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Abstract

We consider the problem of assigning individuals (e.g. students) to
indivisible goods (schools) when these assignments have to be made re-
peatedly and when individuals face uncertainty about the intensity of their
future preferences. For the setting with two schools and two periods, where
all individuals have an ordinal preference for the same school, we show that
expected utility under a dynamic mechanism is strictly greater for every
individual than under a static mechanism, where a mechanism is called
dynamic (static) if its future assignments depend (do not depend) on past
reports. We derive conditions under which a simple dynamic mechanism
achieves the first-best allocation in the first period and second-best over
both periods. Extensions of the model allow, in turn, for individuals who
differ with respect to their ordinal preferences, uncertainty about future
ordinal preferences, correlated utilities, and the possibility that switching
schools is costly.
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1 Introduction

We consider the problem of assigning individuals (e.g. students) to indivisi-

ble goods (schools) when these assignments have to be made repeatedly and

when individuals face uncertainty about the intensity of their future prefer-

ences.1 These assumptions are satisfied in many real world situations, such as

the allocation of high school students to public schools, college students to cam-

pus houses, students to courses at business schools, or scarce resources within

an organization in general. Since for example students who are assigned to a

course in a given semester typically have to be assigned to a course the following

semester, it is clear that these problems are dynamic.2

Though this dynamic dimension adds naturally some complications, it also

offers potential for substantial efficiency gains. Very much like in the theory

of repeated games and the literature on dynamic contracting, future payoffs

can serve as incentives in the presence. For example, assume that there are

two schools and two periods and that all students agree which school is better.

If students who only weakly prefer the good school in period one are credibly

promised a sufficiently higher probability of getting into the good school in

period two when they apply to the bad school today, the allocation in period

one can eventually be improved. As those with the lowest preference for the

good school apply to the bad school today, there is either no rationing at the

good school in period one, or rationing is more efficient because it occurs among

students with a stronger preference for the good school.

Consequently, dynamic mechanisms have the potential of eliciting some car-

dinal utility information, namely whether individuals care a lot or a little about

the good school in period one. This contrasts with a static or myopic mecha-

nism, where in every period all students have a dominant strategy to apply to

their preferred school. Moreover, as a consequence of the increased efficiency

in the first period, ex ante expected utility under a dynamic mechanism (i.e.

expected utility of individuals before they know their valuations) exceeds ex

ante expected utility under a static mechanism.

The paper, and the model we adopt, are motivated by the problem of public

school choice, where a given number of students have to be assigned to a given
1Allocation problems where indivisible goods - ”houses” - are assigned to individuals with-

out using monetary transfers have become known as house allocation problems.
2Similarly, students who are assigned to a school in a given period will have to be assigned

to a school in the next period, and scarce resources within an organization are allocated to
members of the organization repeatedly.
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number of schools.3 Because of either political reasons, credit market imperfec-

tions, or other practical problems, no transfer payments are allowed for, so that

the allocation cannot be relied upon the usual market mechanism.4 Nonethe-

less, it is desirable to allow students to choose their most preferred school if this

school is available. For example, consider the public school match currently in

use in Boston. Each school has a fixed maximum capacity of students it can

accommodate, which is determined by the Boston school department. Stu-

dents are given the opportunity to choose a school in kindergarten, and then

in first, sixth and ninth grade. So, clearly, the allocation or matching prob-

lem is dynamic. Moreover, it is reasonable to assume that students (and their

parents) are uncertain about the intensity of their future preferences for the

various schools when taking their decision in the presence. These features are

the main ingredients of the model we analyze. We capture the dynamic nature

by assuming that students go to school for two periods. There are two schools,

or two types of schools, each type with a fixed capacity, and individuals face

uncertainty about their future utility when applying to a school in the presence.

Related literature The present paper relates to the literatures on matching

theory and mechanism design without monetary transfers. A classic reference

for matching is Roth and Sotomayor (1990). Hatfield and Milgrom (2005) gen-

eralize some of the key results in matching markets. Static house allocation

problems with ordinal preferences have been studied by, among others, Ab-

dulkadiroglu and Sönmez (1998, 1999) and McLennan (2002). Roth, Sönmez,

and Ünver (2004) use von-Neumann-Morgenstern utilities to assess the poten-

tial welfare gains from an improved matching mechanism for kidney transplants.

However, their mechanism does not elicit or use cardinal information. Simi-

larly, Roth, Sönmez, and Ünver (2005b) analyze stochastic exchanges without

inducing revelation of cardinal utility information. Course bidding at business
3See Abdulkadiroglu and Sönmez (2003), Abdulkadiroglu, Pathak, Roth, and Sönmez

(2005) and Abdulkadiroglu, Pathak, and Roth (2005). Though the model is meant to capture
the essential features of school assignments, it is also appropriate in other environments, most
importantly perhaps, for the problem of queue management. Consider e.g. a large organi-
zation, like a firm or a university, and assume that in every period various subunits of the
organization (called clients) require the services of a central unit (the server). Assume further
that the server’s capacity is limited, so that in every period some clients will be rationed. This
problem is almost identical to the school assignment problem we study. The main difference
is that the continuum assumption is less likely to be appropriate in this setting than in the
school assignment problem.

4Practical concerns arise, for example, when allocating resources within an organization
such as a firm or a university. Though in principle it is possible to create markets and have
market mechanisms work inside the organization, there can be quite compelling reasons (such
as too much or too little consumption) why this need not be very desirable.
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schools in a static setting is studied by Sönmez and Ünver (2005). The appli-

cation of the mechanism design approach to public school choice was proposed

by Abdulkadiroglu and Sönmez (2003),5 and some of the practical problems

and design issues involved are discussed by Abdulkadiroglu, Pathak, Roth, and

Sönmez (2005) and Abdulkadiroglu, Pathak, and Roth (2005).6

Casella (2003), Abdulkadiroglu (2004) and Jackson and Sonnenschein (2004)

have started to study mechanisms without transfers that improve allocations

in terms of expected utility, either by linking decisions (Casella, Jackson and

Sonnenschein) or by giving individuals ”quasi-money” (Abdulkadiroglu). An

important difference to Casella’s paper is that we look at a problem with a

continuum of agents. This allows us to abstract from strategic interactions

between agents, whereas she analyzes voting equilibria when there are two or

three agents who face a repeated decision problem. A main contrast between

our paper and those of Jackson and Sonnenschein and Abdulkadiroglu is the

striking simplicity of our mechanism, which nevertheless has very desirable

welfare properties. Hortala-Vallve (2004) and Börgers and Postl (2004) consider

the possibility of achieving welfare gains by studying more elaborate voting

schemes than ”one man one vote”. Hortala-Vallve proves the impossibility of

attaining first-best, while Börgers and Postl show that nonetheless substantial

welfare gains, as a matter of fact, almost first-best solutions, are possible.7

The remainder of the paper is structured as follows. Section 2 introduces

basic concepts and illustrates the main idea of the paper with a simple example.

Section 3 analyzes the general two period two school model, where all individ-

uals have identical ordinal preferences, utility for the bad school is normalized

to zero and utility draws for the good school are independent over time. In

Section 4, we analyze the same model with the modification that students have

heterogenous ordinal preferences, i.e. some students prefer one school and some

the other. Section 5 introduces uncertainty about ordinal preferences in addi-

tion to uncertainty about preference intensity. This setting is natural when a

school is not good or bad per se, but rather specialized, say, either in languages
5See also Boston Globe (2003).
6See also Roth, Sönmez, and Ünver (2005a) and Roth (2002). The former address design

problems for kidney exchange, the latter provides a detailed discussion of other applications
and issues in economic design.

7The basic problem Casella, Jackson and Sonnenschein, Hortala-Vallve, and Börgers and
Postl address is a collective decision problem with few (typically two or three) individuals
who may differ both with respect to their ordinal preferences as well as the intensities of these
preferences. The goal of all four papers is to find mechanism that improve ex ante expected
utility.
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or in math, and when students are uncertain in period one about the skills they

are going to develop during that period. Section 6 extends the model to allow

for correlation of utility over time. In Section 7, we study the model when

switching from one school to another involves a dead weight loss cost. Section

8 summarizes the main results we obtain for the various models, and Section 9

concludes. A generalization that drops the normalization of utility for the bad

school, which is maintained throughout the paper, and an example are deferred

to the Appendix.

2 Example

For the purpose of illustration, we first consider a simple example. There is a

continuum of students whose total mass is two. There are two schools, or two

types of schools, A and B, each with a capacity to accommodate students of

mass one. Students go to school for two periods, t = 1, 2. Within a period, a

school is an indivisible good, but students can switch school from one period to

another at zero costs.

Preferences over schools are as follows. Denote by xkt the instantaneous

utility of a student when attending school k = A, B in period t. We assume

that xBt = 0 for all t and all students. Instantaneous utility for A, xAt, is

drawn randomly from the distribution G on [0,M ] with M > 0 and G(0) = 0,

where these draws are i.i.d. over time and across students.8 Because utility of

school B is always zero, we write x for the utility of school A for simplicity.

Denote by Eu the expected value of x. The realizations of the instantaneous

utilities are known by individuals before applying to a school within a given

period. Utility is additive over time, and there is no discounting, so that in

period one the expected utility of an individual who is sure to attend school A

in both periods and whose first period draw is x is x + Eu; Figure 1 illustrates

the timing. Also, we let F (x) be the measure of students whose utility draw

for school A in period one is no larger than x. Because students have mass two

in total, we have F (x) ≡ 2G(x).
8The assumption that G(.) is a continuous function is made merely for expositional conve-

nience. All the main results would go through if the random variable is of the discrete type,
as long as its support includes sufficiently many points; in particular, all the main results go
through if the support contains the points (if they exist) xj with j = 1, .., 4 defined in the
proof of Proposition 1 below.



2 EXAMPLE 6

Figure 1: Timing.

2.1 Mechanisms

We investigate the potential of using dynamic mechanisms in a school assign-

ment (or house allocation) problem with two periods and two schools. We

restrict attention to mechanisms that are simple in that the number of possible

messages is equal to the number of schools. This type of mechanism is particu-

larly apt for practical use since asking (and answering) the question ”To which

school do you want to apply?” is a very natural thing in a school assignment

problem. Though more complicated mechanisms exist that may be used in prac-

tical applications as well, the analysis of such mechanisms is beyond the scope

of the present paper. There are two motivations for this. First, it simplifies the

analysis. Second, as will be shown below, there are reasonable conditions under

which even a very simple mechanism achieves the optimal incentive compatible

allocation over both periods.

In particular, we consider and compare the following two types of mecha-

nisms.

Static (or Myopic) Mechanism Let each individual report his or her pref-

erences in period one. If there is excess demand for a school, individuals are

allocated randomly. The same procedure is repeated in period two.

We contrast the static (or myopic) mechanism with the dynamic mechanism.

Dynamic Mechanism Those students who apply to the less preferred school

in period one are given priority for their preferred school in period two. (It

is assumed that everybody knows which school is preferred at the time the

mechanism is run.) Students who apply to the preferred school in period one

have priority for this school in period one. If there is excess demand in any

period for some school, students with the same priority are allocated randomly.
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2.2 Equilibrium

We now derive equilibrium under both mechanisms.

Equilibrium under the Static Mechanism Let µ2 ∈ [0, 2] be the measure

of other students an individual believes will apply to A in t = 2 (not necessarily

the correct measure). Denote by Uk(x) the expected utility of an individual

whose utility draw for school A is x and who applies for school k. Under the

static mechanism, ”apply to A” is a strictly dominant strategy in t = 2 since

UA(x) = min
{

1,
1
µ2

}
x > 0 = UB(x)

for all x > 0. Thus, the static mechanism induces a unique equilibrium in t = 2.

In this equilibrium, all individuals apply to A.

Consequently, the expected utility of an individual in t = 1 whose first

period utility draw is x and who believes that µ1 ∈ [0, 2] others apply to A in

t = 1 when applying to A (taking equilibrium behavior in t = 2 into account)

is

UA(x) = min
{

1,
1
µ1

}
x +

1
2
Eu >

1
2
Eu = UB(x),

where Eu is the expected utility for school A and where the strict inequality

holds for all x > 0. Thus, ”apply to A” is a strictly dominant strategy in both

periods.

Equilibrium under the Dynamic Mechanism Consider the expected util-

ity of an individual who believes µ others apply to A in period one (and who

correctly anticipates that in t = 2 all individuals will apply to A) after his

period one utility x is realized, i.e. at the interim stage:

UA(x) = min
{

1,
1
µ

}
x + max

{
0, 1− 1

µ

}
Eu

UB(x) = max
{

0,
1− µ

2− µ

}
x + min

{
1,

1
2− µ

}
Eu.

So, an individual with utility x applies to A if and only if

UA(x)− UB(x) =
(

min
{

1,
1
µ

}
−max

{
0,

1− µ

2− µ

})
x

+
(

max
{

0, 1− 1
µ

}
−min

{
1,

1
2− µ

})
Eu ≥ 0.
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It is easy to see that regardless of whether µ ≥ 1 or µ < 1, the individual

will apply to A if and only if x ≥ Eu. Thus, every individual has a strictly

dominant strategy, which is either ”apply to A” or ”apply to B”. Which strat-

egy is dominant depends on the first period utility realization x. Because the

equilibrium is in strictly dominant strategies, it is necessarily unique.

2.3 Uniform Distribution

For the purpose of illustration, we consider now an example where G is uni-

form on [0,M ]. Thus, Eu = M
2 and F (Eu) = 1. In t = 1, all individuals

with x ≤ Eu apply to B, and all others apply to A. Note that maximizing

social welfare requires that the fifty percent of students with the most intense

preference for A are assigned to A, which is exactly what is achieved under the

dynamic mechanism. Thus, from a social point of view, the first-best allocation

is achieved in t = 1.

Quantifying Welfare Gains First, since all students with x ≤ Eu apply to

B in t = 1, there is no rationing (or excess demand for school A) and no demand

shortage for school B in period one. Second, because of this and because all

high utility students (i.e. all students with x > Eu) go to school A in t = 1,

the period one allocation maximizes social welfare. Overall welfare under the

dynamic mechanism is given by

WDM = E[x | x > M/2] + Eu =
5
4
M.

Since M > 0, this is greater than expected welfare under the static mechanism,

which is WSM = M . The expected welfare gain generated by the dynamic

mechanism is thus M
4 , or twenty-five percent.

3 The Model

We now consider a more general model, in which utility for the good school, A,

is drawn from the distribution function G with support [0,M ] and where school

A can have any capacity α ∈ (0, 2). Capacity of school B is 2− α.9 As before,

we denote by x the instantaneous utility for A (which is private information)

and by Eu the expected value of x and we let F (x) ≡ 2G(x) be the mass of

students with utility draw no larger than x. The median value of x is denoted
9Aside from the fact that capacities of schools may, in general, vary, the exercise of allowing

for varying capacities is motivated by the model of Section 4, where students differ with respect
to their preferred school.
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by m, i.e. G(m) = 1
2 . Notice that F (m) = 1. Utility for school B is zero

for all individuals and both periods, and there are no costs of switching from

one school to the other after period one. All of these assumptions are common

knowledge.

The assumptions of two schools is maintained throughout the paper. The

assumption of homogenous and time invariant ordinal preferences, i.e. that all

students have an ordinal preference for school A in both periods, is relaxed in

Section 4. Note that time invariant ordinal preferences imply certainty about

future ordinal preferences. This assumption will be relaxed in Section 5. The

assumption that switching from one school to another is costless is relaxed in

Section 7. The normalization of utility for school B is dropped in the Ap-

pendix, where we show that the normalization does not affect the results in any

qualitatively important way.

We begin with the definition of a cutoff equilibrium.

Definition 1 x∗ ∈ (0,M) is an (interior) equilibrium cutoff point if given the

behavior of all others it is optimal

- for every student with x < x∗ to apply to B,

- for every student with x ≥ x∗ to apply to A, and

- µ = 2− F (x∗).

We are now ready to state one of the main results of this section, which

is that under fairly general conditions a cutoff equilibrium under the dynamic

mechanism exists.

Proposition 1 For any α ∈
(
0, 2M

Eu+M

)
and any G with full support on [0,M ]

and G(0) = 0, there is an interior cutoff equilibrium. A sufficient condition for

the existence of an interior cutoff equilibrium for any α ∈ (0, 2) is Eu = m.

Notice that 2M
Eu+M > 1 for any non-degenerate distribution G.

Proof : The proof consists of three steps. In step 1, we derive the four cases

that have to be distinguished and the necessary conditions for an equilibrium

for each case. In step 2, we construct an equilibrium for any α ≤ 1 and in step

3, we construct an equilibrium for all α > 1.

Step 1: Consider Figure 2 to see that as a function of α and µ, which

remains to be determined in steps 2 and 3, there are four cases that can occur.

Case 1 : Assume 2 − µ < α < µ. In this case, the number of applicants to

B in t = 1 is smaller than the capacity of A, which in turn is smaller than the

number of applicants to A. For this case to occur in a cutoff equilibrium, the
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Figure 2: Four cases.

following must hold for some x:

UA(x) =
α

µ
x +

α− (2− µ)
µ

Eu = Eu = UB(x)

⇔
x∗ =

2− α

α
Eu.

Clearly, ∂UA
∂x = α

µ > 0 = ∂UB
∂x .

Case 2 : Assume µ < α < 2−µ. Then, the capacity of B is smaller than the

number of applicants to B in t = 1. Consequently, no applicant to A in t = 1

will get into A in t = 2.

UA(x) = x =
α− µ

2− µ
x +

α

2− µ
Eu = UB(x)

⇔
x∗ =

α

2− α
Eu.

It is easy to see that ∂UA
∂x = 1 > α−µ

2−µ = ∂UB
∂x .

Case 3 : Assume α < min{µ, 2− µ}. Note that α < µ ⇔ 2− α > 2− µ, i.e.

there are less applicants to B in t = 1 than seats in B. Moreover, α < 2 − µ

implies that there are more applicants to B in t = 1 than the capacity of A can
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accommodate. Consequently, none of those who apply to A in t = 1 will get

into A in t = 2.

UA(x) =
α

µ
x =

α

2− µ
Eu = UB(x)

⇔
x∗ =

µ

2− µ
Eu.

Obviously, ∂UA
∂x = α

µ > 0 = ∂UB
∂x .

Case 4 : Assume α > max{µ, 2− µ}. The condition α > 2− µ implies that

the number of applicants to B in t = 1 is smaller than the capacity of A.

UA(x) = x +
α− (2− µ)

µ
Eu =

α− µ

2− µ
x + Eu = UB(x)

⇔
x∗ =

2− µ

µ
Eu.

It is easy to check that ∂UA
∂x = 1 > α−µ

2−µ = ∂UB
∂x .

These conditions and cases can be summarized as follows:

x1 =
2− α

α
Eu 2− µ ≤ α ≤ µ (Case 1)

x2 =
α

2− α
Eu µ ≤ α ≤ 2− µ (Case 2)

x3 =
µ

2− µ
Eu α ≤ min{µ, 2− µ} (Case 3)

x4 =
2− µ

µ
Eu α ≥ max{µ, 2− µ} (Case 4),

where we have dropped the ”star” and used subscripts to indicate the respective

cases. Second, replace µ by 2− F (xi) for i = 1, .., 4 to get:

x1 =
2− α

α
Eu F (x1) ≤ α ≤ 2− F (x1)

x2 =
α

2− α
Eu 2− F (x2) ≤ α ≤ F (x2)

x3 =
2− F (x3)

F (x3)
Eu α ≤ min{F (x3), 2− F (x3)}

x4 =
F (x4)

2− F (x4)
Eu α ≥ max{F (x4), 2− F (x4)}.

Note that ∂x1
∂α < 0 and ∂x2

∂α > 0.

Step 2: Another necessary condition for some x∗ and a given µ to constitute

an equilibrium is that x∗ and µ must be consistent, i.e. it must be that µ =

2− F (x∗).
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So as to show that for α ∈
(
0, 2M

M+Eu

)
there is always an equilibrium with an

interior cutoff point, it is useful to distinguish the cases with α ≤ 1 and α > 1.

We begin with the former and show that such a pair x∗ and µ = 2 − F (x∗)
always exists, which then proves existence.

For α ≤ 1, the strategy of the proof is to start with an x close to the median

such that the restriction α ≤ min{F (x), 2−F (x)} of a case 3 equilibrium is met.

If this is not an equilibrium (i.e. if for no such x, x = x3 holds), then we can

either decrease x until we have an x that satisfies all of the restrictions of a case 1

equilibrium, or we can increase x until we have a case 2 equilibrium. For α > 1,

the strategy of the proof is completely analogous, except that we start with an

x close to the median that satisfies the restrictions α ≥ max{F (x), 2 − F (x)}
of a case 4 equilibrium.

Recall that m denotes the utility of the median, i.e. F (m) = 1, and consider

case 3. Clearly, for α ≤ 1 there is always an x such that α ≤ min{F (x), 2 −
F (x)}, since we can always choose x = m. If in addition, x = 2−F (x)

F (x) Eu holds,

we have an equilibrium. So, assume either x > 2−F (x)
F (x) Eu or x < 2−F (x)

F (x) Eu for

all x for which the restriction α ≤ min{F (x3), 2 − F (x3)} holds. We consider

the first case first. Start with an x such that α ≤ min{F (x), 2 − F (x)} holds

and decrease x until x = x̃ with x̃ > 2−F (x̃)
F (x̃) Eu and α = F (x̃) < 2− F (x̃). The

last inequality holds because initially 2−F (x) ≥ α holds and as x decreases to

x̃, 2 − F (x̃) > α follows. Note that x̃ > 2−α
α Eu. Now decrease x further until

x̂ = 2−α
α Eu. As x̂ < x̃ implies F (x̂) < α < 2−F (x̂), it follows that we have an

equilibrium of the form described in case 1.

Notice that x1 = 2−α
α Eu > 0 for any α < 1. The only concern for the

existence of an interior equilibrium is thus that x1 > M . However, since x1 is

only needed to prove equilibrium existence when x3 is not an equilibrium cutoff

point and because in this case x1 is known to be smaller than some x < M , we

know that x1 < M holds.

So as to complete the case where α ≤ 1, assume now that for any x that

satisfies the restriction α ≤ min{F (x), 2 − F (x)}, x < 2−F (x)
F (x) Eu holds. Start

with any such x and increase it until x equals x̃, which is such that x̃ < 2−F (x̃)
F (x̃) Eu

and α = 2 − F (x̃). Note that 2 − F (x̃) = α < F (x̃), since initially both

F (x) and 2 − F (x) were larger than α and since the term 2 − F (x) decreases

when x increases. Note also that x̃ < α
2−αEu. So, increase x further until

x̂ = α
2−αEu. This is clearly an equilibrium of the type analyzed in case 2, with

2− F (x̂) < α < F (x̂).

Notice that x2 = α
2−αEu ≤ Eu for any α ≤ 1 and that x2 is positive. Thus,
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Figure 3: A fix point x3 always exists.

whenever x2 is an equilibrium cutoff point for α ≤ 1, it is an interior cutoff

point.

Step 3: The reasoning for the case with α > 1 is almost completely anal-

ogous. Consider an x such that α > max{F (x), 2− F (x)}. Because α > 1, we

know that such x’s always exist if we choose them close enough to m. If in ad-

dition for one such x, x = F (x)
2−F (x)Eu holds, we have an equilibrium of the case 4

type. So, assume that no such x exists, i.e. whenever α > max{F (x), 2−F (x)}
is satisfied, we either have x > F (x)

2−F (x)Eu or x < F (x)
2−F (x)Eu. Consider first the

case where x > F (x)
2−F (x)Eu and the restriction α ≥ max{F (x4), 2−F (x4)} is sat-

isfied. As we decrease x, F (x) decreases and 2−F (x) increases. Since initially

max{F (x), 2−F (x)} < α, the constraint that will become binding for some suf-

ficiently small x̃ is α = 2−F (x̃) > F (x̃). Assume that x̃ > F (x̃)
2−F (x̃)Eu = 2−α

α Eu.

Clearly, as we decrease x further until x̂ = 2−α
α Eu, F (x̂) < α < 2−F (x̃) holds,

and we have an equilibrium of the case 1 type. Because we reach x1 by de-

creasing x, starting from some x < M , we know that x1 is an interior cutoff

point.

Finally, consider the case where for any x such that α > max{F (x), 2−F (x)}
holds, we have x < F (x)

2−F (x)Eu. Increase x until α = F (x̃) > 2 − F (x̃). Note

that x̃ < F (x̃)
2−F (x̃)Eu = α

2−αEu. Increase x further up to x̂ = α
2−αEu. Since

F (x̂) > α > 2−F (x̂), we have an equilibrium of the type considered under case

2, provided x2 < M , which is implied by the assumption α < 2M
M+Eu .

That Eu = m is a sufficient condition for an interior cutoff equilibrium to

exist for any α ∈ (0, 2) follows directly by plugging x3 = m and x4 = m into

the conditions x3 = 2−F (x3)
F (x3) Eu and x4 = F (x4)

2−F (x4)Eu and the corresponding

restrictions α ≤ min{F (x3), 2−F (x3)} and α ≥ max{F (x4), 2−F (x4)}, which

yields x3 = x4 = Eu and min{F (x3), 2−F (x3)} = max{F (x4), 2−F (x4)} = 1.
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Figure 4: A fix point x4 may fail to exist.

Thus, for α ≤ 1, case 3 is an equilibrium, and otherwise case 4 is an equilibrium.

¥
Notice that an interior fix point x3 = 2−F (x3)

F (x3) Eu always exists, as illustrated

in Figure 3. An interior fix point x4 = F (x4)
2−F (x4)Eu, on the other hand, need not

exist because F (.) may be such that F (x)
2−F (x)Eu > x for all x > 0; see Figure 4.

This happens, for example, with G(x) = x
1
2 for 0 ≤ x ≤ 1, then Eu = 1

3 and
F (x)

2−F (x)Eu = G(x)
1−G(x)Eu > x for all x ∈ [0, 1].10

Not only the restriction Eu = m, but also the restriction α < 2M
M+Eu in the

first part of the proposition is only sufficient. In Appendix B, we briefly illus-

trate this ’sufficiency without necessity’ with a simple example. We show also

that the restrictions have grip by providing an example where an equilibrium

does not exist when both restrictions are violated.

It is also worth mention that the possibility that a cutoff equilibrium does

not exist depends on the normalization of utility for school B in the follow-

ing sense. As shown in Appendix A, if utilities for school B and A, xB and

xA, are drawn independently from the distributions G[0,M ] and G[M, 2M ],

respectively, then a case 4 equilibrium exists for any α ≥ 1. Thus, without the

normalization, the restriction on G that Eu = m can be dispensed with.11

3.1 Welfare Properties

Proposition 1 asserts the existence of a cutoff equilibrium under fairly general

conditions. We are now going to discuss the welfare properties of these cutoff

equilibria.
10One of the reasons why a fix point x4 does not exist in this case is that at x = 0, the

derivative of G(x)
1−G(x)

Eu is infinite.
11Of course, some symmetry is contained in the assumption that xB and xA are drawn from

the same distribution G with disjoint supports.
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Proposition 2 In any cutoff equilibrium, every individual expects a higher util-

ity at the interim stage in t = 1 under the dynamic mechanism than under the

static mechanism.

Proof : Denote by U(x) the expected interim utility of an individual under

a static mechanism, where everybody always applies to A. That is, U(x) ≡
α
2 x+ α

2 Eu. Given µ, the utility of applying to A under the dynamic mechanism

is

UA(x) = min
{

1,
α

µ

}
x + max

{
0,

α− (2− µ)
µ

}
Eu

and the utility of applying to B is

UB(x) = max
{

0,
α− µ

2− µ

}
x + min

{
1,

α

2− µ

}
Eu.

Case 1 : If 2 − µ < α < µ, then UA(x) = α
µx + α−(2−µ)

µ Eu ≥ α
2 (x + Eu) =

U(x) ⇔ x ≥ 2−α
α Eu. On the other hand, UB(x) = Eu > α

2 (x + Eu) = U(x) ⇔
x < 2−α

α Eu.

Case 2 : If µ < α < 2 − µ, then UA(x) = x ≥ α
2 (x + Eu) = U(x) ⇔ x ≥

α
2−αEu. For UB(x) > U(x), we need α−µ

2−µ x+ α
2−µEu > α

2 (x+Eu) ⇔ x < α
2−αEu.

Case 3 : If α < min{µ, 2 − µ}, then UA(x) = α
µx ≥ α

2 (x + Eu) = U(x) ⇔
x ≥ µ

2−µEu. For UB(x) > U(x), we need α
2−µEu > α

2 (x + Eu) ⇔ x < µ
2−µEu.

Case 4 : If α > max{µ, 2−µ}, then UA(x) = x+ α−(2−µ)
µ Eu ≥ α

2 (x+Eu) =

U(x) ⇔ x ≥ 2−µ
µ Eu. For UB(x) > U(x), we need UB(x) = α−µ

2−µ x + Eu >
α
2 (x + Eu) = U(x) ⇔ x < 2−µ

µ Eu. ¥
For the static mechanism, it is immaterial whether it is a one period or

a two period problem. At the interim stage in t = 1, the expected utility of

an individual with utility draw x is U = α
2 x + α

2 Eu. By Proposition 2, one

can ask individuals at the interim stage whether they prefer the dynamic or

the static mechanism. Under our assumptions, they will all prefer the dynamic

mechanism. Moreover, because interim expected utility under the dynamic

mechanism exceeds interim expected utility under a static mechanism for every

individual, we have also shown:

Corollary 1 Ex ante expected utility under the dynamic mechanism is larger

than under a static mechanism.

Overall Second-best Welfare Next we show that whenever the first-best

allocation is achieved in t = 1 under a dynamic mechanism, then this mecha-

nism achieves the second-best allocation over both periods, i.e. implements the

optimal incentive compatible allocation overall.
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Lemma 1 In the two-period game where all students prefer A to B, the optimal

incentive compatible second period allocation is a random allocation.

Proof In t = 2, the game reduces to a static game. Thus, all individuals have

a dominant strategy to apply to A (or to report the highest utility if asked to

report utilities). Consequently, based on period two reports, the allocation can

only be random. On the other hand, because of the i.i.d. assumption, period

one reports cannot be informative about period two utilities. Thus, there is no

way to improve upon a random allocation in period two. ¥
For example, the dynamic mechanism establishes first-best in t = 1, and

second-best in t = 2 when both schools have equal capacities and when Eu = m.

Consequently, no other mechanism can do better. Thus:

Proposition 3 If the dynamic mechanism establishes first-best in period one,

it establishes second-best overall.

3.2 Unique Equilibrium vs. Multiple Equilibria

The following proposition characterizes completely the sets of equilibria under

the dynamic mechanism.

Proposition 4 Two cases occur:

• For α ≤ 1, there is a unique equilibrium under the dynamic mechanism.

This equilibrium is a cutoff equilibrium.

• For α > 1, all equilibria under the dynamic mechanism are either cutoff

equilibria, or all students apply to B.

Proof : First, we show that for any α ∈ (0, 2), there is no equilibrium where

all x ∈ [x, x] do the same (e.g. apply to A), while some x′ < x and some x′′ > x

do the converse (i.e. apply to B), where 0 < x ≤ x < M . Therefore, all

equilibria will be either cutoff or such that all individuals do the same. Second,

we show that for any α ∈ (0, 2) there is no equilibrium where all apply to A.

Moreover, for α ≤ 1, there is no equilibrium where all apply to B. For α > 1,

on the other hand, it cannot be ruled out in general that all apply to B. Third,

we deal with the question of multiple cutoff equilibria. This multiplicity may

occur for α > 1, but not for α ≤ 1.

Step 1: Denote by Pt(k) the probability of getting into school A in period

t when applying to school k in period one, k = A, B and t = 1, 2. Assume first
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that all x ∈ [x, x] apply to A. Then, we must have

UA(x) = P1(A)x + P2(A)Eu ≥ P1(B)x + P2(B)Eu = UB(x)

⇔
[P1(A)− P1(B)]x ≥ [P2(B)− P2(A)]Eu.

Because it follows from our assumptions that at least F (x) > 0 individuals have

priority over applicants to A in period two, P2(B) > P2(A) follows. Therefore,

the right-hand side is positive, and consequently, the left-hand side must be

positive, too, implying P1(A) > P1(B). Therefore, ∂UA
∂x > ∂UB

∂x > 0. Thus, the

stipulated behavior cannot be an equilibrium.

If all x ∈ [x, x] apply to B, the above inequality must be reversed. But

then, all x < x strictly prefer to apply to B, too, thus yielding the desired

contradiction.

Step 2: Assume all apply to A, i.e. µ∗ = 2. But then, for any α ∈ (0, 2),

UB(x) = Eu >
α

2
(x + Eu) = UA(x)

for x sufficiently close to zero.

If α ≤ 1, then there is no equilibrium where all apply to B because

UA(x) = x >
α

2
(x + Eu) = UB(x)

for x > α
2−αEu, which for α ≤ 1 holds for any x > Eu, and thus in particular

for x = M . On the other hand, if α > 1, then α
2−αEu > M may be the case.

Thus, for α > 1 all applying to B can be an equilibrium.

Step 3: From the previous steps, we know that the only equilibria are cutoff

for α ≤ 1. We are now going to show that there is a unique cutoff equilibrium

in this case by showing that the conditions of cases 1 trough 4 are incompatible.

Note first that for α = 1, all four cases are equivalent, provided their condi-

tions are consistent with equilibrium. That is, x1 = x2 = Eu. So if case 1 and

2 are both consistent with equilibrium, it must be that F (x1) = F (x2) = 1.

Similarly, if case 3 or case 4 is consistent with equilibrium, the constraints for

each of these two cases must hold with equality, implying F (x3) = F (x4) = 1.

Consider therefore the case with α < 1. Trivially, there is no case 4 equilib-

rium for α < 1, so cases 1, 2 and 3 remain to be checked.

Next note that x1 = 2−α
α Eu > α

2−αEu = x2 implies F (x1) > F (x2), which

in turn implies 2− F (x1) < 2− F (x2). Because case 1 requires α < 2− F (x1)

while case 2 requires 2− F (x2) < α, it follows that the two cases are mutually
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exclusive. Thus, we are left to check consistency of cases 1 and 3 and cases 2

and 3.

So as to see that cases 1 and 3 are incompatible, note first that α < F (x3)

implies 2−α > 2−F (x3), which in turn implies x1 = 2−α
α Eu > 2−F (x3)

F (x3) Eu = x3

and hence F (x1) > F (x3). But α ≤ F (x3) < F (x1) ≤ α is a contradiction.

Hence, the two cases are mutually exclusive. In order to see that cases 2 and

3 are incompatible, observe that α < 2 − F (x3) implies 2 − α > F (x3), which

in turn implies x3 = 2−F (x3)
F (x3) Eu > α

2−αEu = x2. Hence, F (x3) > F (x2) ⇔
2− F (x3) < 2− F (x2). But for case 3, α ≤ 2 − F (x3) must hold, whereas for

case 2, 2 − F (x2) ≤ α has to be satisfied, which with 2 − F (x3) < 2 − F (x2)

yields the desired contradiction.

Finally, turn to the case α > 1. Clearly, a case 3 equilibrium cannot occur

now. However, case 1 and case 2 are now not mutually exclusive since for

α > 1, x1 < x2 follows, implying F (x1) < F (x2) ⇔ 2− F (x1) > 2− F (x2). So,

depending on F (.) and α, F (x1) < α < 2− F (x1) and 2− F (x2) < α < F (x2)

can both hold. Moreover, either case can be consistent with case 4, depending

again on F (.) and α. ¥
So as to develop some intuition and gain a better understanding of the wel-

fare implications of different cutoffs, an example with multiple cutoff equilibria

is instructive.

Welfare Across the Different Equilibria We now consider an example

where utility is drawn from the uniform distribution G(x) = x
M on [0,M], so

that F (x) ≡ 2G(x) = 2x
M and Eu = m = M

2 . For the four cases we have:

• Case 1 : x1 = 2−α
α

M
2 and F (x1) = 2−α

α .

• Case 2 : x2 = α
2−α

M
2 and F (x2) = α

2−α .

• Case 3 : x3 = M
2 because Eu = m, so that F (x3) = 1.

• Case 4 : x4 = M
2 because Eu = m, so that F (x4) = 2− F (x4) = 1.

For α < 1, case 3 is an equilibrium, and from Proposition 4 we know that it

is the unique equilibrium. For α > 1, case 4 is clearly an equilibrium. Case

1 is an equilibrium whenever F (x1) < α < 2 − F (x1) ⇔ 2−α
α < α < 3α−2

α ,

which holds for all α ∈ (1, 2). A necessary condition for a case 2 equilibrium

is 2 − F (x2) < α < F (x2) ⇔ 4−3α
2−α < α < α

2−α , which holds for all α ∈ (1, 2).

However, for case 2 to be an interior cutoff, it must also be the case that x2 < M ,

which requires α < 4
3 . Thus, for α ∈ (1, 4

3), there are three cutoff equilibria.
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Moreover, for α
2−αEu > M ⇔ α > 4

3 , there is also an equilibrium where all

apply to B.

Clearly, under the equilibrium where all apply to B welfare is lowest because

this equilibrium induces just a random assignment in both periods. More inter-

esting is a comparison of welfare across the different cutoff equilibria. Welfare

is not monotonously increasing in the cutoff x∗. The reason is that though a

higher x∗ implies a greater efficiency among those who apply to A, a higher x∗

eventually also means more inefficiency among those who apply to B and who

eventually are assigned to A. Having fewer applicants for A (or equivalently,

having a higher cutoff) is only desirable if there is excess demand for A. If, in

equilibrium, the number of applicants is already reduced below A’s capacity,

then it seems desirable to have a lower cutoff, implying more applicants to A,

because the random assignment among those who apply to B is a source of

inefficiency as well.

Denote by g(x) the density of G(x). For the uniform distribution we have

g(x) = 1
M . We focus on the case with α > 1, for otherwise, there is a unique

equilibrium. Since expected welfare in period two is the same for all allocations,

we only report period one welfare. We compute the ex ante expected utility of

an individual and denote by Wi the first-period welfare in case j with j = 1, 2, 4.

• W1 = α
2−F (x1)

∫ M
x1

xg(x)dx = 2+α
8 M

• W2 =
∫ M
x2

xg(x)dx + α−(2−F (x2))
F (x2)

∫ x2

0 xg(x)dx = 4−α
8 M

• W4 =
∫ M

M
2

xg(x)dx + (α− 1)
∫ M

2
0 xg(x)dx = 2+α

8 M .

Note that W1(α) = W4(α). Moreover, for α = 1, welfare is the same across all

equilibria, but it increase in α for case 1 and 4 while it decreases in α in case

2. Thus, for α ∈ (1, 4
3),

W1 = W4 > W2.

3.3 Many Periods

We conclude this section with a very brief discussion of what happens if there

are more than two periods. Denote by WDM(2) the overall welfare achieved in

the equilibrium under the dynamic mechanism in the two period model, under

the assumption that such an equilibrium exists. Without much loss, assume

that the number of periods T is even12 and denote by WDM(T ) equilibrium

welfare under a dynamic mechanism for the T period model.
12If not, the following statements are true for the model confined to the first T̃ ≡ T − 1

periods.
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Proposition 5 Under the above assumptions, there is a dynamic mechanism

that induces a cutoff equilibrium such that

WDM(T ) ≥ T

2
WDM(2)

holds.

Proof : The existence of a dynamic mechanism that induces a cutoff equilibrium

follows immediately from the existence of such an equilibrium under a dynamic

mechanism for the two period model: Repeat the two period mechanism T/2

times. The resulting equilibrium welfare will be WDM(T ) = T
2 WDM(2). How-

ever, in general the longer time horizon may allow for even better mechanisms.

Therefore, WDM(T ) ≥ T
2 WDM(2) holds. ¥

4 Heterogeneity in Ordinal Preferences

We now consider four extensions of the basic model. First, we study the model

under the assumption that individuals are heterogenous with respect to ordinal

preferences. Second, we analyze a simple model when students are uncertain

about which school they will prefer in the future. Third, we look at the case

when utilities are correlated across time. Lastly, we analyze what happens when

there is some inertia in the sense that students dislike switching from one school

to another.

4.1 Mechanisms when Ordinal Preferences are not Known

So far, we have assumed that all students prefer school A to B, though the

intensity with which they do so may differ across time. We now replace this

assumption by the alternative that some students have an ordinal time-invariant

preference for school A and others an ordinal and time-invariant preference for

school B. These preferences are private information, so that even the fraction

of students preferring A to B is not known. These assumptions are natural

when a school is not good or bad per se, but rather specialized, say, either in

languages or in math, and when it is not known how many students prefer to

specialize in math or languages, respectively.

There are two schools A and B with capacities α and 2 − α, respectively,

and two periods. Let xkt be distributed according to G(.) with support [0,M ]

and let x−kt = 0 for all students, where −k means ”not k”, k = A,B and

t = 1, 2. We first describe an augmented dynamic mechanism that allows to

infer the true preferences before individuals are asked to apply to the good or
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bad school in period one.13 Second, we derive equilibrium behavior under this

mechanism.

Dynamic Two Phase Mechanism

Phase 1: Ask all individuals i to report their ordinal preferences Âi. If i’s

preferred school is available (i.e. if there is no excess demand for this school), i

is assigned to this school for both periods. Individuals who prefer a school with

excess demand enter phase 2.

Denote the true number of students preferring A to B by a. Without loss,

assume that A is the school with excess demand, i.e. a > α.

Phase 2: The mechanism announces the number of individuals who re-

ported that they preferred the school with excess demand. Then the dynamic

mechanism of Section 3 is applied, i.e. if a student now applies to the less

preferred school, he’ll have priority for the preferred school in t = 2.

4.2 Equilibrium under the Two Phase Mechanism

Lemma 2 Truth telling in phase 1 is a strictly dominant strategy.

Proof : Consider an individual i with A Âi B and let ã be the measure of

other individuals who report that they prefer A to B. If ã < α, then by telling

the truth he gets his first-best (i.e. into A in both periods, which is obviously

better than lying). If ã ≥ α, there is too little demand for B. Thus, by lying he

gets into B in both periods, which is the worst that can happen to him. Thus,

truth telling is strictly dominant. ¥
The lemma implies that ã = a in equilibrium. Consequently, free capacity

of school B is a − α > 0. Without loss, we can normalize â = 2 and α̂ = 2
aα.

Therefore, we have shown:

Proposition 6 The game in phase 2 is equivalent to the one studied in Section

3, where capacity of school A is α̂.

5 Uncertainty about Ordinal Preferences

This section contains a generalization to the case where there is uncertainty both

about ordinal and cardinal future preferences (as opposed to only the cardinal
13Put differently, under this mechanism ordinal and cardinal preference statements are made

in separate steps. The motivation is the same as the one of Sönmez and Ünver (2005), who
observe that order and intensity of preferences cannot be both inferred when observing only
a single variable (”bids”).
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component). This model is appropriate when each school is specialized in, say,

languages or math, and when students are uncertain in period one about the

skills they are going to develop. It is shown for the example of a uniform

distribution that previous results basically carry over.

5.1 Assumptions

There are two periods, and two schools A and B with equal capacities (i.e.

α = 1). Total mass of students is two, and instantaneous utilities for school

A and B are drawn independently from the distributions GA(x) and GB(x)

with support [M,M]. These draws are i.i.d. across students and time, and as

before, there is no discounting. We assume that school A is the good school in

the sense that EUA > EUB.

There are now students who prefer school B to A in one period and A to

B in the other period. Denote by γ the probability that a student prefers B to

A. That is,

γ ≡ Pr(xB > xA) =
∫ M

M

∫ y

M
dGA(x)dGB(y) =

∫ M

M
GA(y)dGB(y)

and Pr(xB ≤ xA) = (1 − γ). Consequently, some students who applied to

B in t = 1 will prefer school B to A in period two. Therefore, the dynamic

mechanism is as follows:

Dynamic Mechanism: If you apply to B in t = 1, you are in B, provided

there is enough capacity. In t = 2, everybody can again apply to A or B.

Those who applied to B in t = 1 have priority over all those who applied to A,

whatever school they apply to in t = 2.

Before we can proceed with the equilibrium analysis, some further definitions

are needed. The expected utility of A of a student who wants to go to A, i.e.

conditional on xA ≥ xB, is

EUA ≡ E[xA | xA ≥ xB] =
∫ M

M

∫ xA

M
xA

dGB(xB)dGA(xA)
1− γ

,

where 1
1−γ is the conditioning factor. Next, denote by ẼUB the expected utility

of school B, conditional on xA > xB, which is given by

ẼUB ≡ E[xB | xA ≥ xB] =
∫ M

M

∫ M

xB

xB
dGA(xA)dGB(xB)

1− γ
.

This will be of importance because an individual who would like to go to school

A may be assigned to B despite xA > xB, in which case his expected utility is

ẼUB.
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5.2 Equilibrium for the Uniform Distribution

Assume GA and GB are uniform on [0, 2M ] and [0,M ], so that their densities

are gA = 1
2M for 0 ≤ x ≤ 2M and gB = 1

2M for 0 ≤ x ≤ M , respectively. The

unconditional expected utilities then are M and M
2 . The probability of having

a preference for school B is then easily seen to be

γ =
∫ M

0

∫ y

0

1
2M2

dxdy =
1
4
.

The joint density of xA and xB is 1
2M2 and the probability of xB ≥ xA is γ = 1

4 .

Hence, the joint conditional density of xA and xB, conditional on xA ≥ xB, is

g(xA, xB | xA ≥ xB) = 2
3M2 . Therefore, the relevant conditional expectations

are

EUA = E[xA | xA ≥ xB] =
∫ M

0

∫ 2M

xB

xA

2M2

1
1− γ

dxAdxB =
11
9

M

and

ẼUB = E[xB | xA ≥ xB] =
∫ M

0

∫ 2M

xB

xB

2M2

1
1− γ

dxAdxB =
4
9
M.

Proposition 7 The game has an equilibrium in which individuals apply to A

in t = 1 if and only if x ≡ (xA, xB) is such that

xA ≥ xB + (1− 2γ)[EUA − ẼUB] = xB +
7
18

M.

In this equilibrium, µ∗ = 10
9 .

Proof : Notice first that [EUA − ẼUB] = 7
9M and recall γ = 1

4 . Since all

individuals in the area above xA ≥ 7
18 + xB apply to A, it is easily seen that

their measure is 10
9 . So, assume this is an equilibrium. Then, the following

holds: µ∗ > 1 > (2 − µ∗) and 1 > (2 − µ∗)(1 − γ), so all who applied to B

in t = 1 will get into A if they want in t = 2. On the other hand, for γ < 1
2

the residual capacity of A in t = 2, 1 − (2 − µ∗)(1 − γ), does not permit to

accommodate all those who applied to A in t = 1 and who want to get into A

in t = 2 since γ < 1
2 ⇔ 1− (2− µ∗)(1− γ) < µ∗(1− γ). The cutoff equilibrium

condition thus reads

UA(x) =
1
µ∗

xA +
(

1− 1
µ∗

)
xB + (1− γ)

×
[
1− (2− µ∗)(1− γ)

µ∗(1− γ)
EUA +

(
1− 1− (2− µ∗)(1− γ)

µ∗(1− γ)

)
ẼUB

]
+ γEUB

≥ xB + (1− γ)EUA + γEUB = UB(x).

Re-arranging and simplifying yields the condition in the proposition. ¥
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5.3 Welfare Comparisons

Static mechanism Again, we restrict attention to period one welfare. Under

a static mechanism, all students with a preference for school A apply to this

school in t = 1. Since total mass of these students is 3
2 and since α = 1, one

third of them has to be rationed and sent to school B. On the other hand, since

γ < 1
2 , all students with a preference for B get into B for sure. Hence, so as to

derive welfare under a static mechanism, we first need to compute additionally

the expected utility of getting into B conditional on xB ≥ xA, denoted as

E[xB | xB ≥ xA]. The joint conditional density of xA and xB, conditional on

xB ≥ xA, is g(xA, xB | xB ≥ xA) = 2
M2 . Consequently,

E[xB | xB ≥ xA] =
∫ M

0

∫ xB

0
xB

2
M2

dxAdxB =
2
3
M.

Thus, expected welfare under a static mechanism, WSM , is

WSM = (1− γ)
[
2
3
E[xA | xA ≥ xB] +

1
3
E[xB | xA ≥ xB]

]
+ γE[xB | xB ≥ xA]

=
13
18

M = 0.72M.

Next, we consider the equilibrium welfare under the dynamic mechanism.

Dynamic Mechanism Under the dynamic mechanism, only those indi-

viduals with xA ≥ xB + (1 − 2γ)
[
EUA − ẼUB

]
= xB + 7

18M apply to school

A. The conditional expectations relevant for welfare are therefore E[xB | xA ≤
xB + 7

18M ], E[xA | xA ≥ xB + 7
18M ] and E[xB | xA ≥ xB + 7

18M ]. The proba-

bility of xA ≥ xB + 7
18M is 5

9 . Thus, g
(
xA, xB | xA ≥ xB + 7

18M
)

= 9
10M2 , and

g
(
xA, xB | xA ≤ xB + 7

18M
)

= 9
8M2 . Hence

E[xB | xA ≤ xB +
7
18

M ] =
∫ M

0

∫ xB

0
xB

9
8M2

dxAdxB =
19
32

M

E[xA | xA ≥ xB +
7
18

M ] =
∫ M

0

∫ 2M

xB

xA
9

10M2
dxAdxB =

1013
720

M

E[xB | xA ≥ xB +
7
18

M ] =
∫ M

0

∫ 2M

xB

xB
9

10M2
dxAdxB =

17
40

M.

Since the measure of students applying to A is 10
9 , which exceeds school A’s

capacity, one tenth of them will be rationed and sent to school B. Thus,

expected welfare under the dynamic mechanism, WDM , is given as

WDM =
5
9

[
9
10

E[xA | xA ≥ xB +
7
18

M ] +
1
10

E[xB | xA ≥ xB +
7
18

M ]
]

+
4
9
E[xB | xB ≥ xB +

7
18

M ] = 0.99M.
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Compared to the welfare under a static mechanism, this seems like a substantial

improvement. Now let us compare it with the first-best welfare.

First-best Under first-best, students with xA ≥ xB + M
2 should be assigned

to school A, and all others should go to B. Note that because Pr(xA ≥ xB +
M
2 ) = 1

2 there is no rationing at either school, which obviously should be the

case under first-best. The probability of xA ≥ xB + M
2 being 1

2 , the joint

conditional densities are 1
M2 . The expected utility of getting into A, conditional

on xA ≥ xB + M
2 is,

E[xA | xA ≥ xB +
M

2
] =

∫ M

0

∫ 2M

xB+M
2

xA
1

M2
dxAdxB =

35
24

M,

and the expected utility of getting into B, conditional on xA ≤ xB + M
2 , is

E[xB | xA ≤ xB +
M

2
] =

∫ M

0

∫ xB+M
2

0
xB

1
M2

dxAdxB =
7
12

M.

Thus, first-best welfare is given as

WFB =
1
2

[
35
24

M +
7
12

M

]
=

49
48

M = 1.02M.

Comparing this number to the welfare achieved under the dynamic mechanism,

we see that welfare in period one under the dynamic mechanism is only three

percent less than first-best. So, adding the complication of uncertainty about

future ordinal preferences does not appear to have a big impact on the efficiency

properties of the dynamic mechanism.

6 Correlations

We now relax the assumption that utility draws are i.i.d. over time. We show

that even with positive correlation, expected welfare under the dynamic mecha-

nisms exceeds welfare under the static mechanism for any correlation coefficient

less than one. For perfectly positively correlated utility, welfare is the same un-

der the dynamic and under the static mechanism. Finally, we briefly analyze

the model with negative correlation.

6.1 Assumptions

There are two schools A and B, and total mass of students is two. As above,

capacity of A is α and capacity of B is 2−α. There are two periods, and utility

for school B is zero for both periods. Utility for A is greater than zero for all

individuals and both periods. (We will be more precise about how utility for
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A is generated shortly.) Denote by x the first period utility draw and by y the

utility for the second period.

6.2 Positive Correlation

So as to model positive correlation, we follow Jackson and Sonnenschein (2004,

Appendix 3, p. 45-6) and make the following assumptions. After period one

utility x is realized, period two utility y is

y = x

with probability ρ ∈ [0, 1] and drawn from the distribution G[0,M ] with prob-

ability (1− ρ). Thus,

E[y | x] = ρx + (1− ρ)Eu.

Existence for the Case with Positive Correlation We now show that a

result that is closely related to Proposition 1 holds for the case with positive

correlation.

Proposition 8 Provided α and ρ are such that ρ ≤ min
{

α
2−α ,

2−α
α

M−Eu

M−Eu

}
,

there is an interior cutoff equilibrium under the dynamic mechanism. A suf-

ficient condition for the existence of an interior cutoff equilibrium for any

α ∈ (0, 2) and ρ ∈ [0, 1] is Eu = m.

Proposition 8 generalizes Proposition 1 to the case with positive correlation.

The only additional restriction we need to take care of is x1(ρ) > 0, which holds

if ρ < α
2−α . On the other hand, x2(ρ) < M is guaranteed by ρ <

2−α
α

M−Eu

M−Eu . This

is a generalization of the condition α < 2M
Eu+M of Proposition 1.14 Therefore,

the proof is analogous to the one of Proposition 1, which is why we only sketch

it.

Sketch of Proof : It is straightforward to derive the candidate equilibrium

cutoffs xi(ρ) with i = 1, .., 4:

x1(ρ) =
2− α

α− ρ(2− α)
(1− ρ)Eu F (x1) ≤ α ≤ 2− F (x1)

x2(ρ) =
α

2− α− ρα
(1− ρ)Eu 2− F (x2) ≤ α ≤ F (x2)

x3(ρ) =
2− F (x3)

F (x3)− ρ(2− F (x3))
(1− ρ)Eu α ≤ min{F (x3), 2− F (x3)}

x4(ρ) =
F (x4)

2− F (x4)− ρF (x4)
(1− ρ)Eu α ≥ max{F (x4), 2− F (x4)},

14To see this, set ρ = 0 in the condition of Proposition 8 to get the condition of Proposition
1.



6 CORRELATIONS 27

where we have dropped ρ’s inside xi(.) on the right-hand side for notational

ease.

Next proceed as in the case with ρ = 0. That is, separate the problem into

the case with α ≤ 1 and α > 1 and consider the former first.

1. Choose x close to the median m, such that α ≤ min{F (x), 2 − F (x)}
holds. If in addition x = 2−F (x)

F (x)−ρ(2−F (x))(1− ρ)Eu, we are done.

2. So assume it does not hold for any x that satisfies α ≤ min{F (x), 2 −
F (x)}. Then, for all these x’s either (a) x > 2−F (x)

F (x)−ρ(2−F (x))(1 − ρ)Eu or (b)

x < 2−F (x)
F (x)−ρ(2−F (x))(1− ρ)Eu holds.

Consider first (a). Decrease x until x̃, where F (x̃) = α and note that

x̃ >
2− α

α− ρ(2− α)
(1− ρ)Eu =

2− F (x̃)
F (x̃)− ρ(2− F (x̃))

(1− ρ)Eu.

So, decrease x further until x̂ = 2−α
α−ρ(2−α)(1 − ρ)Eu > 0 holds. That such a

2−α
α−ρ(2−α)(1− ρ)Eu > 0 exists is guaranteed by the assumption ρ < α

2−α .

Consider now (b). Increase x until x = x̃, where α = 2 − F (x̃). Note that

x̃ < α
2−α−ρα(1− ρ)Eu. So, increase x further until x̂ = α

2−α−ρα(1− ρ)Eu < M .

The inequality is satisfied because of the assumption ρ <
2−α

α
M−Eu

M−Eu , which is

satisfied for any α ≤ 1 since for these α’s
2−α

α
M−Eu

M−Eu > 1 holds.

3. Assume α > 1. Choose x close to m. Assume that for no such x,

x = F (x)
2−F (x)−ρF (x)(1 − ρ)Eu holds for otherwise we are done. So, either (c)

x > F (x)
2−F (x)−ρF (x)(1 − ρ)Eu or (d) x < F (x)

2−F (x)−ρF (x)(1 − ρ)Eu holds. Consider

first (c). Decrease x until x̃, where α = 2 − F (x̃) > F (x̃). Decrease x further

until x̂ = 2−α
α−ρ(2−α)(1 − ρ)Eu holds. Because for the larger x̃, we had α =

2 − F (x̃) > F (x̃), the restriction F (x̂) < α < 2 − F (x̂) is clearly satisfied.

Because of the assumption ρ < α
2−α , x̂ > 0 exists.

Finally, consider (d). Increase x in case the restriction is never satisfied

until x = x̃, where α = F (x̃). Increase x further until x̂ = α
2−α−ρα(1− ρ)Eu.

Like the conditions in Proposition 1, the condition ρ ≤ min
{

α
2−α ,

2−α
α

M−Eu

M−Eu

}

in Proposition 8 is only sufficient. To see this, consider a distribution G satis-

fying Eu = m. Then, x3(ρ) = x4(ρ) = Eu for any ρ ∈ [0, 1]. Clearly, case 3 is

an equilibrium for any α ≤ 1, and case 4 is an equilibrium for any α > 1. Thus,

there will be an interior cutoff equilibrium for any α and ρ, including those for

which the condition is not met. ¥

Welfare with Positive Correlation Next we compare expected utility in

the interim stage under the dynamic mechanism with expected interim utility
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under a static mechanism. The following proposition is the analogue to, and a

generalization of, Proposition 2 for the case with positively correlated utilities.

Proposition 9 In the interim stage of a cutoff equilibrium with positive corre-

lation, expected utility under the dynamic mechanism is larger than under the

static mechanism.

Proof : The proof mimics the one for Proposition 2. As in Proposition 2, denote

by U(x) = α
2 (x + E[y | x]) = α

2 ((1 + ρ)x + (1 − ρ)Eu) the expected utility in

the interim stage under the static mechanism. Under the dynamic mechanism,

we have:

Case 1 : UA(x) = α
µx + α−(2−µ)

µ E[y | x] ≥ α
2 (x + E[y | x]) = U(x) ⇔ x ≥

2−α
α−ρ(2−α)(1−ρ)Eu = x1(ρ). On the other hand, UB(x) = E[y | x] ≥ α

2 (x+E[y |
x]) = U(x) ⇔ x ≤ 2−α

α−ρ(2−α)(1− ρ)Eu = x1(ρ).

Case 2 : UA(x) = x ≥ α
2 (x + E[y | x]) = U(x) ⇔ x ≥ α

2−α−ρα(1 − ρ)Eu =

x2(ρ). On the other hand, UB(x) = α−µ
2−µ x + α

2−µE[y | x] ≥ α
2 (x + E[y | x]) =

U(x) ⇔ x ≤ α
2−α−ρα(1− ρ)Eu = x2(ρ).

Case 3 : UA(x) = α
µx ≥ α

2 (x + E[y | x]) = U(x) ⇔ x ≥ µ
2−µ−ρµ(1− ρ)Eu =

x3(ρ). On the other hand, UB(x) = α
2−µE[y | x] ≥ α

2 (x + E[y | x]) = U(x) ⇔
x ≤ µ

2−µ−ρµ(1− ρ)Eu = x3(ρ).

Case 4 : UA(x) = x + α−(2−µ)
µ E[y | x] ≥ α

2 (x + E[y | x]) = U(x) ⇔ x ≥
µ

2−µ−ρµ(1 − ρ)Eu = x4(ρ). On the other hand, UB(x) = α−µ
2−µ x + E[y | x] ≥

α
2 (x + E[y | x]) = U(x) ⇔ x ≤ µ

2−µ−ρµ(1− ρ)Eu = x4(ρ). ¥
An immediate corollary to Proposition 9 is:

Corollary 2 Whenever an interior cutoff equilibrium exists with positive cor-

relation, ex ante expected utility under the dynamic mechanism exceeds ex ante

expected utility under a static mechanism.

6.3 Negative Correlation

Though the case with positive correlation may seem more relevant for real

world applications, there are also situations where period one and two utilities

may be negatively correlated. Consider the server-client example discussed in

the Introduction. If the server supports clients who experience stress due to

exogenous shocks (e.g. deadlines) and if these shocks are negatively correlated

over time (which is likely to be the case for deadlines), then there will be

negative correlation.

We capture negative correlation by assuming that y = M − x with prob-

ability ρ ∈ [0, 1] and drawn from G[0,M ] with probability (1 − ρ). Moreover,
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the distribution G[0,M ] from which utility for A is drawn is now assumed to

be symmetric and continuous, i.e. g(x) = g(M − x). This assumption makes

sure that the unconditional expectation of period two utility is the same as the

expectation of period one utility.

Existence Before we prove existence, some preliminary observations are help-

ful. We write EX [.] for the expectation taken with respect to the distribution

of x.

Claim: EX [x] = EX [M − x] = M
2 when g(.) is symmetric.

Proof: First, EX [M − x] = M − EX [x], which is immediate. Second,

EX [x] = EX [M −x]. (Together with the first observation this then proves that

EX [x] = M
2 .) To see that EX [x] = EX [M − x] is true, note that

EX [x] =
∫ M

0
xg(x)dx =

∫ M

0
(M − x)g(M − x)dx =

∫ M

0
(M − x)g(x)dx,

where the last equality holds because of symmetry. But
∫ M
0 (M − x)g(x)dx =

EX [M − x]. ¥
Due to symmetry, it is also true that the median m is equal to M

2 = E[x] ≡
Eu, where we drop the subscript X if there is no danger of confusion. Moreover,

E[y | x] = ρ(M − x) + (1− ρ)Eu = (1 + ρ)Eu− ρx, where the second equality

follows because M = 2Eu.

We can now state the general existence result, which is straightforward to

prove because G is symmetric.

Proposition 10 With negative correlation (and G symmetric), an interior

cutoff equilibrium always exists.

Proof : Consider the four cases of Proposition 1. Replace Eu by E[y | x] =

(1 + ρ)Eu− ρx and solve for the respective cutoff xi(ρ), i = 1, .., 4 to get

x1(ρ) =
2− α

α + ρ(2− α)
(1 + ρ)Eu F (x1) ≤ α ≤ 2− F (x1)

x2(ρ) =
α

2− α + ρα
(1 + ρ)Eu 2− F (x2) ≤ α ≤ F (x2)

x3(ρ) =
2− F (x3)

F (x3) + ρ(2− F (x3))
(1 + ρ)Eu α ≤ min{F (x3), 2− F (x3)}

x4(ρ) =
F (x4)

2− F (x4) + ρF (x4)
(1 + ρ)Eu α ≥ max{F (x4), 2− F (x4)}.

Because G is symmetric, Eu = m holds. Thus, for α ≤ 1 case 3 is always an

equilibrium, and for α > 1, case 4 is always an equilibrium. ¥
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Welfare Next we address interim expected utility.

Proposition 11 With negative correlation (and G symmetric), interim ex-

pected utility under the dynamic mechanism exceeds interim expected utility

under a static mechanism.

The proof is omitted because it is a one-to-one replication of the proofs of

Propositions 2 and 9. The only additional thing that one needs to keep in mind

is that M = 2Eu because the distribution G is symmetric. The proposition also

implies that ex ante expected welfare under the dynamic mechanism exceeds

expected welfare under a static mechanism.

Welfare with Equal Capacities Assume α = 1. Then, the cutoff in

period one is x1 = m, and we have first-best in period one:

WDM
1 = E[x | x ≥ m] = WFB

1 .

In period two, welfare is

WDM
2 = 2

∫ m

0
(ρ(M − x) + (1− ρ)E[x]) g(x)dx,

where 2g(x) is the density conditional on x ≤ m. Thus,

WDM
2 = (1− ρ)E[x] + 2ρ

∫ m

0
(M − x)g(x)dx = (1− ρ)E[x] + ρE[x | x ≥ m].

Therefore, overall, welfare under the dynamic mechanism is

WDM (ρ) = (1 + ρ)E[x | x ≥ m] + (1− ρ)E[x],

which for ρ = 1 is equal to first-best welfare WFB = 2E[x | x ≥ m].

7 Switching Costs

In many settings, it is natural to assume that there is some kind of inertia. For

example, given that a student has already been assigned to a school, he or she

may be less inclined to go to the other school even if the other school is, a priori,

perceived as better. Similarly, when assigning tasks within an organization

or assigning houses to individuals, there may be economies of scale because

handing over the task or apartment from one individual to another is costly. So

as to take this possibility into account, we now introduce a switching cost s ≥ 0

that is borne by every student upon switching from one school to another.

However, before turning to the details of the model, a few comments are in

order. Clearly, any cost of switching, say, schools must be put into proportion
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with the utility generated by a school. Though this cost may be relatively high

when schools were to be switched, say, every year, it is arguably much smaller

when students switch from one school to another every five or six years, as is the

case under the Boston school assignment scheme discussed in the Introduction.

In particular, when periods are sufficiently long, switching costs may be close

to zero or even become negative.15

7.1 The Model with Switching Costs

The assumptions are now slightly modified to incorporate switchings costs. As

before, there are two periods, two schools A and B and students have homoge-

nous and time-invariant ordinal preferences for the two schools. Utility for

school B is normalized to zero, while utility for A is drawn from the distribu-

tion G with support [0,M]. Upon changing from one school to another, a student

bears a switching cost s ≥ 0.

As in the case with correlation, when assessing welfare one can no longer

restrict attention to the period one allocation. Students who are re-assigned in

t = 2 bear switching costs, which are a dead weight loss and hence work against

the desirability of our mechanism. On the other hand, in t = 2 some students

who are in B and who have low preference intensity for A prefer to stay in B,

which all else equal enhances the efficiency of the mechanism.

Introducing inertia in the form of switching costs does not only have the

effect of reducing the desirability of the dynamic mechanism. It also renders the

model much less tractable. We therefore proceed as follows. Instead of treating

the model in complete generality, we derive first the cutoff x∗ for an equilibrium

related to a case 2 equilibrium (as in Section 3) under the assumption that such

an equilibrium exists. Second, when G is uniform we derive sufficient conditions

for such an equilibrium to exist. Third, we discuss the welfare properties of the

dynamic mechanism and compare them with those for a static mechanism and

with first-best. Fourth, we show that for equal capacities and the distributions

G with Eu = m there is no case 3 and case 4 equilibrium.16 Finally, we briefly

discuss a modified dynamic mechanism that induces less switching and yields

larger welfare than the standard dynamic mechanism used so far.
15This would be the case if parents feel that it is a good thing if their children learn to

adopt to a new environment every once in a sufficiently long while.
16Equilibria of type 1 with switching costs, on the other hand, turn out to be very hard to

derive, which is why we chose not address them here.
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7.2 Case 2 Equilibrium Conditions

Recall that a case 2 equilibrium is such that µ < α < 2−µ ⇔ 2−µ > 2−α. In

this equilibrium, all students who apply to A in t = 1 will get into A in t = 1

and into B in t = 2 with certainty. With a positive cost of switching schools,

though, only the fraction 1−G(s) of the (2−µ) students in B want to get into

A because the students who have been assigned to B in t = 1 and whose utility

draw x is less than s in t = 2 prefer to stay in B. So as to preserve the above

mentioned properties of a case 2 equilibrium, the condition

(2− µ)(1−G(s)) > α (1)

has therefore to hold additionally, which will hold only if s is not too large. The

adjusted conditions for a case 2 equilibrium are thus

µ < α < 2− µ and (2− µ)(1−G(s)) > α.

Some additional notation is useful. Temporarily, let β denote the probability

of getting into A when applying to B and denote consequently by (1− β) the

probability of getting into B when applying to B in t = 1. Similarly, let δ and

(1− δ) be the probability of getting into A and B in t = 2, respectively, when

applying to B in t = 1.17 Also, denote by E[x | x > s] the expected utility for

school A conditional on the utility for A being greater than the switching cost

s, while the unconditional expected utility for school A is still denoted as Eu.

With this notation at hand, the expected utility of applying to B given

utility draw x in t = 1 is

UB(x) = β [x + δEu− (1− δ)s] + (1− β)δ(1−G(s)) (Eu[x | x > s]− s) , (2)

while the expected utility when applying to A is simply

UA(x) = x− s. (3)

Because in an (adjusted) case 2 equilibrium, those who apply to A get into

A for sure in t = 1 and into B for sure in t = 2, UA(x) = x − s follows

immediately. Equality (2) is also easily understood. With probability β, the

individual is assigned to A in t = 1, in which case he gets utility x in t = 1.

With probability δ, he will remain in A in t = 2, whence he derives an expected

utility of Eu. With probability (1 − δ), though, he has to switch schools in
17Of course, these probabilities are endogenous and depend on the behavior of the individ-

uals under the mechanism. They will be expressed in terms of the primitives of the model
shortly.
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t = 2, which costs him s. This explains the first expression on the right-hand

side of (2). As to the second term, note first that the individual is assigned to

school B for both periods with probability (1−β)(1− δ), in which case he gets

zero utility but bears also no switching costs, which is why there are only two

terms on the right-hand side. With probability (1−β)δ the individual who was

in B in t = 1 switches to A in t = 2. His expected gross utility of being in

school A is Eu[x | x > s] since he only applies to school B in t = 2 when x > s.

In this case, though, he bears also the switching cost s, so that his net utility is

Eu[x | x > s] − s. Because this happens only with probability (1−G(s)), the

expected net utility has to be multiplied by (1−G(s)).

The equilibrium cutoff x∗ is such that UA(x∗) = UB(x∗). Solving for x∗

yields

x∗ =
β

1− β
[δEu− (1− δ)s] + δ(1−G(s)) (Eu[x | x > s]− s) +

1
1− β

s. (4)

Under the adjusted assumptions for case 2,

β = 1− 2− α

2− µ
and δ =

α

(2− µ)(1−G(s))
.

Moreover, µ = 2 − 2G(x∗) must hold for x∗ to be an equilibrium. Replacing

these probabilities in (4) reveals that there will be no neat general solution.

7.3 Equilibrium with Uniform and Equal Capacities

So as to simplify further, we assume now that the two schools have equal ca-

pacities (i.e. we set α = 1), normalize M = 1 and let G be uniform on [0, 1].

Given the normalization M = 1, the requirement x∗(s) < M implies

s <
4−√10

3
= 0.279, (5)

and the cutoff is given as the relevant solution to the quadratic equation (4),

which is

x∗(s) ≡ 4s + 1− 2s2 +
√

32s2 − 8s− 20s3 + 1 + 4s4

4(1− s)
. (6)

Also, G(x∗) = x∗, so that µ∗(s) = 2(1−G(x∗(s))) = 2(1− x∗(s)). Hence,

µ∗(s) =
3 + 2s2 − 8s−√32s2 − 8s− 20s3 + 1 + 4s4

4(1− s)
. (7)
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Figure 5: The Number of Applicants to A.

7.4 Welfare

We first look at welfare under a static mechanism. Then we compute welfare

under the modified dynamic mechanism and compare them. Lastly, we derive

first-best welfare and compare welfare under the static mechanism and under

the dynamic mechanism with first-best.

Under the optimal static mechanism, individuals are randomly assigned to

a school for two periods. Expected utility of an individual in school A is thus

simply Eu = M
2 = 1

2 per period. Over the two periods, students of mass 2 enjoy

this utility, so that

WSM = 1.

Under the dynamic mechanism, overall welfare consists of three components,

period one welfare denoted as W1, period two welfare denoted as W2 and ag-

gregate switching costs, which we denote by SWC. In general terms, period

one and two welfare are given as

W1 = µ∗E[x | x > x∗] + (1− µ∗)E[x | x ≤ x∗]

W2 = E[x | x ≥ s],

where the assumption that condition (1) holds, i.e.

(2− µ∗)(1−G(s)) ≥ 1

has been made implicitly. This assumption says that the number of individuals

from school B who do not opt out in t = 2 exceeds the capacity of school

A. Consequently, the period two allocation will assign only individuals from
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Figure 6: Aggregate Welfare W1 + W2.

school B to school A. Therefore, under this assumption, in period two students

of mass one move from B to A, and all students in A move to B, so that

aggregate switching costs are

SWC = 2s.

Now, G(.) being uniform and M = 1, we have G(s) = s,

E[x | x ≥ s] =
1 + s

2
, E[x | x > x∗] =

1 + x∗

2
and E[x | x ≤ x∗] =

x∗

2
,

while x∗ and µ∗ are given by equations (4) and (7) above; Figure 5 depicts

µ∗. It is straightforward to check that under these conditions, the assumption

(2− µ∗)(1−G(s)) ≥ 1 does indeed hold.

Computing W1 + W2 − 2s yields

14s2 − 28s + 11−√4s4 + 32s2 − 20s3 + 1− 8s

8(1− s)
.

Probably more conclusive is a look at Figures 6 and 7. Figure 6 depicts W1+W2.

The figure corroborates the conjecture made above that increasing s has also

a positive effect in that it makes the period two allocation more efficient if one

neglects the actual cost of switching schools. This is illustrated by the increasing

part of the curve W1 + W2 in Figure 6. However, the negative effect of a less

efficient selection due to a higher cutoff x∗(s) dominates when s becomes large.

Figure 7 depicts welfare under the modified dynamic mechanism, taking

the cost of switching schools into account. The straight line that parallels
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the horizontal axes is the aggregate welfare under the static mechanism. It

is particularly noteworthy that welfare under the dynamic mechanism exceeds

welfare under the static mechanism for all s up to approximately 0.127. In

other words, for switching costs no larger than approximately one fourth of the

expected utility generated by the better school does the dynamic mechanism

still outperform the static mechanism.

To complete the analysis, let us compute first-best welfare. In period one,

all individuals with x ≥ 1
2 go to school A. Consequently, period one welfare

under first-best is

WFB
1 =

3
4
.

In period two, the first-best allocation is slightly more complicated. Because

switching schools is costly, only those students who are in B in t = 1 should go

to A in t = 2 whose utility for A is greater than the utility of those in A whom

they replace by 2s or more. Otherwise, the cost of switching schools (which is

borne by both the student who moves to and the one who moves away from A)

would not be offset by the increase in utility. That is, there is a x such that

all students who have been in A in t = 1 and whose second period utility is

x ≤ x move to B and all those students who have been in B in t = 1 and whose

second period utility exceeds x + 2s move to A. Since A’s capacity is one and

since total mass of students both in A and B is one, the additional constraint

for the first-best scheme is

1−G(x) + 1−G(x + 2s) = 1 ⇔ G(x) + G(x + 2s) = 1.

Because G(.) is uniform,

x =
1
2
− s

is readily established. The total number of students who switch schools is given

by G(x) + 1 − G(x + 2s), which is equal to 1 − 2s. Thus, aggregate switching

costs are

SWCFB = s(1− 2s).

Clearly, this requires s ≤ 1
2 . For s > 1

2 , the first-best mechanism is static, i.e.

it induces no school changes in t = 2. Period two welfare is

WFB
2 = (1−G(x))E[x | x ≥ x] + (1−G(x + 2s))E[x | x ≥ x + 2s].

Noting that (1 − G(x)) = 1
2 + s and (1 − G(x + 2s)) = 1

2 − s and replacing

E[x | x ≥ x] and E[x | x ≥ x+2s] by 3
4− s

2 and 3
4 + s

2 , one gets after simplifying

WFB
2 =

3
4
− s2.
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Figure 7: Aggregate Welfare W1 + W2 − SWC.

Overall, first-best welfare is thus

WFB ≡ WFB
1 + WFB

2 − SWCFB =
3
2
− s + s2.

Let us compare first-best with welfare under the dynamic and under the static

mechanisms. We do this by plotting the welfare under the dynamic and the

static mechanism as fraction of the first-best welfare, i.e. by plotting W DM

W FB and
W SM

W FB as functions of s in Figure 8. The parallel to the horizontal axes depicts

first-best.

For small switching costs, the dynamic mechanism achieves more than eighty

percent of the first-best welfare, while the static mechanism achieves less than

seventy percent of first-best. Notice also that for s = 0 the difference between

first-best and the dynamic mechanism is due solely to the second period since

in period one, the dynamic mechanism achieves first-best. As seen above, the

point of intersection of W DM

W FB and W SM

W FB is at s = 0.127, where the static and

dynamic mechanism achieve slightly more than seventy percent of first-best.

7.5 Other Equilibria

We now address the question whether there are other equilibria. We show that

there is no case 3 and no case 4 equilibrium with equal capacities (i.e. for α = 1)

and G(x) such that Eu = m.

No Case 3 and 4 Equilibrium To see that there is no case 3 and 4 equi-

librium when G is such that Eu = m, note first that for α = 1 the restric-
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Figure 8: Welfare Comparisons.

tions α ≤ min{F (x∗), 2 − F (x∗)} and α ≥ min{F (x∗), 2 − F (x∗)} require

F (x∗) = 1 ⇔ x∗ = m = Eu. Second, the cutoff in a case 3 and 4 equilib-

rium is given by

UA(x∗) = x∗+G(s)Eu−(1−G(s))s = (1−G(s))E[x | x > s]−s) = UB(x∗). (8)

This is easily seen when noting that because µ = 1, all applicants to A get into

A and all others get into B in period one. In period two, the fraction G(s) of

those who were in B in period one have a utility for A that is smaller than the

switching cost s. Consequently, they will opt out, so that their overall utility

is zero. With probability (1−G(s)) they have utility for A that outweighs the

cost of switching, which explains the expected utility of applying to B. Since

the fraction G(s) of applicants to B opts out, the probability of staying in A

for applicants to A is G(s), in which case their expected utility is Eu. With

the probability (1−G(s)), though, they will be assigned to B in period two, in

which case they bear the switching cost s. This explains the expression for the

expected utility of applying to A.

Solving (8) for x∗ yields

x∗ = (1−G(s))E[x | x > s]−G(s)Eu. (9)

So as to complete the proof that there is no case 3 and no case 4 equilibrium,

it suffices to show that x∗ < Eu. To see this, note that (1 − G(s))E[x |
x > s] − G(s)Eu < Eu implies (1 − G(s))E[x | x > s] < Eu + G(s)Eu.
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But (1 − G(s))E[x | x > s] =
∫ M
s xdG(x), which is certainly less than Eu +

G(s)Eu =
∫ M
0 xdG(x) + G(s)

∫ M
0 xdG(x) for s > 0. Thus, x∗ < Eu follows.

For the uniform distribution on [0,1], for example, Eu = 1
2 , G(s) = s and

E[x | x > s] = 1+s
2 . Thus, x∗ = 1−s−s2

2 , which is smaller than Eu = 1
2 for any

s > 0.

7.6 Modified Dynamic Mechanism

When looking at the allocation under the standard dynamic mechanism, there

is likely to be too much school switching in equilibrium, i.e. students switch

schools more often than seems necessary from an incentive point of view: Under

the case 2 equilibrium analyzed above, some students who apply to B in t = 1

are sent to A in t = 1 because of excess demand for B and sent back to B

in t = 2 because of excess demand for A by students with the same priority.

This is likely to be inefficient because the incentives to apply to B would not

necessarily be weakened if those rationed at B in t = 1 were assigned to A

permanently. Such a mechanism would induce less switching in equilibrium

and therefore may increase welfare. We are now going to show that such a

mechanism exists for a uniform distribution and equal capacities.

New Dynamic Mechanism The new mechanism works as follows. If you

apply to B in t = 1, you’ll have priority over A-applicants in t = 2. (This is as

before.) However, if you get rationed at the school you apply to in t = 1, you’ll

be in the school you are assigned to after being rationed for both periods.

Equilibrium As in a case 2 equilibrium, assume

(A1) µ < α < 2− µ ⇔ 2− µ > 2− α

and define the residual capacity of A as the capacity of A that remains to be

allocated after those who are in there permanently have been subtracted. Under

assumption (A1), the residual capacity of A is µ since α−µ seats are occupied

permanently by lucky B-applicants who were assigned to A in t = 1.

Note that (2−α)(1−G(s)) is the number of B-applicants who want to get

into A in t = 2 because for them, x > s holds. The second assumption is

(A2) µ ≤ (2− α)(1−G(s)).

This assumption implies that the number of B-applicants who want to get into

A in t = 2 exceeds the residual capacity of A. Consequently, no one who applied

to A in t = 1 will be in A in t = 2.



7 SWITCHING COSTS 40

Figure 9: Welfare under the New Dynamic Mechanism.

Under these assumptions, the cutoff equilibrium conditions are as follows.

Utility of applying to A is

UA(x) = x− s,

while utility of applying to B is

UB(x) =
2− α

2− µ
(1−G(s))

µ

(2− α)(1−G(s))
(E[x | x > s]− s)

+
(

1− 2− α

2− µ

)
[x + Eu],

which simplifies to

UB(x) =
µ

2− µ
(E[x | x > s]− s) +

α− µ

2− µ
[x + Eu].

Solving UA(x) = UB(x) yields

x∗ =
µ(E[x | x > s]− 2s) + (α− µ)Eu + 2s

2− α
.

Notice that for s = 0 we have x∗ = α
2−αEu, which is the cutoff of a type 2

equilibrium.

For the uniform G(x) = x and α = 1, we get

x∗(s) =
1− 2s

2(1− 3s)
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and

µ∗(s) =
1− 4s

1− 3s
.

Note that µ(s) > 0 requires s < 1
4 . For larger s, there is no interior cutoff, and

the mechanism reduces to a static mechanism where all students are randomly

and permanently assigned in t = 1.18 The assumption (A1) and (A2) are

satisfied because µ(s) < 1−s holds for all s > 0, which is (A2). Since for α = 1

(A1) is contained in (A2), (A1) is also satisfied. Thus, this is an interior cutoff

equilibrium for all s < 1
4 .

Welfare First note that aggregate switching costs are

SWC = 2µ(s)s = 2s
1− 4s

1− 3s
.

As conjectured, the aggregate switching costs under the new dynamic mecha-

nism are smaller than under the standard dynamic mechanism, which are 2s.

Second, welfare Wt in period t = 1, 2, neglecting switching costs, is

W1 = µE[x | x > x∗] + (1− µ)E[x | x < x∗]

W2 = (1− µ)Eu + µE[x | x > s].

These expressions are readily explained. The number of A-applicants assigned

to A in t = 1 is µ < 1. The expected utility of each of these applicants

is E[x | x > x∗], which explains the first term of W1. The second term is

expected utility of students who applied to B. Their expected utility for A is

E[x | x < x∗] and 1− µ of them are admitted to A, which gives us the second

term. As for W2, note first that there is no sorting among the 1 − µ students

with permanent seats. Thus, their expected utility is just the unconditional

expectation Eu, which gives us the first term. The residual capacity of µ is

filled with students from B whose utility exceeds s, which explains the second

term.

Substituting yields

W1 =
3− 10s

4(1− 3s)

W2 =
1− 2s− 4s2

2(1− 3s)
,

and aggregate welfare WDM,new, taking switching costs into account, is

WDM,new ≡ W1 + W2 − SWC =
5 + 24s2 − 22s

4(1− 3s)
.

18To see this, note that with µ = 0, every one applies to B. Half of them get rationed and
are assigned permanently to A.
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Assuming that a static mechanism would assign individuals for two periods,

overall welfare under a static mechanism is simply

WSM = 1.

Solving WDM,new = WSM yields (1− 6s)(1− 4s) = 0, which has two solutions
1
6 and 1

4 . Thus, in the presence of switching costs the new dynamic mechanism

performs better than a static mechanism for all s < 1
6 . For s ∈ (

1
6 , 1

4

)
, the static

mechanism is better than the new dynamic mechanism, while for s ≥ 1
4 the two

mechanism induce the same equilibrium; see Figure 9.

8 Summary

For the various models analyzed in the paper, a number of results were obtained

that, coupled with the often subtle differences in the underlying assumptions,

may appear confusing to the reader. So as to make clear what results hold

under which conditions, we now provide a brief overview over the main results.

We broadly separate results into the categories Existence and Welfare.

8.1 Existence

Assume that all individuals agree that school A is better than school B in every

period. Proposition 1 guarantees the existence of an interior cutoff equilibrium

under fairly general conditions. That is, such an equilibrium exists for all

α < 2M
M+Eu when utilities are uncorrelated over time, utility for school B is

normalized to zero and G has full support and satisfies G(0) = 0. Because G

has full support, Eu < M follows, implying 2M
M+Eu > 1. Thus, Proposition 1

asserts in particular existence for all α ≤ 1. The same proposition states that

Eu = m is an alternative sufficient condition for equilibrium existence when

α > 2M
M+Eu . An example that illustrates both the sufficiency and the relevance

of these conditions is in Appendix B. Proposition 12 in Appendix A shows

that for any α ∈ (0, 2) an interior cutoff equilibrium exists for any G satisfying

G(0) = 0 and full support when utility for B is not normalized but drawn

independently from G[0,M ] while utility for A is drawn from G[M, 2M ].

Under only somewhat more restrictive assumptions on α and ρ, the existence

result of Proposition 1 extends directly to the case when utilities are positively

correlated. This is the content of Proposition 8. For negative correlation,

Proposition 10 guarantees existence for any ρ and α, provided G is symmetric.

It may be worth mention at this point that symmetry of G guarantees existence

for all models (the only exception is the model with switching costs) independent
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of the degree or sign of correlation. Symmetry implies Eu = m. Consequently,

case 3 is an equilibrium for α ≤ 1 and case 4 is an equilibrium otherwise.

We have discussed uniqueness vs. multiplicity issues only for the model of

Section 3, where utilities are uncorrelated. The main result (Proposition 4) is

that under the dynamic mechanism the unique equilibrium for α ≤ 1 is a cutoff

equilibrium. For α > 1, there may be multiple equilibria with an interior cutoff,

or all students apply to B in period one.

The existence of a cutoff equilibrium when individuals differ with respect to

their ordinal preferences has been addressed in Section 4, where the assump-

tions were that some individuals have a time invariant preference for school A

and some for B and that utility of the disliked school is zero, while utility for

the preferred school is drawn i.i.d. from G[0,M ]. For this model, Lemma 2

shows that there is an appropriately adjusted dynamic mechanism such that all

individuals reveal their true ordinal preferences in phase 1 of this mechanism.

Assume that there is excess demand for one school after these ordinal prefer-

ences have been revealed (otherwise, the problem is trivially solved). Then,

Proposition 6 says that in phase 2 of the adjusted mechanism, the game re-

duces to the one where individuals of mass two have an ordinal preference for

the school with excess demand, which was studied in Section 3.

As for the model with switching costs, no general existence results were

obtained. Nonetheless, we showed for an example with uniform distribution

and equal capacities that a cutoff equilibrium exists when switching costs are

not too large.

8.2 Welfare

Assume that all individuals agree that school A is better than school B in every

period. Proposition 2, 9 and 11 address welfare under a dynamic and a static

mechanism for independent, positively and negatively correlated utility draws,

respectively. These propositions assert that in the interim stage of any cutoff

equilibrium, every individual has a greater expected utility under a dynamic

mechanism than in the equilibrium under a static mechanism. A corollary of

these propositions is that ex ante expected utility under the dynamic mechanism

is larger for any individual than under a static mechanism, provided, of course,

that there is a cutoff equilibrium.

When utility draws are independent over time, Proposition 3 says that when-

ever the allocation is first-best in period one under the dynamic mechanism,
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it is second-best overall.19 This proposition relies heavily on independence of

utility draws over time because then achieving first-best in period one has no

opportunity cost in period two. This is not the case when utilities are corre-

lated, and consequently, we cannot make an equivalent statement for the case

with correlated utilities. For the model with i.i.d. utilities, Proposition 5 pro-

vides a lower bound for welfare that can be achieved in a T > 2 period model

by using dynamic mechanisms whenever a cutoff equilibrium exists in the two

period model.

Like with existence we haven’t obtained any general results with respect

to welfare when there are switching costs. For the example with the uniform

distribution and equal capacities, we showed that welfare under the dynamic

mechanism exceeds welfare under a static mechanism as long as switching costs

are moderate.

9 Conclusions

This paper studies the potential of dynamic mechanism to allocate indivisible

goods (e.g. houses or seats in a school) to individuals (e.g. students) when

these allocations are made repeatedly and when individuals face uncertainty

about the intensity of their future preferences.

For a two period two school model, where all individuals agree that one

school is better than the other, an equilibrium under the dynamic mechanism

exists under fairly general conditions. Moreover, we show that at the interim

stage every individual expects greater utility under the dynamic mechanism

than under a static mechanism, no matter what the degree of positive correla-

tion of first and second period utility. For the special case when both schools

have the same capacity and when the distribution that generates individuals’

instantaneous utilities is symmetric, equilibrium welfare is first-best in period

one and second-best over both periods.

In practice, a severe problem in school assignments with static mechanisms

is that bad schools are underdemanded since there are no incentives to apply to

these schools. This contrasts with assignments under the dynamic mechanism,

which provides exactly this type of incentives and thereby induces individuals to

apply to schools that are perceived as bad. Therefore, the dynamic mechanism

has also the potential of mitigating the problem that some schools have too

little demand.
19First-best in period one is achieved, for example, when schools have equal capacities

(α = 1) and when G satisfies Eu = m.
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At least two questions remain open and require further research. First,

though we derive conditions under which a dynamic mechanism establishes

the second-best allocation over both periods, little is known about the optimal

incentive compatible mechanism in our model when these conditions are not

met. This is a question we are currently working on. Second, the model with

more than two types of schools remains to be analyzed. An immediate extension

of the model with two schools and two periods is the following. Assume that

the number of schools N , each with a capacity of one, is equal to the number

of periods T and that the total mass of students is equal to N . Students

unanimously agree about the ordering of schools, which is A Â B Â ... Â N ,

and the cardinal utility xk for school k with k = A, ..,N is drawn i.i.d. over

time and schools, so that, e.g., xA ∼ G[(N − 1)M,NM ] and xN ∼ G[0,M ].

This model is balanced in an obvious sense.20 Consider the simple dynamic

mechanism: ”Each student can apply to every school exactly once.” That is,

after a student applied to A in t = 1 his choice set in t = 2 is {N, N − 1, ..., B},
which is a direct extension of the dynamic mechanism of this paper to a balanced

N = T problem. There is an equilibrium under this mechanism which induces

no rationing at any stage in any school and in which welfare is first-best in

t = 1, better than under a random allocation in any t < T and equal to welfare

under a random allocation in t = T . In this sense, the results of the present

paper carry over to any balanced problem. Therefore, balanced models are a

natural starting point for the analysis of models with an arbitrary number of

schools and periods, possibly varying capacities and heterogenous preferences.

This analysis remains to be done.

20Appendix A contains this model with N = 2, except that it allows for varying capacities.
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Appendix

A The Model without the Normalization

Throughout, we have maintained the assumption that utility for the worse

school is zero for all individuals and periods. We now relax this normalization

by making the following assumptions.

Total mass of students is two, and there are two periods and two schools A

and B. Capacity of A is α ∈ (0, 2) and capacity of B is (2− α). Instantaneous

utilities are i.i.d. draws from the distribution G(.) with support [0,M ] for B

and [M, 2M ] for A.21 As above, we denote by µ the mass of students who apply

to A in t = 1, and we denote now by ∆EU ≡ EUA − EUB > 0 the difference

between the two expected utilities. Note that ∆EU = M .

A.1 Equilibrium

The four cases:

As in the case with the normalization, as a function of α and µ four cases

are to be distinguished.

Case 1 : 2− µ < α < µ

Note that this implies 2− α < µ and 2− µ < 2− α. Then:

UA(x) =
α

µ
xA +

(
1− α

µ

)
xB +

α− (2− µ)
µ

EUA +
(

1− α− (2− µ)
µ

)
EUB

= xB + EUA = UB(x).

Re-arranging and simplifying yields

x1
A = xB +

2− α

α
[EUA − EUB] = xB +

2− α

α
∆EU.

Notice that the sole difference to case 1 with the normalization is that xB

appears on the right-hand side and that EUA is replaced by ∆EU .

Case 2 : µ < α < 2− µ

Note that this implies 2− µ > 2− α. Then:

UA(x) = xA + EUB

=
2− α

2− µ
xB +

(
1− 2− α

2− µ

)
xA +

α

2− µ
EUA +

(
1− α

2− µ

)
EUB = UB(x).

Re-arranging and simplifying yields

x2
A = xB +

α

2− α
∆EU.

21Denote by GA the distribution of xA and by GB the distribution of xB . Then, our
assumption is that GA(M + x) = GB(x) for all x ∈ [0, M ].
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Case 3 : α < min {µ, 2− µ}
Note that this implies 2− µ < 2− α and µ < 2− α. Then:

UA(x) =
α

µ
xA +

(
1− α

µ

)
xB + EUB

= xB +
α

2− µ
EUA +

(
1− α

2− µ

)
EUB = UB(x).

Re-arranging and simplifying yields

x3
A = xB +

µ

2− µ
∆EU.

Case 4 : α > max {µ, 2− µ}
Note that this implies 2− α < µ and 2− α < 2− µ. Then:

UA(x) = xA +
2− α

µ
EUB +

(
1− 2− α

µ

)
EUA

=
2− α

2− µ
xB +

(
1− 2− α

2− µ

)
xA + EUA = UB(x).

Re-arranging and simplifying yields

x4
A = xB +

2− µ

µ
∆EU.

Denote by x(φ) the set of all pairs (xA, xB) such that xA ≥ φ + xB for

φ ∈ [0, 2M ]. Formally,

x(φ) = {(xA, xB) | xA ≥ φ + xB, ∀xB ∈ [0,M ], ∀xA ∈ [M, 2M ]} .

There being a total mass of students equal to two,

F (x(φ)) = 2
∫ M

0

∫ 2M

max{φ+xB ,M}
dG(xA)dG(xB)

is the number of students with utility draws below (and to the the right of)

the line with slope 1 and the intercept φ on the horizontal axis. Because G(.)

is continuous in xB and xA, F (x(φ)) is also continuous for φ ∈ [0, 2M ]. In

particular, F (x(0)) = 0 and F (x(2M)) = 2. Moreover, since utility draws are

i.i.d., F (x(M)) = 1. Figure 10 illustrates the set x(φ) for φ = 0 and φ = M .

Replace µ by 2−F (xi
A), where F (xi

A) is the mass of students with utilities

below the line given by xi
A, i = 1, .., 4 and let

φ1 ≡ 2− α

α
∆EU

φ2 ≡ α

2− α
∆EU

φ3 ≡ 2− F (x(φ3))
F (x(φ3))

∆EU

φ4 ≡ F (x(φ4))
2− F (x(φ4))

∆EU.
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Figure 10: The Model without the Normalization xB = 0.

Summarizing, we then have

x1
A = xB +

2− α

α
∆EU F (x(φ1)) ≤ α ≤ 2− F (x(φ1)

x2
A = xB +

α

2− α
∆EU 2− F (x(φ2)) ≤ α ≤ F (x(φ2))

x3
A = xB +

2− F (x(φ3))
F (x(φ3))

∆EU α ≤ min{F (x(φ3)), 2− F (x(φ3))}

x4
A = xB +

F (x(φ4))
2− F (x(φ4))

∆EU α ≥ max{F (x(φ4)), 2− F (x(φ4))}.

Proposition 12 For any α ∈ (0, 2) and any continuous G(.), there is an inte-

rior cutoff equilibrium.

Proof : Set φ = M . Then, F (x(φ)) = F (x(M)) = 1 and 2−F (x(M))
F (x(M)) ∆EU =

M and F (x(M))
2−F (x(M))∆EU = M . Thus, for α ≤ 1, case 3 is an equilibrium, and for

α > 1, case 4 is an equilibrium. ¥
Remark Notice the difference to Proposition 1, which is valid for the model

with the normalization. Without the normalization, no additional restrictions

on α and G have to be made. This suggests that if the normalization does

anything it works against our mechanism.

A.2 Welfare with Equal Capacities

Let us now derive the first-best allocation, and show that this allocation is

the same in period one as the allocation under the dynamic mechanism when
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schools have equal capacities. Thus, the result of the paper, according to which

first-best in period one is achieved exactly under these conditions, does not

appear to depend on the normalization we made.

First-best Consider an individual with utility draw x = (xA, xB). If this

individual is assigned to school A, it adds xA to total welfare. If assigned to B,

it adds xB, so that it adds net welfare of xA − xB when assigned to school A.

Maximizing aggregate welfare therefore requires assigning all those individuals

to A who add the largest net welfare when going to school A, subject to the

constraint that their mass does not exceed one, which is school A’s capacity. For

an illustration, consider Figure 10. Under first-best, all individuals with utility

draws above the line with φ = M are assigned to school A in both periods.

This is exactly what is achieved in the equilibrium under the dynamic mech-

anism in period one. All the individuals whose net welfare contributions are no

less than M go to school A, the other ones to school B. Thus, as in the case

with the normalization, first-best is achieved in t = 1, and second-best overall.

B Example of Equilibrium Nonexistence

This part of the Appendix provides an example that illustrates that the condi-

tions of Proposition 1 are sufficient and yet have grip.

Consider the piecewise uniform distribution

G(x) =
{

θ
2θ−1x if 0 ≤ x ≤ m

1− θ + θx if m < x ≤ 1
,

with mean Eu = 3θ−1
4θ , median m = 2θ−1

2θ and the shape parameter θ > 1
2 .22

For θ = 1, we thus have Eu = m = 1
2 , which corresponds to the usual uniform

distribution. As θ approaches 1
2 , the median approaches zero and the mean 1

4 .

The difference between the expected value and the median is Eu−m = 1−θ
4θ .

First, we demonstrate that an equilibrium may exist even when both suffi-

cient restrictions are violated. Let θ = 4
5 and α = 8

5 . Then, x2 = 7
4 > 1 ≡ M .

Thus, there is no case 2 equilibrium in this case. On the other hand, since θ 6= 1,

Eu 6= m, so the sufficient condition for the case 4 equilibrium is violated as well.

Nonetheless, there is a case 1 equilibrium with x1 = 7
64 . To see this, note that

x1 = 7
64 < 3

16 = m. Thus, F (x1) ≡ 2θ
2θ−1x1 = 7

24 < 8
5 = α < 17

24 = 2 − F (x1).

Second, to see that the restrictions, though sufficient, have grip, assume now

θ = 3
5 and keep α = 8

5 . Then, x2 = 4
3 > 1 and x1 = 1

12 < 1
6 = m. Thus,

22It is easy to check that G(0) = 0 and G(m) = 1
2

holds.
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F (x1) = 1
2 < 8

5 = α. However, 2 − F (x1) = 3
2 < 8

5 = α, so there is no case

1 equilibrium either. Though Eu 6= m, there might still be a case 4 equilib-

rium. However, no such equilibrium exists. For θ < 0.86, there is no solution

to x4 = F (x4)
2−F (x4)Eu such that x4 > m. For x4 < m, the solution is easily seen

to be x4 = 5θ−3
3θ . But for θ = 3

5 , x4 = 0. Therefore, 2 − F (x4) = 2 > 8
5 = α,

violating the restrictions for a case 4 equilibrium. Since case 3 cannot be an

equilibrium when α > 1, it follows that there is no cutoff equilibrium.
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