edge between any two of them. Given such an INDEPENDENT-SET instance, we will build an allocation problem from it as follows:

1. The set of items will be \(E\), the set of edges in the graph.
2. We will have a player for each vertex in the graph. For vertex \(i \in V\) we will have the desired bundle of \(i\) be the set of adjacent edges \(S^*_i = \{e \in E | i \in e\}\), and the value be \(v_i^* = 1\).

Now notice that a set \(W\) of winners in the allocation problem satisfies \(S^*_i \cap S^*_j = \emptyset\) for every \(i \neq j \in W\) if and only if the set of vertices corresponding to \(W\) is an independent set in the original graph \(G\). The social welfare obtained by \(W\) is exactly the size of this set, i.e., the size of the independent set. It follows that an independent set of size at least \(k\) exists if and only if the social welfare of the optimal allocation is at least \(k\). This concludes the NP-hardness proof. The fact that the problem (of whether the optimal allocation has social welfare at least \(k\)) is in NP is trivial as the optimal allocation can be guessed and then the social welfare can be calculated routinely. □

As usual when a computational problem is shown to be NP-complete, there are three approaches for the next step: approximation, special cases, and heuristics. We will discuss each in turn.

First, we may attempt finding an allocation that is approximately optimal. Formally, we say that an allocation \(S_1, \ldots, S_n\) is a \(c\)-approximation of the optimal one if for every other allocation \(T_1, \ldots, T_n\) (and specifically for the socially optimal one), we have that

\[
\frac{\sum_i v_i(T_i)}{\sum_i v_i(S_i)} \leq c.
\]

Perhaps a computationally efficient algorithm will always be able to find an approximately optimal allocation? Unfortunately, the NP-completeness reduction above also shows that this will not be possible. Not only is it known that the finding the maximum independent set is NP-complete, but it is known that approximating it to within a factor of \(n^{1-\varepsilon}\) (for any fixed \(\epsilon > 0\)) is NP-complete. Since in our reduction the
social welfare was exactly equal to the independent-set size, we get the same hardness here. Often this is stated as a function of the number of items m rather than the number of players n. Since $m \leq n^2$ (m is the number of edges, n is the number of vertices), we get:

Proposition 11.6 Approximating the optimal allocation among single-minded bidders to within a factor better than $m^{1/2-c}$ is NP-hard.

As we will see in the next subsection, this level of approximation can be reached in polynomial time, even in an incentive-compatible way (which is the topic of the next subsection).

Second, we can focus on special cases that can be solved efficiently. Several such cases are known. The first one is when each bidder desires a bundle of at most two items $|S_i^*| \leq 2$. This case is seen to be an instance of the weighted matching problem (in general nonbipartite graphs) which is known to be efficiently solvable. The second case is the "linear order" case. Assume that the items are arranged in a linear order and each desired bundle is for a contiguous segment of items, i.e., each $S_i^* = \{j^i, j^i+1, \ldots, k^i\}$ for some $1 \leq j^i \leq k^i \leq m$ (think of the items as lots along the seashore, and assume that each bidder wants a connected strip of seashore). It turns out that this case can be solved efficiently using dynamic programming, which we leave as an exercise to the reader (see Exercise 11.1).

Third, an NP-completeness result only says that one cannot write an algorithm that is guaranteed to run in polynomial time and obtain optimal outputs on all input instances. It may be possible to have algorithms that run reasonably fast and produce optimal (or near-optimal) results on most natural input instances. Indeed, it seems to be the case here: the allocation problem can be stated as an "integer programming" problem, and then the large number of known heuristics for solving integer programs can be applied. In particular, many of these heuristics rely on the linear programming relaxation of the problem, which we will study in Section 11.3 in a general setting. It is probably safe to say that most allocation problems with up to hundreds of items can be practically solved optimally, and that even problems with thousands or tens of thousands of items can be practically approximately solved quite well.

11.2.2 An Incentive-Compatible Approximation Mechanism

After dealing with the purely algorithmic aspect in the last subsection, we now return to handling also strategic issues. Again, we still avoid all representation difficulties, i.e., focusing on single-minded bidders. That is, we now wish to take into account the fact that the true bids are private information of the players, and not simply available to the algorithm. We still would like to optimize the social welfare as much as possible. The approach we take is the standard one of mechanism design: incentive compatibility. We refer the reader to Chapter 9 for background, but in general what we desire is an allocation algorithm and payment functions such that each player always prefers reporting his private information truthfully to the auctioneer rather than any potential lie. This would ensure that the allocation algorithm at least works with the true information. We also wish everything to be efficiently computable, of course.
Definition 11.7 Let V_{sm} denote the set of all single-minded bids on m items, and let A be the set of all allocations of the m items between n players. A mechanism for single-minded bidders is composed of an allocation mechanism $f : (V_{sm})^n \rightarrow A$ and payment functions $p_i : (V_{sm})^n \rightarrow \mathbb{R}$ for $i = 1, \ldots, n$. The mechanism is computationally efficient if f and all p_i can be computed in polynomial time. The mechanism is incentive compatible (in dominant strategies) if for every i, and every $v_1, \ldots, v_n, v_i' \in V_{sm}$, we have that $v_i(a) - p_i(v_i, v_{-i}) \geq v_i(a') - p_i(v_i', v_{-i})$, where $a = f(v_i, v_{-i})$, $a' = f(v_i', v_{-i})$ and $v_i(a) = v_i$ if i wins in a and zero otherwise.

The main difficulty here is the clash between the requirements of incentive compatibility and that of computational efficiency. If we leave aside the requirement of computational efficiency then the solution to our problem is simple: take the socially efficient allocation and let the payments be the VCG payments defined in Chapter 9. These payments essentially charge each bidder his “externality”: the amount by which his allocated bundle reduced the total reported value of the bundles allocated to others. As shown in Chapter 9, this would be incentive compatible, and would give the exactly optimal allocation. However, as shown above, exact optimization of the social welfare is computationally intractable. Thus, when we return to the requirement of computational efficiency, exact optimization is impossible. Now, one may attempt using “VCG-like” mechanisms: take the best approximation algorithm you can find for the problem – which can have a theoretical guarantee of no better than $O(\sqrt{m})$ approximation but may be practically much better – and attempt using the same idea of charging each bidder his externality according to the allocation algorithm used. Unfortunately, this would not be incentive compatible! VCG-like payments lead to incentive compatibility if but only if the social welfare is exactly optimized by the allocation rule (at least over some subrange of allocations).

We thus need to find another type of mechanisms – non-VCG. While in general settings almost no incentive compatible mechanisms are known beyond VCG, our single-minded setting is “almost single-dimensional” – in the sense that the private values are composed of a single scalar and the desired bundle – and for such settings this is easier. Indeed, the mechanism in Figure 11.1 is computationally efficient, incentive compatible, and provides a \sqrt{m} approximation guarantee, as good as theoretically possible in polynomial time.

This mechanism greedily takes winners in an order determined by the value of the expression $v_i^* / \sqrt{|S_i^*|}$. This expression was taken as to optimize the approximation ratio obtained theoretically, but as we will see, the incentive compatibility result would apply to any other expression that is monotone increasing in v_i^* and decreasing in $|S_i^*|$. The intuition behind the choice of j for defining the payments is that this is the bidder who lost exactly because of i – if Bidder i had not participated in the auction, Bidder j would have won.

Theorem 11.8 The greedy mechanism is efficiently computable, incentive compatible, and produces a \sqrt{m} approximation of the optimal social welfare.
The Greedy Mechanism for Single-Minded Bidders:
Initialization:
- Reorder the bids such that $v_1^* / \sqrt{|S_1^*|} \geq v_2^* / \sqrt{|S_2^*|} \geq \ldots \geq v_n^* / \sqrt{|S_n^*|}$.
- $W \leftarrow \emptyset$.

For $i = 1...n$ do: if $S_i^* \cap \left(\bigcup_{j \in W} S_j^* \right) = \emptyset$ then $W \leftarrow W \cup \{i\}$.

Output:
- Allocation: The set of winners is W.
- Payments: For each $i \in W$, $p_i = v_j^* / \sqrt{|S_j^*|/|S_i^*|}$, where j is the smallest index such that $S_i^* \cap S_j^* \neq \emptyset$, and for all $k < j, k \neq i$, $S_k^* \cap S_j^* = \emptyset$ (if no such j exists then $p_i = 0$).

Figure 11.1. The mechanism achieves a \sqrt{m} approximation for combinatorial auctions with single-minded bidders.

Computational efficiency is obvious; we will show incentive compatibility and the approximation performance in two separate lemmas. The incentive compatibility of this mechanism follows directly from the following lemma.

Lemma 11.9 A mechanism for single-minded bidders in which losers pay 0 is incentive compatible if and only if it satisfies the following two conditions:

(i) Monotonicity: A bidder who wins with bid (S_i^*, v_i^*) keeps winning for any $v_i' > v_i^*$ and for any $S_i' \subseteq S_i^*$ (for any fixed settings of the other bids).

(ii) Critical Payment: A bidder who wins pays the minimum value needed for winning: the infimum of all values v_i such that (S_i^*, v_i) still wins.

Before we prove the lemma – or actually just the side that we need – let us just verify that our mechanism satisfies these two properties. Monotonicity is implied since increasing v_i^* or decreasing S_i^* can only move bidder i up in the greedy order, making it easier to win. The critical payment condition is met since notice that i wins as long as he appears in the greedy order before j. The payment computed is exactly the value at which the transition between i being before and after j in the greedy order happens.

Note that this characterization is different from the characterization given in Chapter 9 for general single-parameter agents, since single-minded bidders are not considered to have a single parameter, as their private data consists of both their value and their desired bundle.

Proof We first observe that under the given conditions, a truthful bidder will never receive negative utility: his utility is zero while losing (losers pay zero), and for winning, his value must be at least the critical value, which exactly equals his payment. We will now show that a bidder can never improve his utility by reporting some bid (S', v') instead of his true values (S, v). If (S', v') is a losing bid or if S' does not contain S, then clearly reporting (S, v) can only help. Therefore we will assume that (S', v') is a winning bid and that $S' \supseteq S$.

We next show that the bidder will never be worse off by reporting \((S, v')\) rather than \((S', v')\). Denote the bidder’s payment for the bid \((S', v')\) by \(p'\), and for the bid \((S, v')\) by \(p\). For every \(x < p\), bidding \((S, x)\) will lose since \(p\) is a critical value. By monotonicity, \((S', x)\) will also be a losing bid for every \(x < p\), and therefore the critical value \(p'\) is at least \(p\). It follows that by bidding \((S, v')\) instead of \((S', v')\) the bidder still wins and his payment will not increase.

It is left to show that bidding \((S, v)\) is no worse than the winning bid \((S, v')\): Assume first that \((S, v)\) is a winning bid with a payment (critical value) \(\bar{p}\). As long as \(v'\) is greater than \(\bar{p}\), the bidder still wins with the same payment, thus misreporting his value would not be beneficial. When \(v' < \bar{p}\) the bidder will lose, gaining zero utility, and he will not be better off.

If \((S, v)\) is a losing bid, \(v\) must be smaller than the corresponding critical value, so the payment for any winning bid \((S, v')\) will be greater than \(v\), making this deviation non-profitable. □

The approximation guarantee is ensured by the following lemma.

Lemma 11.10 Let \(OPT\) be an allocation (i.e., set of winners) with maximum value of \(\sum_{i \in OPT} v_i^*\), and let \(W\) be the output of the algorithm, then \(\sum_{i \in OPT} v_i^* \leq \sqrt{m} \sum_{i \in W} v_i^*\).

Proof For each \(i \in W\) let \(OPT_i = \{j \in OPT, j \geq i \mid S_i^* \cap S_j^* \neq \emptyset\}\) be the set of elements in \(OPT\) that did not enter \(W\) because of \(i\) (in addition to \(i\) itself).

Clearly \(OPT \subseteq \bigcup_{i \in W} OPT_i\) and thus the lemma will follow once we prove the claim that for every \(i \in W\), \(\sum_{j \in OPT_i} v_j^* \leq \sqrt{m} v_i^*\).

Note that every \(j \in OPT_i\) appeared after \(i\) in the greedy order and thus \(v_j^* \leq \frac{v_i^*}{\sqrt{|S_j^*|}}\). Summing over all \(j \in OPT_i\), we can now estimate

\[
\sum_{j \in OPT_i} v_j^* \leq \frac{v_i^*}{\sqrt{|S_i^*|}} \sum_{j \in OPT_i} \sqrt{|S_j^*|}.
\]

Using the Cauchy-Schwarz inequality, we can bound

\[
\sum_{j \in OPT_i} \sqrt{|S_j^*|} \leq \sqrt{|OPT_i|} \sqrt{\sum_{j \in OPT_i} |S_j|}.
\]

Every \(S_j^*\) for \(j \in OPT_i\) intersects \(S_i^*\). Since \(OPT\) is an allocation, these intersections must all be disjoint, and thus \(|OPT_i| \leq |S_i^*|\). Since \(OPT\) is an allocation \(\sum_{j \in OPT_i} |S_j| \leq m\). We thus get \(\sum_{j \in OPT_i} \sqrt{|S_j^*|} \leq \sqrt{|S_i^*|} \sqrt{m}\), and plugging into Inequality 11.1 gives the claim \(\sum_{j \in OPT_i} v_j^* \leq \sqrt{m} v_i^*\). □

11.3 Walrasian Equilibrium and the LP Relaxation

In this section we return to discuss combinatorial auctions with general valuations, and we will study the linear-programming relaxation of the winner-determination problem in such auctions. We will also define the economic notion of a competitive equilibrium.
with item prices (or "Walrasian equilibrium"). Although these notions appear to be
independent at a first glance, we will describe a strong connection between them. In
particular, we will prove that the existence of a Walrasian equilibrium is a sufficient and
necessary condition for having an integer optimal solution for the linear programming
relaxation (i.e., no integrality gap). One immediate conclusion is that in environments
where Walrasian Equilibria exist, the efficient allocation can be computed in polynomial
time.

11.3.1 The Linear Programming Relaxation and Its Dual

The winner determination problem in combinatorial auctions can be formulated by an
integer program. We present the linear programming relaxation of this integer program,
and denote it by LPR (in the integer program Constraint (11.6) would be replaced with
"\(x_{i,S} \in \{0, 1\}\)").

The Linear Programming Relaxation (LPR):

\[
\begin{align*}
\text{Maximize} & \quad \sum_{i \in N, S \subseteq M} x_{i,S} v_i(S) \\
\text{s.t.} & \quad \sum_{i \in N, S \subseteq S} x_{i,S} \leq 1 \quad \forall j \in M \quad (11.4) \\
& \quad \sum_{S \subseteq M} x_{i,S} \leq 1 \quad \forall i \in N \quad (11.5) \\
& \quad x_{i,S} \geq 0 \quad \forall i \in N, S \subseteq M \quad (11.6)
\end{align*}
\]

In the integer program, each variable \(x_{i,S}\) equals 1 if bidder \(i\) receives the bundle
\(S\), and zero otherwise. The objective function is therefore maximizing social welfare.
Condition 11.4 ensures that each item is allocated to at most one bidder, and Condition
11.5 implies that each player is allocated at most one bundle. Solutions to the linear
program can be intuitively viewed as fractional allocations: allocations that would be
allowed if items were divisible. While the LP has exponentially (in \(m\)) many variables,
it still has algorithmic implications. For example, in the case of single-minded bidders
only a single variable \(X_{i,S}\) for each bidder \(i\) is required, enabling direct efficient
solution of the LP. In Section 11.5.2 we will see that, assuming reasonable access to
the valuations, the general LP can be solved efficiently as well.

We will also consider the dual linear program.

The Dual Linear Programming Relaxation (DLPR)

\[
\begin{align*}
\text{Minimize} & \quad \sum_{i \in N} u_i + \sum_{j \in M} p_j \\
\text{s.t.} & \quad u_i + \sum_{j \in S} p_j \geq v_i(S) \quad \forall i \in N, S \subseteq M \quad (11.8) \\
& \quad u_i \geq 0, \quad p_j \geq 0 \quad \forall i \in N, j \in M \quad (11.9)
\end{align*}
\]
The usage of the notations p_i and u_i is intentional, since we will later see that at the optimal solution, these dual variables can be interpreted as the prices of the items and the utilities of the bidders.

11.3.2 Walrasian Equilibrium

A fundamental notion in economic theory is the notion of a competitive equilibrium: a set of prices where the market clears, i.e., the demand equals the supply. We will now formalize this concept, that will be generalized later in Section 11.7.

Given a set of prices, the demand of each bidder is the bundle that maximizes her utility. (There may be more than one such bundle, in which case each of them is called a demand.) In this section we will consider a linear pricing rule, where a price per each item is available, and the price of each bundle is the sum of the prices of the items in this bundle.

Definition 11.11 For a given bidder valuation v_i and given item prices p_1, \ldots, p_m, a bundle T is called a demand of bidder i if for every other bundle $S \subseteq M$ we have that $v_i(S) - \sum_{j \in S} p_j \leq v_i(T) - \sum_{j \in T} p_j$.

A Walrasian equilibrium\(^1\) is a set of "market-clearing" prices where every bidder receives a bundle in his demand set, and unallocated items have zero prices.

Definition 11.12 A set of nonnegative prices p_1^*, \ldots, p_m^* and an allocation S_1^*, \ldots, S_m^* of the items is a Walrasian equilibrium if for every player i, S_i^* is a demand of bidder i at prices p_1^*, \ldots, p_m^* and for any item j that is not allocated (i.e., $j \notin \bigcup_{i=1}^m S_i^*$) we have $p_j^* = 0$.

The following result shows that Walrasian equilibria, if they exist, are economically efficient; i.e., they necessarily obtain the optimal welfare. This is a variant of the classic economic result known as the First Welfare Theorem but for environments with indivisible items. Here we actually prove a stronger statement: the welfare in a Walrasian equilibrium is maximal even if the items were divisible. In particular, if a Walrasian equilibrium exists, then the optimal solution to the linear program relaxation will be integral.

Theorem 11.13 (The First Welfare Theorem) Let p_1^*, \ldots, p_m^* and S_1^*, \ldots, S_n^* be a Walrasian equilibrium, then the allocation S_1^*, \ldots, S_n^* maximizes social welfare. Moreover, it even maximizes social welfare over all fractional allocations, i.e., let $(X_{i,S})_{i,S}$ be a feasible solution to the linear programming relaxation. Then, $\sum_{i=1}^n v_i(S_i^*) \geq \sum_{i \in N, S \subseteq M} X_{i,S}^* v_i(S)$.

\(^1\) Walras was an economist who published in the 19th century one of the first comprehensive mathematical analyses of general equilibria in markets.
In a Walrasian equilibrium, each bidder receives his demand. Therefore, for every bidder i and every bundle S, we have $v_i(S_i^*) - \sum_{j \in S_i} p_j^* \geq v_i(S) - \sum_{j \in S} p_j^*$. Since the fractional solution is feasible to the LPR, we have that for every bidder i, $\sum_{S \subseteq M} x_{i,S}^* \leq 1$ (Constraint 11.5), and therefore

$$v_i(S_i^*) - \sum_{j \in S_i^*} p_j^* \geq \sum_{S \subseteq M} x_{i,S}^* \left(v_i(S) - \sum_{j \in S} p_j^* \right). \tag{11.10}$$

The theorem will follow from summing Inequality 11.10 over all bidders, and showing that $\sum_{i \in N} \sum_{j \in S_i^*} p_j^* \geq \sum_{i \in N} \sum_{S \subseteq M} x_{i,S}^* \sum_{j \in S} p_j^*$. Indeed, the left-hand side equals $\sum_{j=1}^m p_j^*$ since S_1^*, \ldots, S_n^* is an allocation and the prices of unallocated items in a Walrasian equilibrium are zero, and the right-hand side is at most $\sum_{j=1}^m p_j^*$, since the coefficient of every price p_j^* is at most 1 (by Constraint 11.4 in the LPR).

Following is a simple class of valuations for which no Walrasian equilibrium exist.

Example 11.14 Consider two players, Alice and Bob, and two items $\{a, b\}$. Alice has a value of 2 for every nonempty set of items, and Bob has a value of 3 for the whole bundle $\{a, b\}$, and 0 for any of the singletons. The optimal allocation will clearly allocate both items to Bob. Therefore, Alice must demand the empty set in any Walrasian equilibrium. Both prices will be at least 2; otherwise, Alice will demand a singleton. Hence, the price of the whole bundle will be at least 4, Bob will not demand this bundle, and consequently, no Walrasian equilibrium exists for these players.

To complete the picture, the next theorem shows that the existence of an integral optimum to the linear programming relaxation is also a sufficient condition for the existence of a Walrasian equilibrium. This is a variant of a classic theorem, known as “The Second Welfare Theorem,” that provided sufficient conditions for the existence of Walrasian equilibria in economies with divisible commodities.

Theorem 11.15 (The Second Welfare Theorem) If an integral optimal solution exists for LPR, then a Walrasian equilibrium whose allocation is the given solution also exists.

Proof An optimal integral solution for LPR defines a feasible efficient allocation S_1^*, \ldots, S_n^*. Consider also an optimal solution $p_1^*, \ldots, p_n^*, u_1^*, \ldots, u_n^*$ to DLPR. We will show that $S_1^*, \ldots, S_n^*, p_1^*, \ldots, p_n^*$ is a Walrasian equilibrium.

Complementary-sloppiness conditions are necessary and sufficient conditions for the optimality of solutions to the primal linear program and its dual. Because of the complementary-sloppiness conditions, for every player i for which $x_{i,S_i^*} > 0$ (i.e., $x_{i,S_i^*} = 1$), we have that Constraint (11.8) is binding for the optimal dual solution, i.e.,

$$u_i^* = v_i(S_i^*) - \sum_{j \in S_i^*} p_j^*$$
Constraint 11.8 thus also shows that for any other bundle S we get

$$v_i(S^*_j) - \sum_{j \in S^*_i} p_j^* \geq v_i(S) - \sum_{j \in S} p_j^*$$

Finally, the complementary-slackness conditions also imply that for every item j for which Constraint (11.4) is strict, i.e., $\sum_{i \in N, s \in S} x_{i,s} < 1$ – which for integral solutions means that item j is unallocated – then necessarily $p_j^* = 0$. □

The two welfare theorems show that the existence of a Walrasian equilibrium is equivalent to having a zero integrality gap:

Corollary 11.16 A Walrasian equilibrium exists in a combinatorial-auction environment if and only if the corresponding linear programming relaxation admits an integral optimal solution.

11.4 Bidding Languages

This section concerns the issue of the representation of bids in combinatorial auctions. Namely, we are looking for representations of valuations that will allow bidders to simply encode their valuation and send it to the auctioneer. The auctioneer must then take the valuations (bids) received from all bidders and determine the allocation. Following sections will consider indirect, iterative ways of transferring information to the auctioneer.

Specifying a valuation in a combinatorial auction of m items requires providing a value for each of the possible $2^m - 1$ nonempty subsets. A naive representation would thus require $2^m - 1$ real numbers to represent each possible valuation. It is clear that this would be completely impractical for more than about two or three dozen items. The computational complexity can be effectively handled for much larger auctions, and thus the representation problem seems to be the bottleneck in practice.

We will thus be looking for languages that allow succinct representations of valuations. We will call these bidding languages reflecting their intended usage rather than the more precise “valuations languages.” From the outset it is clear that due to information theoretic reasons it will never be possible to encode all possible valuations succinctly. Our interest would thus be in succinctly representing interesting or important ones.

When attempting to choose or design a bidding language, we are faced with the same types of trade-offs common to all language design tasks: expressiveness vs. simplicity. On one hand, we would like our language to express succinctly as many “naturally occurring” valuations as possible. On the other hand, we would like it to be as simple as possible, both for humans to express and for programs to work with. A well-chosen bidding language should aim to strike a good balance between these two goals.

The bottom line of this section will be the identification of a simple language that is rather powerful and yet as easily handled by allocation algorithms as are the single minded bids studied in Section 11.2.
11.4.1 Elements of Representation: Atoms, OR, and XOR

The common bidding languages construct their bids from combinations of simple atomic bids. The usual atoms in such schemes are the single-minded bids addressed in Section 11.2: \((S, p)\) meaning an offer of \(p\) monetary units for the bundle \(S\) of items. Formally, the valuation represented by \((S, p)\) is one where \(v(T) = p\) for every \(T \subseteq S\), and \(v(T) = 0\) for all other \(T\).

Intuitively, bids can be combined by simply offering them together. Still informally, there are two possible semantics for an offer of several bids. One considers the bids as totally independent, allowing any subset of them to be fulfilled, and the other considers them to be mutually exclusive and allows only one of them to be fulfilled. The first semantics is called an OR bid, and the second is called (somewhat misleadingly) a XOR bid.

Take, for example, the valuations represented by \("((a, b), 3) \text{ XOR } ((c, d), 5)\)" and \("((a, b), 3) \text{ OR } ((c, d), 5)\)." Each of them values the bundle \([a, c]\) at 0 (since no atomic bid is satisfied) and values the bundle \([a, b]\) at 3. The difference is in the bundle \([a, b, c, d]\), which is valued at 5 by the XOR bid (according to the best atomic bid satisfied), but is valued at 8 by the OR bid. For another example, look at the bid \("((a, b), 3) \text{ OR } ([a, c], 5)\)." Here, the bundle \([a, b, c]\) is valued at 5 since both atomic bids cannot be satisfied together.

More formally, both OR and XOR bids are composed of a collection of pairs \((S_i, p_i)\), where each \(S_i\) is a subset of the items, and \(p_i\) is the maximum price that he is willing to pay for that subset. For the valuation \(v = (S_1, p_1) \text{ OR } \ldots, \text{ OR } (S_k, p_k)\), the value of \(v(S)\) is defined to be \(\max_{i\subseteq S} p_i\). For the valuation \(v = (S_1, p_1) \text{ OR } \ldots, \text{ OR } (S_k, p_k)\), one must be a little careful and the value of \(v(S)\) is defined to be the maximum over all possible “valid collections” \(W\), of the value of \(\sum_{i \in W} p_i\), where \(W\) is a valid collection of pairs if for all \(i \neq j \in W, S_i \cap S_j = \emptyset\).

It is not difficult to see that XOR bids can represent every valuation \(v:\) just XOR, the atomic bids \((S, v(S))\) for all bundles \(S\). On the other hand, OR bids can represent only superadditive bids (for any two disjoint sets \(S, T\), \(v(S \cup T) \geq v(S) + v(T)\)), since the atoms giving the value \(v(S)\) are disjoint from those giving the value \(v(T)\), and they will be added together for \(v(S \cup T)\). It is not difficult to see that all superadditive valuations can indeed be represented by OR bids by ORing the atomic bids \((S, v(S))\) for all bundles \(S\).

We will be more interested in the size of the representation, defined to be simply the number of atomic bids in it. The following basic types of valuations are good examples for the power and limitations of these two bidding languages.

Definition 11.17 A valuation is called additive if \(v(S) = \sum_{j \in S} v([j])\) for all \(S\). A valuation is called unit demand if \(v(S) = \max_{j \in S} v([j])\) for all \(S\).

An additive valuation is directly represented by an OR bid:

\(((1), p_1) \text{ OR } ((2), p_2) \text{ OR } \ldots \text{ OR } ((m), p_m)\)

while a unit-demand valuation is directly represented by an XOR bid:

\(((1), p_1) \text{ XOR } ((2), p_2) \text{ XOR } \ldots \text{ XOR } ((m), p_m)\)
where for each item j, $p_j = v((j))$. Additive valuations can be represented by XOR bids, but this may take exponential size: atomic bids for all $2^m - 1$ possible bundles will be needed whenever $p_j > 0$ for all j. (Since an atomic bid is required for every bundle S with $v(S)$ strictly larger than that of all its strict subsets, which is the case here for all S.) On the other hand, nontrivial unit-demand valuations are never superadditive and thus cannot be represented at all by OR bids.

11.4.2 Combinations of OR and XOR

While both the OR and XOR bidding languages are appealing in their simplicity, none of them are expressive enough to succinctly represent many desirable simple valuations. A natural attempt is to combine the power of OR bids and XOR bids. The most general way to allow this general form of combinations is to define OR and XOR as operations on valuations.

Definition 11.18 Let v and u be valuations, then $(v \text{ XOR } u)$ and $(v \text{ OR } u)$ are valuations and are defined as follows:

- $(v \text{ XOR } u)(S) = \max(v(S), u(S))$.
- $(v \text{ OR } u)(S) = \max_{R, T \subseteq S, R \cap T = \emptyset} v(R) + u(T)$

Thus a general “OR/XOR formula” bid will be given by an arbitrary expression involving the OR and XOR operations over atomic bids. For instance, the bid $((\{a, b\}, 3) \text{ XOR } (\{c\}, 2)) \text{ OR } (\{d\}, 5)$ values the bundle $\{a, b, c\}$ at 3, but the bundle $\{a, b, d\}$ at 8. The following example demonstrates the added power we can get from such combinations just using the restricted structure of an OR of XORs of atomic bids.

Definition 11.19 A valuation is called symmetric if $v(S)$ depends only on $|S|$. A symmetric valuation is called downward sloping if it can be represented as $v(S) = \sum_{j=1, \ldots, |S|} p_j$, with $p_1 \geq p_2 \geq \cdots \geq p_m \geq 0$.

It is easy to verify that every downward sloping valuations with $p_1 > p_2 > \cdots > p_m > 0$ requires XOR bids of size $2^m - 1$, and cannot be represented at all by OR bids.

Lemma 11.20 OR-of-XORs bids can express any downward sloping symmetric valuation on m items in size m^2.

Proof For each $j = 1, \ldots, m$ we will have a clause that offers p_j for any single item. Such a clause is a simple XOR-bid, and the m different clauses are all connected by an OR. Since the p_j's are decreasing, we are assured that the first allocated item will be taken from the first clause, the second item from the second clause, etc. \qed
11.4.3 Dummy Items

General OR/XOR formulae seem very complicated and dealing with them algorithmically would appear to be quite difficult. Luckily, this is not the case and a generalization of the language makes things simple again. The main idea is to allow XORs to be represented by ORs. This is done by allowing the bidders to introduce dummy items into the bids. These items will have no intrinsic value to any of the participants, but they will be indirectly used to express XOR constraints. The idea is that an XOR bid \((S_1, p_1) \text{ XOR } (S_2, p_2)\) can be represented as \((S_1 \cup \{d\}, p_1) \text{ OR } (S_2 \cup \{d\}, p_2)\), where \(d\) is a dummy item.

Formally, we let each bidder \(i\) have its own set of dummy items \(D_i\), which only he can bid on. An OR* bid by bidder \(i\) is an OR bid on the augmented set of items \(M \cup D_i\). The value that an OR* bid gives to a bundle \(S \subseteq M\) is the value given by the OR bid to \(S \cup D_i\). Thus, for example, for the set of items \(M = \{a, b, c\}\), the OR* bid \(((a, d), 1) \text{ OR } ((b, d), 1) \text{ OR } ((c, d), 1)\), where \(d\) is a dummy item, is equivalent to \(((a, d), 1) \text{ XOR } ((b, d), 1) \text{ OR } ((c, d), 1)\).

An equivalent but more appealing “user interface” is to let bidders report a set of atomic bids together with “constraints” that signify which bids are mutually exclusive. Each constraint can then be converted into a dummy item that is added to the conflicting atomic bids. Despite its apparent simplicity, this language can simulate general OR/XOR formulae.

Theorem 11.21 Any valuation that can be represented by OR/XOR formula of size \(s\) can be represented by OR* bids of size \(s\), using at most \(s^2\) dummy items.

Proof We prove by induction on the formula structure that a formula of size \(s\) can be represented by an OR* bid with \(s\) atomic bids. We then show that each atomic bid in the final resulting OR* bid can be modified as to not to include more than \(s\) dummy items in it.

Induction: The basis of the induction is an atomic bid, which is clearly an OR* bid with a single atomic bid. The induction step requires handling the two separate cases: OR and XOR. To represent the OR of several OR* bids as a single OR* bid, we simply merge the set of clauses of the different OR* bids. To represent the XOR of several OR* bids as a single OR* bid, we introduce a new dummy item \(x_{ST}\) for each pair of atomic bids \((S, v)\) and \((T, v')\) that are in two different original OR* bids. For each bid \((S, v)\) in any of the original OR* bids, we add to the generated OR* bid an atomic bid \((S \cup \{x_{ST}\}, T, v)\), where \(T\) ranges over all atomic bids in all of the other original OR* bids.

It is clear that the inductive construction constructs an OR* bid with exactly \(s\) clauses in it, where \(s\) is the number of clauses in the original OR/XOR formula. The number of dummy items in it, however, may be large. However, we can remove most of these dummy items. One can see that the only significance of a dummy item in an OR* bid is to disallow some two (or more) atomic bids to be taken concurrently. Thus we may replace all the existing dummy items with at most \(\binom{s}{2}\) new dummy items, one for each pair of atomic bids that cannot be taken...
Iterative auctions: the query model

This simulation can be directly turned into a “compiler” that translates OR/XOR formulae into OR* bids. This has an extremely appealing implication for allocation algorithms: to any winner determination (allocation) algorithm, an OR* bid looks just like a regular OR-bid on a larger set of items. But an OR bid looks to an allocation algorithm just like a collection of atomic bids from different players. It follows that any allocation algorithm that can handle single-minded bids (i.e., atomic bids) can immediately also handle general valuations represented as OR* bids or as general OR/XOR formulae. In particular, the various heuristics mentioned in Section 11.2 can all be applied for general valuations represented in these languages.

11.5 Iterative Auctions: The Query Model

The last section presented ways of encoding valuations in bidding languages as to enable the bidders to directly send their valuation to the auctioneer. In this section we consider indirect ways of sending information about the valuation: iterative auctions. In these, the auction protocol repeatedly interacts with the different bidders, aiming to adaptively elicit enough information about the bidders’ preferences as to be able to find a good (optimal or close to optimal) allocation. The idea is that the adaptivity of the interaction with the bidders may allow pinpointing the information that is relevant to the current auction and not requiring full disclosure of bidders’ valuations. This may not only reduce the amount of information transferred and all associated complexities but also preserve some privacy about the valuations, only disclosing the information that is really required. In addition, in many real-life settings, bidders may need to exert efforts even for determining their own valuation (like collecting data, hiring consultants, etc.); such iterative mechanisms may assist the bidders with realizing their valuations by guiding their attention only to the data that is relevant to the mechanism.

Such iterative auctions can be modeled by considering the bidders as “black-boxes,” represented by oracles, where the auctioneer repeatedly queries these oracles. In such models, we should specify the types of queries that are allowed by the auctioneer. These oracles may not be truthful, of course, and we will discuss the incentive issues in the final part of this section (see also Chapter 12). The auctioneer would be required to be computationally efficient in two senses: the number of queries made to the bidders and the internal computations. Efficiency would mean polynomial running time in \(m \) (the number of items) even though each valuation is represented by \(2^m \) numbers. The running time should also be polynomial in \(n \) (the number of bidders) and in the number of bits of precision of the real numbers involved in the valuations.

11.5.1 Types of Queries

Our first step is to define the types of queries that we allow our auctioneer to make to the bidders. Probably the most straightforward query one could imagine is where a bidder reports his value for a specific bundle.